LECTURE NOTES

ON
CLOUD COMPUTING

IV B. Tech I semester

[image: C:\Documents and Settings\Staff\Desktop\index.png]

INFORMATION TECHNOLOGY
CMR TECHNICAL CAMPUS
Kandlakoya,Medchal Road,Hyderabad 501401

Chapter 1

System Models and

Enabling Technologies

Summary: Parallel, distributed, and cloud computing systems advance all works of life. Thischapter assesses the evolutional changes in computing and IT trends in the past 30 years. These changes are driven by killer applications with variable amounts of workload and datasets at different periods of time. We study high-performance computing (HPC) and high-throughputcomputing (HTC) systems in clusters/MPP, service-oriented architecture (SOA), grids, P2Pnetworks, and Internet clouds. These systems are distinguished by their architectures, OS platforms, processing algorithms, communication protocols, security demands, and service models. This chapter introduces the essential issues in scalability, performance, availability, security, energy-efficiency, workload outsourcing, datacenter protection, etc. The intent is to pave the way for our readers to study the details in subsequent chapters.

	1.1 Scalable Computing Towards Massive Parallelism
	2

High-Performance vs. High-Throughput Computing

Analysis of Top 500 Supercomputers

Killer Applications and Grand Challenges

Enabling Technologies for Distributed Computing 7

System Components and Wide-Area Networking

Virtual Machines and Virtualization Middleware

Trends in Distributed Operating Systems

Parallel Programming Environments

	1.3
	Distributed Computing System Models
	14
	

	
	1.3.1Clusters of Cooperative Computers
	
	

	
	1.3.2Grid Computing Infrastructures
	
	

	
	1.3.3Service-Oriented Architecture (SOA)
	
	

	
	1.3.4Peer-to-Peer Network Families
	
	

	
	1.3.5Cloud Computing over The Internet
	
	

	1.4
	Performance, Security, and Energy-Efficiency
	24

Performance Metrics and System Scalability

Fault-Tolerance and System Availability

Network Threats and Data Integrity

Energy-Efficiency in Distributed Computing

1.5	References and Homework Problems	34

1 - 1
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page3]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

1.1 Scalable Computing Towards Massive Parallelism

Over the past 60 years, the state of computing has gone through a series of platform and environmental changes. We review below the evolutional changes in machine architecture, operating system platform, network connectivity, and application workloads. Instead of using a centralized computer to solve computational problems, a parallel and distributed computing system uses multiple computers to solve large-scale problems over the Internet. Distributed computing becomes data-intensive and network-centric. We will identify the killer applications of modern systems that practice parallel and distributed computing. These large-scale applications have significantly upgraded the quality of life in all aspects of our civilization.

1.1.1 High-Performance versus High-Throughput Computing

For a long time, high-performance computing (HPC) systems emphasizes the raw speed performance.

The speed of HPC systems increased from Gflops in the early 1990’s to now Pflops in 2010. This improvement was driven mainly by demands from scientific, engineering, and manufacturing communities in the past. The speed performance in term of floating-point computing capability on a single system is facing some challenges by the business computing users. This flops speed measures the time to complete the execution of a single large computing task, like the Linpack benchmark used in Top-500 ranking. In reality, the number of users of the Top-500 HPC computers is rather limited to only 10% of all computer users. Today, majority of computer users are still using desktop computers and servers either locally or in huge datacenters, when they conduct Internet search and market-driven computing tasks.

The development of market-oriented high-end computing systems is facing a strategic change from the HPC paradigm to a high-throughput computing (HTC) paradigm. This HTC paradigm pays more attention to high-flux multi-computing. The main application of high-flux computing system lies in Internet searches and web services by millions or more users simultaneously. The performance goal is thus shifted to measure the high throughput or the number of tasks completed per unit of time. HTC technology needs to improve not only high speed in batch processing, but also address the acute problem of cost, energy saving, security, and reliability at many datacenters and enterprise computing centers. This book is designed to address both HPC and HTC systems, that meet the demands of all computer users.

In the past, electronic computers have gone through five generations of development. Each generation lasted 10 to 20 years. Adjacent generations overlapped in about 10 years. During 1950-1970, a handful of mainframe, such as IBM 360 and CDC 6400, were built to satisfy the demand from large business or government organizations. During 1960–1980, lower-c ost minicomputers, like DEC’s PDP 11 and VAX series, became popular in small business and college campuses. During 1970-1990, personal computers built with VLSI microprocessors became widespread in use by mass population. During 1980-2000, massive number of portable computers and pervasive devices appeared in both wired and wireless applications. Since 1990, we are overwhelmed with using both HPC and HTC systems that are hidden in Internet clouds. They offer web-scale services to general masses in a digital society.

Levels of Parallelism: Let us first review types of parallelism before we proceed further with thecomputing trends. When hardware was bulky and expensive 50 years ago, most computers were designed in a bit-serial fashion. Bit-level parallelism (BLP) converts bit-serial processing to word-level processing gradually. We started with 4-bit microprocessors to 8, 16, 32 and 64-bit CPUs over the years. The next wave of improvement is the instruction-level parallelism (ILP). When we shifted from using processor to execute single instruction at a time to execute multiple instructions simultaneously, we have practiced ILP through pipelining, superscalar, VLIW (very-long instruction word), and multithreading in the past 30 years. ILP demands branch prediction, dynamic scheduling, speculation, and higher degree of compiler

1 - 2
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page4]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

support to make it work efficiently.

Data-level parallelism (DLP) was made popular through SIMD (single-instruction and multiple-data)and vector machines using vector or array types of instructions. DLP demands both even more hardware support and compiler assistance to work properly. Ever since the introduction of multicore processors and chip multiprocessors (CMP), we explore the task-level parallelism (TLP). A modern processor explores allof the above parallelism types. The BLP, ILP, and DLP are well supported by advances in hardware and compilers. However, the TLP is far from being very successful due to the difficulty in programming and compilation of codes for efficient execution on multicores and CMPs. As we move from parallel processing to distributed processing, we will see the increase of computing granularity to job-level parallelism (JLP). It is fair to say the coarse-grain parallelism is built on top of the fine-grain parallelism.

The Age of Internet Computing : The rapid development of the Internet has resulted in billions of peoplelogin online everyday. As a result, supercomputer sites and datacenters have changed from providing high performance floating-point computing capabilities to concurrently servicing huge number of requests from billions of users. The development of computing clouds computing and the widely adoption of provided computing services demand HTC systems which are often built parallel and distributed computing technologies. We cannot meet the future computing demand by pursuing only the Linpack performance on a handful of computers. We must build efficient datacenters using low-cost servers, storage systems, and high-bandwidth networks.

In the future, both HPC and HTC demand multi-core processors that can handle hundreds or thousand of computing threads, tens-of-kilo-thread node prototype, and mobile cloud services platform prototype. Both types of systems emphasize parallelism and distributed computing. Future HPC and HTC systems must satisfy the huge demand of computing power in terms of throughput, efficiency, scalability, reliability etc. The term of high efficiency used here means not only speed performance of computing systems, but also the work efficiency (including the programming efficiency) and the energy efficiency in term of throughput per watt of energy consumed. To achieve these goals, three key scientific issues must be addressed:

Efficiency measured in building blocks and execution model to exploit massiveparallelism as in HPC. This may include data access and storage model for HTC and energy efficiency.

Dependability in terms of reliability and self-management from the chip to system andapplication levels. The purpose is to provide high-throughput service with QoS assurance even under failure conditions.

Adaptation in programming model which can support billions of job requests overmassive datasets, virtualized cloud resources, and flexible application service model.

The Platform Evolution: The general computing trend is to leverage more and more on shared webresources over the Internet. As illustrated in Fig.1.1, we see the evolution from two tracks of system development: distributed computing systems (DCS) and high-performance computing (HPC) systems. On the HPC side, homogeneous supercomputers (massively parallel processors, MPP) are gradually replaced by clusters of cooperative computers out of the desire to share computing resources. The cluster is often a collection of computer nodes that are physically connected in close range to each other. Clusters, MPP, and Grid systems are studied in Chapters 3 and 4. On the DCS side, Peer-to-Peer (P2P) networks appeared for distributed file sharing and content delivery applications. A P2P system is built over many client machines to be studied in Chapter 5. Peer machines are globally distributed in nature. Both P2P and cloud computing

1 - 3
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page5]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

and web service platforms emphasize more on HTC rather than HPC.
[image:]

Figure 1.1 Evolutional trend towards web-scale distributed high-throughput computing and integrated web services to satisfy heterogeneous applications.

Distributed Computing Families: Ever since mid 90’s, technologies for buildingpeer-to-peer(P2P)networks and network of clusters were consolidated into many national projects to establish wide-area computing infrastructures, known as computational grids or data grids. We will study Grid computing technology in Chapter 4. More recently, there is a surge of interest to explore Internet cloud resources for web-scale supercomputing. Internet clouds are resulted from moving desktop computing to a service-oriented computing using server clusters and huge databases at datacenters. This chapter introduces the basics of various parallel and distributed families. Grids and clouds are disparity systems with great emphases on resource sharing in hardware, software, and datasets.

Design theory, enabling technologies, and case studies of these massively distributed systems are treated in this book. Massively distributed systems are intended to exploit a high degree of parallelism or concurrency among many machines. In 2009, the largest cluster ever built has 224,162 processor cores in Cray XT-5 system. The largest computational grid connects any where from ten to hundreds of server clusters. A typical P2P network may involve millions of client machines, simultaneously. Experimental cloud computing clusters have been built with thousands of processing nodes. We devote the material min Chapters 7 and 8 to cover cloud computing Case studies of HPC system as cluster and grids and HTC systems as P2P networks and datacenter-based cloud platforms will be examined in Chapter 9.

1.1.2 Analysis of Top-500 Supercomputers

Figure 1.2 plots the measured performance of the Top-500 fastest computers from 1993 to 2009. The Y-axis is scaled by the sustained speed performance in terms of GFlops, Tfops, and PFlops. The middle curve plots the performance of the No.1 fastest computers recorded over the years. The peak performance increases from 58.7 GFlops to 1.76 PFlops in 16 years. The bottom curve corresponds to the number 500

1 - 4
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page6]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

computer speed at each year. It increases from 0.42 GFlops to 20 Tflops in 16 years. The top curve plots the total sum of all 500 fastest computer speed ovet the same period. These plots give a fairly good performance projection for years to come. For example, 1 PFlops was achieved by IBM Roadrunner in June of 2007. It is interesting to observe that the total sum increases almost linearly over the years.
[image:]

Figure 1.2	The Top-500 supercomputer performance from 1993 to 2009

(Courtesy of Top 500 Organization, 2009)

It is interesting to observe in Fig.1.3 the architectural evolution of the Top-500 supercomputers over the years. In 1993, 250 systems assumed the SMP (symmetric multiprossor) architecture shown in yellow area. Most SMPs are built with shared memory and shared I/O devices. The word “symmetric” refers to the fact all processors are equally capable to execute the supervisory and/or the application codes. There were 120 MPP systems (in dark orange area) built then. The SIMD (single instruction stream overmultiple data streams) machines (some called array processors) and uniprocessor systems disappeared in1997, while the cluster (light orange) architecture appeared in 1999, The clustered systems grow rapidly from a few to 375 systems out of 500 by 2005. On the other hand, the SMP architecture disappeared gradually to zero by 2002. Today, the dominating architecture classes in the Top-500 list are the clusters, MPP, and constellations (pink). More than 85% of the Top-500 computers used in 2010 adopted the cluster configurations and the remaining 15% chosen the MPP (massively parallel processor) architecture.

1 - 5
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page7]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010
[image:]

Figure 1.3 Architectural evolution of the Top-500 supercomputers from 1993 to 2009.

(Courtesy of Top 500 Organization, 2009)

In Table 1.1, we summarize the key architecture features, sustained Linpack benchmark performance , and power assumption of five top 5 supercomputers reported in November 2009. We will present the details of the top two systems: Cray Jaguar and IBM Roadrunner as case studies in Chapter 8. These two machines have exceeded the Pflops performance. The power consumptions of these systems are enormous including the cooling electricity. This has triggered the increasing demand of green information technology in recent years. These state of the art systems will be used far beyond 2010 when this book was written.

Table 1.1 Top Five Supercomputers Evaluated in Nov. 2009

	
	System Rank
	Architecture Description (Core size,
	Sustained
	Power/

	
	
	
	Speed
	system

	
	and Name
	Processor, GHz, OS, and Topology)
	
	

	
	
	
	
	

	
	
	
	
	

	1.
	Jaguar at Oak
	Cray XT-5HE: An MPP built with 224,162 cores in 2.6 GHz
	1.759
	6.95 MW

	
	Ridge Nat’l
	Opteron 6-core processors, interconnected by a 3-D torus
	PFlops
	

	
	US
	network
	
	

	2.
	Roadrunner
	IBM BladeCenter QS22/LS21 cluster of 122,400 cores in
	1.042
	2.35 MW

	
	at DOE/NNSA/
	12,960 3.2 GHz POWER XCell 8i processors and 6,480 AMD
	PFops
	

	
	LANL, US
	1.8 GHz Operon dual-core processors, running Linux and
	
	

	
	
	interconnected by an InfiniBand network
	
	

	3.
	Kraken at NICS,
	Crat XT-5-HE : An MPP built with 98,928 cores of 2.6 GHz
	831
	3.09 MW

	
	University of
	Opteron 6-core processors interconnected by a 3-D torus
	TFops
	

	
	Tennessee, US
	network
	
	

	4.
	JUGENE at the
	IBM BlueGene/P solution built with 294,912 processors:
	825.5
	2.27 MW

	
	FZJ in Germany
	PowerPC core, 4-way SMP nodes, and 144 TB of memory in
	TFlops
	

	
	
	72 racks, interconnected by a 3-D torus network
	
	

	5.
	Tianhe-1 at NSC/
	NUST TH-1 cluster of 71,680 cores in Xeon processors and
	563
	1.48 MW

	
	NUDT in China
	ATI Radeon GPUs, interconnected by an InfiniBand network
	TFlops
	

Killer Applications and Grand Challenges

High-performance computing systems offer transparency in many application aspects. For example,

1 - 6
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page8]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

data access, resource allocation, process location, concurrency in execution, job replication, and failure recovery should be made transparent to both users and system management. In Table 1.2, we identify below a few key applications that have driven the development of parallel and distributed systems in recent years. These applications spread across many important domains in our society: science, engineering, business, education, health care, traffic control, Internet and web services, military, and government applications. Almost all applications demand computing economics, web-scale data collection, system reliability, and scalable performance.

For example, distributed transaction processing is often practiced in banking and finance industry. Distributed banking systems must be designed to scale and tolerate faults with the growing demands. Transactions represent 90% of the existing market for reliable banking systems. We have to deal with multiple database servers in distributed transactions. How to maintain the consistency of replicated transaction records is crucial in real-time banking services. Other complications include short of software support, network saturation, and security threats in these applications. We will study some of the killer applications and the software standards needed in Chapters 8 and 9.

Table 1.2 Killer Applications of HPC and HTC Systems

	Domain
	Specific Applications

	
	

	Science and
	Scientific simulations, genomic analysis, etc.

	Engineering
	

	
	Earthquake prediction, global warming, weather forecasting, etc.

	
	

	
	

	Business, Education,
	Telecommunication, content delivery, e-commerce, etc.

	service industry,
	

	
	Banking, stock exchanges, transaction processing, etc.

	and Health Care
	

	
	Air traffic control , electric power Grids, distance education, etc.

	
	

	
	Health care, hospital automation, telemedicine, etc.

	
	

	Internet and
	Internet search, datacenters, decision-make systems, etc.

	Web Services
	

	
	Traffic monitory , worm containment, cyber security, etc.

	and Government
	

	
	Digital government, on-line tax return, social networking, etc.

	
	

	Mission-Critical
	Military commend, control, intelligent systems,

	Applications
	crisis management, etc.

	
	

1.2	Enabling Technologies for Distributed Parallelism

This section reviews hardware, software and network technologies for distributed computing system design and applications. Viable approaches to build distributed operating systems are assessed for handling massive parallelism in distributed environment.

System Components and Wide-Area Networking

In this section, we assess the growth of component and network technologies in building HPC or HTC systems in recent years. In Fig.1,4, processor speed is measured by MIPS (million instructions per second).

1 - 7
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page9]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

The network bandwidth is counted by Mbps or Gbps (Mega or Giga bits per second). The unit GE refers to 1 Gbps Ethernet bandwidth.

Advances in Processors: The upper curve in Fig.1.4 plots the processor speed growth in modern microprocessors or in chip multiprocessors (CMP). We see a growth from 1 MIPS of VAX 780 in 1978 to 1,800
MIPS of Intel Pentium 4 in 2002, and to 22,000 MIPS peak for Sun Niagara 2 in 2008. By Moore’s law, the processor speed is doubled in every 18 months. This doubling effect was pretty accurate in the past 30 years. The clock rate for these processors increases from 12 MHz in Intel 286 to 4 GHz in Pentium 4 in 30 years. However, the clock rate has stopped increasingly due to the need to reduce power consumption. The ILP (instruction-level parallelism) is highly exploited in modern processors. ILP mechanisms include multiple-issue superscalar architecture, dynamic branch prediction, and speculative execution, etc. These ILP techniques are all hardware and compiler-supported. In addition, DLP (data-level parallelism) and TLP (thread-level parallelism) are also highly explored in today’s processors.

Many processors are now upgraded to have multi-core and multithreaded micro-architectures. The architecture of a typical multicore processor is shown in Fig.1.5. Each core is essentially a processor with its own private cache (L1 cache). Multiple cores are housed in the same chip with a L2 cache that is shared by all cores. In the future, multiple CMPs could be built on the same CPU chip with even the L3 cache on chip. Multicore and multithreaded processors are now built in many high-end processors like Intel Xeon, Montecito, Sun Niagara, IBM Power 6 and X cell processors. Each core could be also multithreaded. For example, the Niagara II is built with 8 cores with 8 threads handled by each core. This implies that the maximum ILP and TLP that can be exploited in Niagaris equal to 64 (= 8 x 8).

	CPU Speed (MIPS)

	100000
	
	
	
	
	
	1000000

	
	Processor Speed
	
	Intel Core 2 QX9770
	
	

	
	
	
	
	Sun Niagara 2
	
	

	
	Network Bandwidth
	
	
	
	
	

	10000
	
	
	Intel Pentium 4
	
	

	
	
	
	
	
	100000
	

	
	
	
	
	
	
	
	

	
	
	
	Intel Pentium III
	40 GE
	
	(Mbps)

	1000
	
	
	
	
	
	

	
	
	Intel Pentium Pro
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	10 GE
	10000
	

	
	
	
	
	
	
	
	Bandwidth

	100
	
	Motorola 68060
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	Motorola 68030
	
	
	
	Gigabit
	1000
	

	
	
	
	
	
	
	
	

	10
	
	
	
	
	Ethernet
	
	Network

	1
	Intel 286
	
	Fast Ethernet
	100
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Vax 11/780
	
	
	
	
	
	

	Ethernet
	
	
	
	
	
	

	0.1
	
	
	
	
	
	10
	

	1978
	1983
	1988
	1993
	1998
	2003
	2008
	

	
	
	
	Year
	
	
	
	

[image:]

Figure 1.4 Improvement of processor and network technologies over 30 years.

Multicore Architecture: With multiple of the multicores in Fig.1.5 buily on even larger chip, the numberof working cores on the same CPU chip could reach hundreds in the next few years. Both IA-32 and IA-64 instruction set architectures are built in commercial processors today. Now, x-86 processors has been extended to serve HPC and HTC in some high-end server processors. Many RISC processors are now replaced by multicore x-86 processors in the Top-500 supercomputer systems. The trend is that x-86

1 - 8
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page10]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

upgrades will dominate in datacenters and supercomputers. Graphic processing units (GPU) appeared in

HPC systems. In the future, Exa-scale (EFlops or 1018 Flops) systems could be built with a large number of multi-core CPUs and GPUs. In 2009, the No.1 supercomputer in the Top-500 list (a Cray XT-5 named Jaguar) has already with almost over 30 thousands AMD 6-core Opteron processors resulting a total of 224,162 cores in the entire HPC system.
[image:]

Figure 1.5	The schematic of a modern multicore processor using a hierarchy of caches

Wide-Area Networking : The lower curve in Fig.1.4 plots the rapid growth of Ethernet bandwidth from 10Mbps in 1979 to 1 Gbps in 1999 and 40 GE in 2007. It was speculated that 1 Tbps network links will be available by 2012. According to Berman, Fox, and Hey [3], we expect a 1,000, 1,000, 100, 10, and 1 Gbps network links, respectively, at international, national, organization, optical desktop, and copper desktop connections in 2006. An increase factor of 2 per year on network performance was reported, which is faster than Moore’s law on CPU speed doubling in every 18 months. The implication is that more computers will be used concurrently in the future. High-bandwidth networking increases the capability of building massively distributed systems. The IDC 2010 report has predicted that both InfiniBand and Ethernet will be the two major interconnect choices in the HPC arena.

Memory, SSD, and Disk Arrays: Figure 1.12 plots the growth of DRAM chip capacity from 16 Kb in 1976 to16 Gb in 2008. This shows that the memory chips get 4 times increase in capacity every 3 years. The memory access time did not improve much in the past. In fact, the memory wall problem is getting worse as the processor gets faster. For hard drives, the capacity increases from 260 MB in 250 GB in 2004. The Seagate Barracuda 7200.11 hard drive reached 1.5 TB in 2008. The increase is about 10 times in capacity every 8 years. The capacity increase of disk arrays is even greater in the years to come. On the other hand, faster processor speed and larger memory capacity result in wider gap between processors and memory. The memory wall becomes even a more serious problem than before. Memory wall still limits the scalability of multi-core processors in terms of performance.

1 - 9
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page11]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

	Memory Chip (Mbit)

	100000
	
	
	
	
	
	
	
	
	
	1000000

	
	
	
	Memory Chip
	
	
	
	
	
	
	

	10000
	
	Disk Capacity
	
	
	
	
	16Gb
	100000

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	1Gb
	
	Seagate
	10000

	1000
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	Barracuda 7200
	

	
	
	
	
	
	
	256Mb
	
	1000

	
	
	
	
	
	
	
	
	
	
	

	100
	
	
	
	64Mb
	
	
	
	
	100

	
	
	
	
	16Mb
	
	
	WDC WD1200JB
	

	10
	
	
	
	
	Maxtor
	
	
	
	10

	
	
	4Mb
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	1Mb
	
	
	Seagate DiamondMax 2160
	
	
	1

	1
	
	
	
	
	ST43400N
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	256Kb
	
	
	
	
	
	
	0.1

	
	64Kb
	Iomega
	
	
	
	
	
	

	0.1
	
	Morrow Designs
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	0.01

	
	
	
	DISCUS M26
	
	
	
	
	
	
	

	0.01
	
	
	
	
	
	
	
	
	0.001

	1978
	1983
	1988
	1993
	1998
	2003
	2008

[image:]
Year

Figure 1.6 Improvement of memory and disk technologies over 30 years

The rapid growth of flash memory and solid-state drive (SSD) also impacts the future of HPC and HTC systems. The mortality rate of SSD is not bad at all. A typical SSD can handle 300,000 -1,000,000 write cycles per block. So SSD can last for several years, even they have heavy write usage. Flash and SSD will demonstrate impressive speedups in many applications. For example, the Apple Macbook pro uses 128 GB solid-state hard drive, which is only $150 more than a 500 GB 7200 RPM SATA drive. However to get 256 GB or 512 GB SSD drive, the cost may go up significantly. At present, SSD drives are still too expensive to replace stable disk arrays in the storage market. Eventually, power consumption, cooling and packaging will limit the large system development. The power increases linearly with respect to the clock frequency and quadratically with respect to the voltage applied on chips. We cannot increase the clock rate indefinitely. Lower the voltage supply is very much in demand.

1.2.2 Virtual Machines and Virtualization Middleware

A conventional computer has a single OS image. This offers a rigid architecture that tightly couples application software to a specific hardware platform. Some software running well on one machine may not be executable on anther platform with a different instruction set under a fixed OS management. Virtualmachines (VM) offer novel solutions to underutilized resources, application inflexibility, softwaremanageability, and security concerns in existing physical machines.

Virtual Machines: The concept of virtual machines is illustrated in Fig.1.7. The host machine is equippedwith the physical hardware shown at the bottom. For example, a desktop with x-86 architecture running its installed Windows OS as shown in Fig.1.7(a). The VM can be provisioned to any hardware system. The VM is built with virtual resources managed by a guest OS to run a specific application. Between the VMs and the host platform, we need to deploy a middleware layer called a virtual machine monitor (VMM) . Figure 1.7(b) shows a native VM installed with the use a VMM called a hypervisor at the privileged mode. For example, the hardware has a x-86 architecture running the Windows system. The guest OS could be a Linux system and the hypervisor is the XEN system developed at Cambridge University. This hypervisor approach is also called bare-metal VM, because the hypervisor handles the bare hardware (CPU, memory, and I/O) directly.

1 - 10
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page12]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

Another architecture is the host VM shown in Fig.1.7(c). Here the VMM runs with a non-privileged mode. The host OS need not be modified. The VM can be also implemented with a dual mode as shown in Fig.1.7(d). Part of VMM runs at the user level and another portion runs at the supervisor level. In this case, the host OS may have to be modified to some extent. Multiple VMs can be ported to one given hardware system, to support the virtualization process. The VM approach offers hardware-independence of the OS and applications. The user application and its dedicated OS could be bundled together as a virtual appliance, that can be easily ported on various hardware platforms.

	
	
	
	
	
	
	
	
	Guest Apps
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	Guest Apps
	
	
	Guest Apps
	
	
	Guest OS
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	Nonprivileged

	Appls
	
	
	
	
	VMM)
	
	
	VMM
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	mode

	
	
	Guest OS
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

[image:][image:]

	Operating System
	
	VMM
	
	
	Host OS

	(OS)
	
	(Hypervisor)
	
	
	

	
	
	
	
	
	

	Hardware
	
	Hardware
	
	
	Hardware

	
	
	
	
	
	

	
	
	
	
	
	

	Host
	VMM
	Privileged

	OS
	
	mode

Hardware

(a) Physical Machine	(b) Native VM	(c) Hosted VM	(d) Dual-mode VM

Figure 1.7 Three ways of constructing a virtual machine (VM) embedded in a physical machine.The VM could run on an OS different from that of the host computer.

Virtualization Operations: The VMM provides the VM abstraction to the guest OS. With fullvirtualization, the VMM exports a VM abstraction identical to the physical machine; so that a standard OS such as Windows 2000 or Linux can run just as they would on the physical hardware. Low-level VMM operations are indicated by Mendel Rosenblum [29] and illustrated in Fig.1..8. First, the VMs can be multiplexed between hardware machines as shown in Fig.1..8(a). Second, a VM can be suspended and stored in a stable storage as shown in Fig.1..8 (b). Third, a suspended VM can be resumed or provisioned to a new hardware platform in Fig.1.8(c). Finally, a VM can be migrated from one hardware platform to another platform as shown in Fig.1.8 (d).

These VM operations enable a virtual machine to be provisioned to any available hardware platform. They make it flexible to port distributed application executions. Furthermore the VM approach will significantly enhance the utilization of server resources. Multiple server functions can be consolidated on the same hardware platform to achieve higher system efficiency. This will eliminate server sprawl via deployment of systems as VMs. These VMs move transparency to the shared hardware. According to a claim by VMWare, the server utilization could be increased from current 5-15% to 60-80%.

1 - 11
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page13]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010
[image:]

(a) Multiplexing	(b) Suspension (Storage)
[image:]

(c) Provision (Resume)	(d) Life migration

Figure 1.8 Virtual machine multiplexing, suspension, provision, and migration in a distributed computing environment, (Courtesy of M. Rosenblum, Keynote address,ACM ASPLOS2006 [29])

Virtual Infrastructures: This is very much needed in distributed computing. Physical resources forcompute, storage, and networking at the bottom are mapped to the needy applications embedded in various VMs at the top. Hardware and software are then separated. Virtual Infrastructure is what connects resources to distributed applications. It is a dynamic mapping of the system resources to specific applications. The result is decreased costs and increased efficiencies and responsiveness. Virtualization for server consolidation and containment is a good example. We will study virtual machines and virtualization support in Chapter 2. Virtualization support for clusters, grids and clouds are studied in Chapters 3, 4, and 6, respectively.

1.2.3 Trends in Distributed Operating Systems

The computers in most distributed systems are loosely coupled. Thus the distributed system has inherently multiple system images. This is mainly due to the fact that all node machines run with an independent operating system. To promote resource sharing and fast communications among node machines, we desire to have a distributed OS that manages all resources coherently and efficiently. Such a system is most likely to be a closed system. They rely on message passing and remote procedure call (RPC) for internode communications. It should be pointed out that a distributed OS is crucial to upgrade the performance, efficiency, and application flexibility of distributed applications. A distributed system could not face the shortcomings in restricted applications and lack of software and security support, until a well-built distributed OSs are in widespread use.

Distributed Operating Systems :Tanenbaum [26] classifies three approaches to distributing the resourcemanagement functions in a distributed computer system. The first approach is to build a network OS over a

1 - 12
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page14]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

large number of heterogeneous OS platforms. Such a network OS offers the lowest transparency to users. Network OS is essentially a distributed file system. Independent computers rely on file sharing as a means of communication. The second approach is to develop middleware to offer limited degree of resource sharing like what was build for clustered systems (Section 1.2.1). The third approach is to develop a distributed OS to achieve higher use or system transparency.

Amoeba vs. DCE: Table 1.3 summarizes the functionalities of a distributed OS Amoeba and a middleware-based DCE developed in the last two decades. To balance the resource management workload, the functionalities of such a DOS should be distributed to any available server. In this sense, the conventional OS runs only on a centralized platform. With the distribution of OS services, the DOS design should take either a light-weight microkernel approach like the Amoeba [27] or extend an existing OS like the DCE [5] by extending UNIX. The trend is to free up users from most resource management duties. We need new web-based operating systems to support virtualization of resources in distributed environments. We shall study distributed OS installed in distributed systems in subsequent chapters.

Table 1.3 Feature Comparison of Two Distributed Operating Systems

	Operating System
	AMOEBA developed at Vrije
	DCE as OSF/1 by Open

	Functionality
	University, Amsterdam [32]
	Software Foundation [5]

	
	
	

	History and Current
	Developed at VU and tested in European
	Release as OSF/1 product, DEC was built

	
	Community, version 5.2 released in 1995,
	as user extension on top of an existing OS

	System Status
	
	

	
	written in C.
	like UNIX, VMS, Windows, OS/2, etc.

	
	
	

	
	
	

	Distributed OS
	Microkernel-based, location transparent,
	This is a middleware-OS providing a

	
	using many servers to handle files,
	platform for running distributed applications

	Architecture
	
	

	
	directory, replication, run, boot, and
	The system supports RPC, security, and

	
	
	

	
	TCP/IP services
	other DCE Threads.

	
	
	

	Amoeba Microkernel
	A special microkernel handles low-level
	DCE packages handle file, time, directory,

	
	process , memory, I/O, and
	and security services, RPC, authentication

	or DEC Packages
	
	

	
	communication functions
	at user space.

	
	
	

	
	
	

	Communication
	Use a network-layer FLIP protocol and
	DCE RPC supports authenticated

	
	RPC to implement point-to-point and
	communication and other security services

	Mechanisms
	
	

	
	group communications
	in user programs

	
	
	

	
	
	

Parallel and Distributed Programming Environments

Four programming models are specifically introduced below for distributed computing with expected scalable performance and application flexibility. We summarize four distributed programming models in Table 1.4. Some software toolsets developed in recent years are also identified here. MPI is the most popular programming model for message-passing systems. Google’s MapReduce and BigTable are for effective use of resources from Internet clouds and data centers. The service clouds demand extending Hadoop, EC2, and S3 to facilitate distributed computing applications over distributed storage systems.

Message-Passing Interface (MPI) is the primary programming standard used to develop parallel programsto run on a distributed system. MPI is essentially a library of subprograms that can be called from C or Fortran to write parallel programs running on a distributed system. We need to embody clusters, Grid and P2P systems with upgraded web services and utility computing applications. Besides MPI, distributed programming can be also supported with low-level primitives like PVM (parallel virtual machine). Both MPI and PVM are described in Hwang and Xu [20].

MapReduce: This is a web-programming model for scalable data processing on large clusters over large

1 - 13
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page15]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

datasets [11]. The model is applied mainly in web-scale search and cloud computing applications. The user specifies a map function to generate a set of intermediate key/value pairs. Then the user applies a reducefunction to merge all intermediate values with the same intermediate key. MapReduce is highly scalable toexplore high degree of parallelism at job levels. A typical MapReduce computation process many handle Terabybe of data on tens of thousand or more client machines. Hundreds of MapReduce programs are likely to be executed, simultaneously. Thousands of MapReduce jobs are executed on Google’s clusters everyday.

Table 1.4 Parallel and Distributed Programming Models and Toolsets

	Model
	
	Objectives and Web Link
	Attractive Features Implemented

	
	
	
	
	

	MPI
	
	Message-Passing Interface is a library of
	Specify synchronous or asynchronous point-to-

	
	
	subprograms that can be called from C or
	point and collective communication commands

	
	
	Fortran to write parallel programs running on
	and I/O operations in user programs for

	
	
	distributed computer systems [2, 21]
	message-passing execution

	
	
	
	
	

	MapReduce
	
	A web programming model for scalable data
	A map function to generate a set of

	
	
	processing on large cluster over large
	intermediate key/value pairs. A Reduce

	
	
	datasets, applied in web search operations
	function to merge all intermediate values with

	
	[12]
	
	the same key

	
	
	
	
	

	Hadoop
	
	A software platform to write and run large
	Hadoop is scalable, economical, efficient and

	
	
	user applications on vas datasets in business
	reliable in providing users with easy access of

	
	
	and advertising applications.
	commercial clusters

	
	
	http://hadoop.apache.org/core/
	

	
	
	
	
	

Hadoop Library: Hadoop offers a software platform that was originally developed by a Yahoo group. Thepackage enable users write and run applications over vast distributed data. Attractive features include: (1) Scalability: Hadoop can easily scale to store and process petabytes of data in the Web space. (2) Economy: An open-source MapReduce minimizes the overheads in task spawning and massive data communication,

(3) Efficiency: Processing data with high-degree of parallelism across a large number of commodity nodes and (4) Reliability: This refers to automatically keeping multiple data copies to facilitate redeployment of computing tasks upon unexpected system failures.

Open Grid Service Architecture (OGSA): The development of grid infrastructure is driven by pushingneed in large-scale distributed computing applications, These applications must count on a high degree of resource and data sharing. Table 1..5 introduces the OGSA (Open Grid Service Architecture) as a common standard for general public use of grid services. Genesis II is a its realization. The key features covers distributed execution environment, PKI (Public Key Infrastructure) services using local certificate authority (CA), trust management and security policies in grid computing.

Globus Toolkits and Extensions: Globusis middleware library jointly developed by the US ArgonneNational Laboratory and USC Information Science Institute during the past decade. This library implemented some of the OGSA standards for resource discovery, allocation, and security enforcement in a Grid environment. The Globus packages support multi-site mutual authentication with PKI certificates. Globus has gone through several versions released subsequently. The current version GT 4 is in use in 2008. Sun SGE and IBM Grid Toolbox: Both Sun Microsystems and IBM have extended Globus for business applications. We will cover grid computing principles and technology in Chapter 5 and grid applications in Chapter 9.

Table 1.5 Grid Standards and Toolkits for scientific and Engineering Applications

1 - 14
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page16]Chapter 1: System Models and Enabling Technologies (42 pages)revised May 2, 2010

	Grid
	Major Grid Service
	Key Features and Security

	Standards
	Functionalities
	Infrastructure

	
	
	

	OGSA
	Open Grid Service Architecture
	Support heterogeneous distributed environment,

	Standard
	offers common grid service
	bridging CA, multiple trusted intermediaries,

	
	standards for general public use
	dynamic policies, multiple security mechanisms, etc.

	
	
	

	Globus
	Resource allocation, Globus
	Sign-in multi-site authentication with PKI, Kerberos,

	Toolkits
	security infrastructure (GSI), and
	SSL, Proxy, delegation, and GSS API for message

	
	generic security service API
	integrity and confidentiality

	
	
	

	Sun Grid
	Supporting local grids and clusters
	Using reserved ports, Kerberos, DCE, SSL, and

	Engine (SGE)
	in enterprise or campus Intranet grid
	authentication in classified hosts at various trust

	
	applications
	levels and resource access restrictions

	
	
	

	IBM Grid
	AIX and Linux grids built on top
	Using simple CA, granting access, grid service

	Toolbox
	of Globus Toolkit, autonomic
	(ReGS), supporting Grid application framework for

	
	computing, Replica services
	Java (GAF4J), GridMap in IBM IntraGrid for

	
	
	security update, etc.

	
	
	

1.3 Distributed Computing System Models

A massively parallel and distributed computing system or in short a massive system is built over a large number of autonomous computer nodes. These node machines are interconnected by system-area networks
(SAN), local-are networks (LAN), or wide-area networks (WAN) in a hierarchical manner. By today’s networking technology, a few LAN switches can easily connect hundreds of machines as a working cluster. A WAN can connect many local clusters to form a very-large cluster of clusters. In this sense, one can build a massive system to have millions of computers connected to edge networks in various Internet domains.

System Classification: Massive systems are considered highly scalable to reach a web-scale connectivity,either physically or logically. In Table 1.6, we classify massive systems into four classes: namely the clusters, P2P networks, computing grids, and Internet clouds over huge datacenters. In terms of nodenumber, these four system classes may involve hundreds, thousands, or even millions of computers as participating nodes. These machines work collectively, cooperatively, or collaboratively at various levels. The table entries characterize these four system classes in various technical and application aspects.

From the application prospective, clusters are most popular in supercomputing applications. In 2009, 417 out of the top-500 supercomputers were built with a cluster architecture. It is fair to say that clusters have laid the necessary foundation to build large-scale grids and clouds. P2P networks appeal most to business applications. However, the content industry was reluctant to accept P2P technology for lack of copyright protection in ad hoc networks. Many national grids built in the past decade were underutilized for lack of reliable middleware or well-coded applications. Potential advantages of cloud computing lie in its low cost and simplicity to both providers and users.

New Challenges:Utility computing focuses on a business model, by which customers receive computingresources from a paid service provider. All grid/cloud platforms are regarded as utility service providers. However, cloud computing offers a broader concept than utility computing. Distributed cloud applications run on any available servers in some edge networks. Major technological challenges include all aspects of computer science and engineering. For example, we need new network-efficient processors, scalable memory and storage schemes, distributed OS, middleware for machine virtualization, new programming model, effective resource management, and application program development in distributed systems that explore massive parallelism at all processing levels.

1 - 15
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page17]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

Table 1.6 Classification of Distributed Parallel Computing Systems

	Functionality,
	Multicomputer
	Peer-to-Peer
	Data/Computational
	Cloud Platforms

	Applications
	Clusters [11, 21]
	Networks [13, 33]
	Grids [4, 14, 33]
	[7, 8, 22, 31]

	
	
	
	
	

	Architecture,
	Network of compute
	Flexible network of
	Heterogeneous cluster of
	Virtualized cluster of

	Network
	nodes interconnected by
	client machines
	clusters connected by
	servers over many

	Connectivity
	SAN, LAN, or WAN,
	logically connected by
	high-speed network links
	datacenters via

	and Size
	hierarchically
	an overlay network
	over selected resource
	service-level

	
	
	
	sites.
	agreement

	
	
	
	
	

	
	
	
	
	

	Control and
	Homogeneous nodes
	Autonomous client
	Centralized control,
	Dynamic resource

	Resources
	with distributed control,
	nodes, free in and out,
	server oriented with
	provisioning of servers,

	Management
	running Unix or Linux
	with distributed self-
	authenticated security,
	storage, and networks

	
	
	organization
	and static resources
	over massive datasets

	
	
	
	management
	

	
	
	
	
	

	Applications
	High-performance
	Most appealing to
	Distributed super-
	Upgraded web search,

	and network-
	computing, search
	business file sharing,
	computing, global
	utility computing, and

	centric
	engines, and web
	content delivery, and
	problem solving, and
	outsourced computing

	services
	services, etc.
	social networking
	datacenter services
	services

	
	
	
	
	

	
	
	
	
	

	Representative
	Google search engine,
	Gnutella, eMule,
	TeraGrid, GriPhyN,
	Google App Engine,

	Operational
	SunBlade, IBM
	BitTorrent, Napster,
	UK EGEE, D-Grid,
	IBM Bluecloud,

	Systems
	BlueGene,
	Papestry, KaZaA,
	ChinaGrid, IBM
	Amazon Web

	
	Road Runner,
	Skype, JXTA,
	IntraGrid, etc.
	Service(AWS), and

	
	Cray XT4, etc.
	and .NET
	
	Microsoft Azure,

	
	
	
	
	

1.3.1 Clusters of Cooperative Computers

A computing cluster is built by a collection of interconnected stand-alone computers, which work cooperatively together as a single integrated computing resource. To handle heavy workload with large datasets, clustered computer systems have demonstrated impressive results in the past.

Cluster Architecture: Figure 1.9 shows the architecture of a typical sever cluster built around a low-latency and high-bandwidth interconnection network. This network can be as simple as a SAN (e.g. Myrinet) or a LAN (e.g. Ethernet). To build a larger cluster with more nodes, the IN can be built with multiple levels of Gigabit Ethernet, Myrinet, or InfiniBand switches. Through hierarchical construction using SAN, LAN, or WAN, one can build scalable clusters with increasing number of nodes. The whole cluster is connected to the Internet via a VPN gateway. The gateway IP address could be used to locate the cluster over the cyberspace.

Single-System Image: The system image of a computer is decided by the way the OS manages the sharedcluster resources. Most clusters have loosely-coupled node computers. All resources of a server node is managed by its own OS. Thus, most clusters have multiple system images coexisting simultaneously. Greg Pfister [27] has indicated that an ideal cluster should merge multiple system images into a single-systemimage (SSI) at various operational levels. We need an idealized cluster operating system or some middlwareto support SSI at various levels, including the sharing of all CPUs, memories, and I/O across all computer nodes attached to the cluster.
[image:]

	
	A Cluster
	S
	Sn

	
	.
	. . .
	n-1
	

	
	S2
	
	
	16

	by
	Servers
	
	
	The Internet

	
	
	
	
	

	
	System-Area Network, or
	Gateway

	
	Local-Area Networks, or
	

	
	
	

	
	Storage-Area Network
	

	
	1
	(Ethernet, Myrinet,
	

	
	
	InfiniBand, etc.)
	

[bookmark: page18]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

Figure 1.9 A cluster of servers (S1, S2,…,S n) interconnected by a high-bandwidth system-area or local-area network with shared I/O devices and disk arrays. The cluster acts as a single computing node attached to the Internet throught a gateway.

A single system image is the illusion, created by software or hardware that presents a collection of resources as an integrated powerful resource. SSI makes the cluster appear like a single machine to the user, applications, and network. A cluster with multiple system images is nothing but a collection of independent computers. Figure 1.10 shows the hardware and software architecture of a typical cluster system. Each node computer has its own operating system. On top of all operating systems, we deploy some two layers of middleware at the user space to support the high availability and some SSI features for shared resources or fast MPI communications.
[image:]

Figure 1.10 The architecture of a working cluster with full hardware, software, anAd middleware support for availability and single system image.

For example, since memory modules are distributed at different server nodes, they are managed independently over disjoint address spaces. This implies that the cluster has multiple images at the memory-reference level. On the other hand, we may want all distributed memories to be shared by all servers by forming a distributed shared memory (DSM) with a single address space. A DSM cluster thus has a single-system image (SSI) at the memory-sharing level. Cluster explores data parallelism at the job level with highsystem availability.

Cluster Design Issues: Unfortunately, a cluster-wide OS for complete resource sharing is not available yet.Middleware or OS extensions were developed at the user space to achieve SSI at selected functional

1 - 17
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page19]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

levels.Without the middleware, the cluster nodes cannot work together effectively to achieve cooperative computing. The software environments and applications must rely on the middleware to achieve high performance. The cluster benefits come from scalable performance, efficient message-passing, high system availability, seamless fault tolerance, and cluster-wide job management as summarized in Table 1.7. Clusters and MPP designs are treated in Chapter 3.

Table 1.7 Critical Cluster Design Issues and Feasible Implementations

	Features
	Functional Characterization
	Feasible Implementations

	
	
	

	Availability
	Hardware and software support for
	Failover, failback, checkpointing, roll back

	Support
	sustained high availability in cluster
	recovery, non-stop OS, etc

	
	
	

	Hardware
	Automated failure management to
	Component redundancy, hot swapping,

	Fault-Tolerance
	eliminate all single points of failure
	RAID, and multiple power supplies, etc.

	
	
	

	Single-System
	Achieving SSI at functional level with
	Hardware mechanisms or middleware

	Image (SSI)
	hardware and software support,
	support to achieve distributed shared

	
	middleware, or OS extensions.
	memory (DSM) at coherent cache level.

	
	
	

	Efficient
	To reduce message-passing system
	Fast message passing , active messages,

	Communications
	overhead and hide latencies
	enhanced MPI library, etc.

	
	
	

	Cluster-wide Job
	Use a global job management system with
	Apply single-job management systems such

	Management
	better scheduling and monitory
	as LSF, Codine, etc

	
	
	

	Dynamic Load
	Balance the workload of all processing
	Workload monitory, process migration, job

	Balancing
	nodes along with failure recovery
	replication and gang scheduling, etc.

	
	
	

	Scalability and
	Adding more servers to a cluster or adding
	Use scalable interconnect, performance

	Programmability
	more clusters to a Grid as the workload or
	monitory, distributed execution environment,

	
	data set increases
	and better software tools

	
	
	

Grid Computing Infrastructures

In 30 years, we have experienced a natural growth path from Internet to web and grid computing services. Internet service such as the Telnet command enables connection from one computer to a remote computer. The Web service like http protocol enables remote access of remote web pages. Grid computing is envisioned to allow close interactions among applications running on distant computers, simultaneously. Forbes Magazine has projected the global grow of IT-based economy from $1 Trillion in 2001 to 20Trillion by 2015. The evolution from Internet to web and grid services is certainly playing a major role to this end.

Computing Grids: Like an electric-utility power grid, acomputing gridoffers an infrastructure thatcouples computers, software/middleware, special instruments, and people and sensors together. Grid is often constructed across LAN,WAN, or Internet backbone networks at regional, national, or global scales. Enterprises or organizations present grids as integrated computing resources. They can be viewed also as virtual platforms to support virtual organizations. The computers used in a grid are primarily workstations,servers, clusters, and supercomputers. Personal computers, laptops and PDAs can be used as access devices to a grid system. The grid software and middleware are needed as applications and utility libraries and databases, Special instruments are used to search for life in the galaxy, for example.

Figure 1.11 shows the concept of a computational grid built over three resource sites at the University of Wisconsin at Madison, University of Illinois at Champaign-Urbana, and California Institute of Technology. The three sites offer complementary computing resources, including workstations, large

1 - 18
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page20]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

servers, mesh of processors, and Linux clusters to satisfy a chain of computational needs. Three steps are shown to the chain of weather data collection, distributed computations, and result analysis in atmospheric simulations. Many other even larger computational grids like NSF TeraGrid and EGEE, and ChinaGrid have built similar national infrastructures to perform distributed scientific grid applications.
[image:]

Figure 1.11 An example computational Grid built over specialized computers at three resource sites at Wisconsin, Caltech, and Illinois. (Courtesy of Michel Waldrop,

“Grid	Computing”,ComputerIEEEMagazine, 2000. [34])

Grid Families: Grid technology demands new distributed computing models, software/middleware support,network protocols, and hardware infrastructures. National grid projects are followed by industrial grid platform development by IBM, Microsoft, Sun, HP, Dell, Cisco, EMC, Platform Computing, etc New gridservice providers (GSP) and new grid applications are opened rapidly, similar to the growth of Internet andWeb services in the past two decades. In Table 1.8, we classify grid systems developed in the past decade into two families: namely computational or data grids and P2P grids. These computing grids are mostly built at the national level. We identify their major applications, representative systems, and lesson learned so far. Grid Computing will be studied in Chapters 4 and 8.

Table 1.8 Two Grid Computing Infrastructures and Representative Systems

	Design Issues
	Computational and Data Grids
	P2P Grids

	
	
	

	Grid Applications
	Distributed Supercomputing, National
	Open grid with P2P flexibility, all resources

	reported
	Grid Initiatives, etc
	from client machines

	
	
	

	Representative
	TeraGrid in US,
	JXTA, FightAid@home,

	Systems
	ChinaGrid, UK e-Science, etc.
	SETI@home

	
	
	

	Development
	Restricted user groups, middleware bugs,
	Unreliable user-contributed resources,

	Lessons learned
	rigid protocols to acquire resources
	limited to a few apps.

	
	
	

Service-Oriented Architectures (SOA)

Technology has advanced at breakneck speed up over the last decade with many changes that

1 - 19
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page21]Chapter 1: System Models and Enabling Technologies (42 pages)revised May 2, 2010

are still occurring. However in this chaos, the value of building systems in terms of services has grown in acceptance and it has become a core idea of most distributed systems. Always one builds systems in layered fashion as sketched below in Fig.1.12. Here we use the rather clumsy term

“entity” to denote the abstraction used as the basi c building block. In Grids/Web Services, Java and CORBA, an entity is respectively a service, Java object or a CORBA distributed object in a variety of languages.

The architectures build on the traditional 7 OSI layers providing the base networking abstractions. On top of this we have a base software environment which would be .NET or Apache Axis for Web Services, the Java Virtual Machine for Java or a Broker network for CORBA. Then on top of this base environment, one builds a higher-level environment reflecting the special features of the distributing computing environment and represented by the green box in Fig.1.12. This starts with Entity Interfaces and Inter-entity communication which can be thought of as rebuilding the top 4 OSI layers but at the entity and not the bit level.

The entity interfaces correspond to the WSDL, Java method and CORBA IDL specifications in these example distributed systems. These interfaces are linked with customized high level communication systems – SOAP, RMI and IIOP in the three examples. These communication systems support features including particular message patterns (such as RPC or remote procedure call), fault recovery and specialized routing. Often these communications systems are built on message oriented middleware (enterprise bus) infrastructure such as WebSphereMQ or JMS (Java Message Service) which provide rich functionality and support virtualization of routing, sender and recipients.

In the case of fault tolerance, we find features in the Web Service Reliable Messaging framework that mimic the OSI layer capability (as in TCP fault tolerance) modified to match the different abstractions (such as messages versus packets, virtualized addressing) at the entity levels. Security is a critical capability that either uses or re-implements the capabilities seen in concepts like IPSec and secure sockets in the OSI layers. Entity communication is supported by higher level services for registries, metadata and management of the entities discussed in Section 4.4.
[image:]
	Application Specific Entities and Systems
	

	Generally Useful Entities and Systems
	

	Entity Coordination
	

	Entity Management
	Distributed

	Entity Discovery and Information
	Entities

	
	

	Inter-Entity Communication
	

	Entity Interfaces
	

	Base Software Environment
	

	Protocol HTTP FTP DNS …
	

	Presentation XDR …
	Bit level

	Session SSH …
	Internet

	Transport TCP UDP …
	

	Network IP …
	

	Data Link / Physical
	

	
	

Fig. 1.12. General layered architecture for distributed entities

Here one might get several models with for example Jini and JNDI illustrating different approaches within the Java distributed object model. The CORBA Trader Service, UDDI, LDAP and ebXML are other examples of discovery and information services described in Section 4.4. Management services include service state and lifetime support; examples include the CORBA Life Cycle and Persistent State, the different Enterprise Javabean models, Jini's lifetime model and a suite of Web service specifications that

1 - 20
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page22]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

we will study further in Chapter 4.

We often term this collection of entity level capabilities that extend the OSI stack the “Internet on the Internet”: or the “Entity Internet built on the Bit Internet”. The above describes a classic distr ibuted computing model and as well as intense debate on the best ways of implementing distributed systems there is competition with "centralized but still modular" approaches where systems are built in terms of components in an Enterprise Javabean or equivalent approach.

The latter can have performance advantages and offer a "shared memory" model allowing more convenient exchange of information. However the distributed model has two critical advantages -- namely higher performance (from multiple CPU's when communication is unimportant) and a cleaner separation of software functions with clear software re-use and maintenance advantages. We expect the distributed model to gain in popularity as the default approach to software systems. Here the early CORBA and Java approaches to distributed systems are being replaced by the service model shown in Fig.1.13.

Loose coupling and support of heterogeneous implementations makes services more attractive than distributed objects. The architecture of this figure underlies modern systems with typically two choice of service architecture -- Web Services or REST systems. These are further discussed in chapter 4 and have very distinct approaches to building reliable interoperable systems. in Web services, one aims to fully specify all aspects of the service and its environment. This specification is carried with communicated messages using the SOAP protocol. The hosting environment then becomes a universal distributed operating system with fully distributed capability carried by SOAP messages.
[image:]
	Application Specific Services/Grids
	Higher

	Generally Useful Services and Grids
	

	
	Level

	Workflow
	Services

	Service Management
	Service

	Service Discovery and Information
	

	
	Context

	Service Internet TransportProtocol
	Service

	Service Interfaces
	

	
	Internet

	Base Hosting Environment
	

	Protocol HTTP FTP DNS …
	

	Presentation XDR …
	Bit level

	Session SSH …
	

	
	Internet

	Transport TCP UDP …
	

	
	

	Network IP …
	

	Data Link / Physical
	

	
	

[image:]
Figure 1.13 Layered architecture for web srvices and grids

Experience has seen mixed success for this approach as it has been hard to agree on key parts of the protocol and even harder to robustly and efficiently implement the universal processing of the protocol (by software like Apache Axis). In the REST approach, one adopts simplicity as the universal principle and delegated most of the hard problems to application (implementation specific) software. In a Web Service language REST has minimal information in the header and the message body (that is opaque to generic message processing) carries all needed information. REST architectures are clearly more appropriate to rapidly technology environments that we see today.

However, the ideas in Web Services are important and probably will be needed in mature systems at a different level in stack (as part of application). Note that REST can use XML schemas but not used that are part of SOAP; "XML over HTTP" is a popular design choice. Above the communication and management layers, we have the capability to compose new entities or distributed programs by integrating several

1 - 21
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page23]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

entities together as sketched in Fig.1.14. In CORBA and Java, the distributed entities are linked with remote procedure calls and the simplest way to build composite applications is to view the entities as objects and use the traditional ways of linking them together. For Java, this could be as simple as writing a Java program with method calls replaced by RMI (Remote Method Invocation) while CORBA supports a similar model with a syntax reflecting the C++ style of its entity (object) interfaces.

	Raw Data
	
	
	
	
	Data
	Information
	Knowledge
	Wisdom
	Decisions

	
	
	
	
	
	
	
	
	
	
	
	
	
	Another
	
	

	Another
	
	
	
	
	
	
	
	
	
	
	
	
	Grid
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	S
	S
	S
	
	
	

	
	
	
	
	
	
	
	
	S
	
	

	Grid
	
	
	
	
	S
	
	
	
	
	

	
	
	
	
	
	
	S
	S
	
	
	

	
	
	
	
	
	
	
	
	S
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	SS
	
	
	
	
	
	
	
	
	
	
	FS
	FS
	Discovery
	
	

	
	
	
	
	
	
	Filter
	
	Filter
	Cloud
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	FS
	
	FS
	
	

	
	
	
	
	
	Cloud
	
	Service
	
	
	

	SS
	
	
	
	
	
	FS
	FS
	
	Filter
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Cloud
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[image:]

Another
Service	SS

FS	FS

FS	Filter	FS

Service

Filter
Cloud
FS	FS

	SS
	FS
	
	FS
	
	
	FS
	Filter
	FS
	Discovery

	
	
	
	
	
	
	
	
	
	Cloud

	
	
	
	
	
	
	
	Service
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	FS
	
	FS
	

	SS
	
	
	FS
	FS
	
	
	
	
	

	
	Filter
	
	Filter
	
	
	
	
	
	Traditional Grid

	
	
	FS
	
	
	FS
	Filter
	
	Filter
	

	
	
	
	Service
	
	
	
	
	
	with exposed

	
	Cloud
	
	
	
	
	
	
	
	

	SS
	
	
	FS
	FS
	
	Cloud
	
	Cloud
	services

Another

	Grid
	SS
	
	S
	S
	
	
	
	S
	S
	

	
	
	
	S
	
	S
	
	
	
	
	

	
	S
	S
	
	S
	
	S
	S
	S
	S
	S

	
	
	
	
	
	S
	
	
	
	
	

	
	S
	S
	
	
	
	S
	S
	
	
	S

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	Compute
	
	
	
	
	Storage
	

	
	
	
	
	Cloud
	
	
	
	
	
	

	Database
	
	
	
	
	
	
	
	
	Cloud
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

Sensor or Data Interchange Service

Figure 1.14. Grids of Clouds and Grids where SS refers to Sensor Service and fs to a filter or transforming service.

There are also very many distributed programming models built on top of these of these basic constructs. For Web Services, workflow technologies are used to coordinate or orchestrate services with special specifications used to define critical business process models such as two phase transactions. In section 4.2, we describe the general approach used in workflow, the BPEL Web Service standard and several important workflow approaches Pegasus, Taverna, Kepler, Trident and Swift. In all approaches one is building collections of services which together tackle all or part of a problem. As always one ends with systems of systems as the basic architecture.

Allowing the term Grid to refer to a single service or represent a collection of services, we find the architecture of Fig.1.14. Here sensors represent entities (such as instruments) that output data (as messages) and Grids and Clouds represent collections of services that have multiple message-based inputs and outputs. The figure emphasizes the system of systems or "Grids and Clouds of Grids and Clouds" architecture. Most distributed systems requires a web interface or portal shown in Fig.1.14 and two examples (OGFCE and HUBzero) are described in Section 4.3 using both Web Service (portlet) and Web 2.0 (gadget) technologies.

1 - 22
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page24]Chapter 1: System Models and Enabling Technologies (42 pages)revised May 2, 2010

Peer-to-Peer Network Families

A well-established distributed system is the client-server architecture. Client machines (PC and workstations) are connected to a central server for compute, or Email, file access, database applications. The peer-to-peer (P2P) architecture offers a distributed model of networked systems. First, a P2P network isclient-oriented instead of server-oriented. In this section, we introduce P2P systems at the physical level and overlay networks at the logical level.

P2P Networks: In a P2P system, every node acts as both a client and a server, providing part of the systemresources. Peer machines are simply client computers connected to the Internet. All client machines act autonomously to join or leave the system freely. This implies that no master-slave relationship exists among the peers. No central coordination or no central database is needed. In other words, no peer machine has a global view of the entire P2P system. The system is self-organizing with distributed control.

The architecture of a P2P network is shown in Fig.1.15 at two abstraction levels. Initially, the peers are totally unrelated. Each peer machine joins or leaves the P2P network, voluntarily. Only the participating peers form the physical network at any time. Unlike the cluster or grid, a P2P network does not use a dedicated interconnection network. The physical network is simply an ad hoc network formed at various Internet domains randomly using TCP/IP and NAI protocols. Thus, the physical network varies in size and topology dynamically due to the free membership in the P2P network.
[image:]

Overlay

Network

Figure 1.15 The structure of a peer-to-peer system by mapping a physical network to a virtual overlay network (Courtesy of JXTA,http://www.jxta.com)

Overlay Networks: Data items or files are distributed in the participating peers. Based on communicationor file-sharing needs, the peer IDs form an overlay network at the logical level. This overlay is a virtual network formed by mapping each physical machine with its ID, logically through a virtual mapping shown in Fig.1.7. When a new peer joins the system, its peer ID is added as a node in the overlay network. When an existing peer leaves the system, its peer ID is removed from the overlay network, automatically. Therefore, it is the P2P overlay network that characterizes the logical connectivity among the peers.

There are two types of overlay networks: unstructured versus structured. An unstructured overlaynetwork is characterized by a random graph. There is no fixed route to send messages or file among thenodes. Often, flooding is applied to send a query to all nodes in an unstructured overlay, thus ending up with heavy network traffic and nondeterministic search results. Structured overlay networks follow certain connectivity topology and rules to insert or remove nodes (Peer IDs) from the overlay graph. Routing mechanisms are developed to take advantage of the structured overlays.

1 - 23
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page25]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

P2P Application Families: Based on applications, we classify P2P networks into four classes in Table 1.9.The first family is for distributed file sharing of digital contents (music, video, etc.) on the P2P network. This includes many popular P2P networks like Gnutella, Napster, BitTorrent, etc. Collaboration P2P networks include MSN or Skype chatting, instant messaging, collaborative design, etc. The third family is for distributed P2P computing in specific applications. For example, SETI@home provides 25 Tflops distributed computing power, collectively, over 3 million Internet host machines. Other P2P platforms like JXTA, .NET, and FightingAID@home, support naming, discovery, communication, security, and resource aggregation in some P2P applications. We will study these topics in Chapters 5 and 8.

Table 1.9	Major Categories of Peer-to-Peer Network Families

	System
	Distributed File
	Collaborative
	Distributed P2P
	Peer-to-Peer

	Features
	Sharing
	Platform
	Computing
	Platform

	
	
	
	
	

	Attractive
	Content distribution of
	Instant Messaging,
	Scientific
	Open networks

	Applications
	MP3 music, video, open
	Collaborative design
	exploration and
	for public

	
	software, etc.
	and gaming
	social networking
	resources

	
	
	
	
	

	Operational
	Loose security
	Lack of trust, disturbed
	Security holes,
	Lack of standards

	Problems
	and on-line
	by spam, privacy, and
	selfish partners,
	or protection

	
	copyright violations
	peer collusions
	and peer collusion
	protocols

	
	
	
	
	

	Example
	Gnutella, Napster,
	ICQ, AIM, Groove,
	SETI@home,
	JXTA, .NET,

	Systems
	eMule, BitTorrent,
	Magi, Multiplayer
	Geonome@
	FightingAid@

	
	Aimster, KaZaA, etc.
	Games, Skype, etc.
	home, etc.
	home, etc.

	
	
	
	
	

P2P Computing Challenges: P2P computing faces three types of heterogeneity problems in hardware,software and network requirements. There are too many hardware models and architectures to select from. Incompatibility exists between software and OS. Different network connections and protocols make it too complex to apply in real applications. We need system scalability as the workload increases. System scaling is directly related to performance and bandwidth.

Data location is also important to affect collective performance. Data locality, network proximity, and interoperability are three design objectives in distributed applications. The P2P performance is affected by routing efficiency and self-organization by the participating peers. Fault Tolerance, failure management, and load balancing are other important issues in using overlay networks. Lack of trust among the peers posts another problem. Peers are strangers to each other. Security, privacy, and copyright violations are major worries by industry to apply P2P technology in business applications.

Virtualized Cloud Computing Infrastructure

Gordon Bell, Jim Gray, and Alex Szalay [3] have advocated: “Computational science is changing to be data-intensive. Supercomputers must be balanced systems, not just CPU farms but also petascale I/O and networking arrays.” In the future, working with lar ge data sets will typically mean sending the computations (programs) to the data, rather than copying the data to the workstations. This reflects the trend in IT that moves computing and data from desktops to large datacenters, where on-demand provision of software, hardware, and data as a service. Data explosion leads to the idea of cloud computing.

Cloud computing has been defined differently by many users and designers. Just to cite a few, IBM being a major developer of cloud computing has defined cloud computing as: “A cloud is a pool of virtualized computer resources. A cloud can host a variety of different workloads, including batch-style backend jobs and interactive, user-facing applications, allow workloads to be deployed and scaled-out

1 - 24
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page26]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

quickly through the rapid provisioning of virtual machines or physical machines, support redundant, self-recovering, highly scalable programming models that allow workloads to recover from many unavoidable hardware/software failures; and monitor resource use in real time to enable rebalancing of allocations when needed.”

Internet Clouds: Cloud computing applies a virtualized platform with elastic resources on-demand byprovisioning hardware, software, and datasets, dynamically. The idea is to move desktop computing to a service-oriented platform using server clusters and huge databases at datacenters. Cloud computing leverages its low cost and simplicity that benefit both users and the providers. Machine virtualization has enabled such cost-effectiveness. Cloud computing intends to satisfy many heterogeneous user applications simultaneously. The cloud ecosystem must be designed to be secure, trustworthy, and dependable.

Ian Foster defined cloud computing as follows: “ A large-scale distributed computing paradigm that is driven by economics of scale, in which a pool of abstracted virtualized, dynamically-scalable, managed computing power, storage, platforms, and services are delivered on demand to external customers over the

Internet”. Despite some minor differences in the a bove definitions, we identify six common characteristics of Internet clouds as depicted in Fig.1.16.
[image:]

	Paid
	Hardware
	
	Software

	
	
	
	

	
	
	Internet
	

	
	
	Cloud
	Network

	User
	Storage
	
	

	
	
	
	

	Submit
	
	Service
	

Figure 1.16 Concept of virtualized resources provisioning through the Internet cloud, where the hardware, software, storage, network and services are put together to form a cloud platform.

Cloud platform offers a scalable computing paradigm built around the datacenters.

Cloud resources are dynamically provisioned by datacenters upon user demand.

Cloud system provides computing power, storage space, and flexible platforms for upgraded web-scale application services.

Cloud computing relies heavily on the virtualization of all sorts of resources.

Cloud computing defines a new paradigm for collective computing, data consumption and delivery of information services over the Internet.

Clouds stress the cost of ownership reduction in mega datacenters.

Basic Cloud Models: Traditionally, a distributed computing system tends to be owned and operated by anautonomous administrative domain (e.g., a research laboratory or company) for on-premises computing needs. However, these traditional systems have encountered several performance bottlenecks: constant system maintenance, poor utilization and increasing costs associated with hardware/software upgrades. Cloud computing as an on-demand computing paradigm resolves or relieves from these problems. In

1 - 25
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page27]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

Figure 1.17, we introduce the basic concepts of three cloud computing service models. More cloud details are given in Chapters 7, 8 and 9.
[image:]

Figure 1.17 Basic concept of cloud computing models and services provided

(Courtesy of IBM Corp. 2009)

Infrastructure as a Service (IaaS): This model allows users to server, storage, networks, and datacenterfabric resources. The user can deploy and run on multiple VMs running guest OSes on specific applications. The user does not manage or control the underlying cloud infrastructure, but can specifv when to request and release the needed resources.

Platform as a Service (PaaS):This model provides the user to deploy user-built applications onto avirtualized cloud platform The platform include both hardware and software integrated with specific programming interfaces. The provide supplies the API and software tools (e.g., Java, python, Web 2.0,
.Net). The user is freed from managing the underlying cloud infrastructure.

Software as a Service (SaaS): This refers to browser-initiated application software over thousands of paidcloud customers. The SaaS model applies to business processes, industry applications, CRM (consumerrelationship mamagment), ERP (enterprise resources planning), HR (human resources) and collaborativeapplications. On the customer side, there is no upfront investment in servers or software licensing. On the provider side, costs are rather low, compared with conventional hosting of user applications.

Internet clouds offer four deployment modes:private, public, managed,andhybrid[22]. These modesdemand different levels of security implications. The different service level agreements and service deployment modalities imply the security to be a shared responsibility of all the cloud providers, the cloud resource consumers and the third party cloud enabled software providers. Advantages of cloud computing have been advocated by many IT experts, industry leaders, and computer science researchers.

Benefits of Outsourcing to The Cloud: Outsourcing local workload and/or resources to the cloud has

1 - 26
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page28]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

become an appealing alternative in terms of operational efficiency and cost effectiveness. This outsourcing practice particularly gains its momentum with the flexibility of cloud services from no lock-in contracts with the provider and the use of a pay-as-you-go pricing model. Clouds are primarily driven by economics—the pay-per-use pricing model similar to basic utilities of electricity, water and gas. From the consumer’s perspective, this pricing model for computing has relieved many issues in IT practices, such as the burden of new equipment purchases and the ever-increasing costs in operation of computing facilities (e.g., salary for technical supporting personnel and electricity bills).

Specifically, a sudden surge of workload can be effectively dealt with; and this also has an economic benefit in that it helps avoid over provisioning of resources for such a surge. From the provider’s perspective, charges imposed for processing consumers’ service requests—often exploiting underutilized resources—are an additional source of revenue. Sin ce the cloud service provider has to deal with a diverse set of consumers, including both regular and new/one-off consumers, and their requests most likely differ from one another, the judicious scheduling of these requests plays a key role in the efficient use of resources for the provider to maximize its profit and for the consumer to received satisfactory service quality (e.g., response time). Recently, Amazon introduced EC2 Spot instances for which the pricing dynamically changes based on the demand-supply relationship (http://aws.amazon.com/ec2/spot-instances/). Accountability and security are two other major concerns associated with the adoption of clouds. These will be treated in Chapters 7.

Chapter 6 offers details of datacenter design, cloud platform architecture and resource deployment, Chapter 7 provides major cloud platforms built and various cloud services being offered. Listed below are 8 motivations of adapting the cloud for upgrading Internet applications and web services in general.

(1).	Desired location in areas with protected space and better energy efficiency.

(2).	Sharing of peak-load capacity among a large pool of users, improving the overall utilization

(3).	Separation of infrastructure maintenance duties from domain-specific application development.

(4).	Significant reduction in cloud computing cost, compared with traditional computing paradigms.

(5).	Cloud computing programming and application development

(6).	Service and data discovery and content/service distribution

(7).	Privacy, security, copyright, and reliability issues

(8).	Service agreements, business models, and pricing policies.

Representative Cloud Providers : In Table 1.10, we summarize the features of three cloud platforms builtup to 2008. The Google platform is a closed system, dynamically built over a cluster of servers,. These servers selected from over 460,000 Google servers worldwide. This platform is proprietary in nature, only programmable by Google staff. Users must order the standard services through Google. The IBM BlueCloud offers a total system solution by selling the entire server cluster plus software packages for resources management and monitoring, WebSphere 2.0 applications, DB2 databases, and virtualization middleware. The third cloud platform is offered by Amazon as a custom-service utility cluster. Users lease special subcluster configuration and torage space to run custom-coded applications.

The IBM BlueCloud allows cloud users to fill out a form defining their hardware platform, CPU, memory, storage, operating system, middleware, and team members and their associated roles. A SaaS bureau may order travel or secretarial services from a common cloud platform. The MSP coordinates service delivery and pricing by user specifications. Many IT companies are now offering cloud computing services. We desire a software environment that provides many useful tools to build cloud applications over large datasets. In addition to MapReduce, BigTable, EC2, and 3S and the established environment packages like Hadoop, AWS, AppEngine, and WebSphere2. Details of these cloud systems are given in Chapter 7 and 8.

1 - 27
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page29]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

Table 1.10 Three Cloud Computing Platforms and Underlying Technologies [21]

	Features
	Google Cloud [18]
	IBM BlueCloud [7]
	Amazon Elastic Cloud

	Architecture
	Highly scalable server
	A sever cluster with limited
	A 2000-node utility cluster

	and Service
	clusters, GFS, and data-
	scalability for distributed
	(iDataPlex) for distributed

	Models applied
	centers operating with
	problem solving and web-
	computing/storage services

	
	PaaS or SaaS models
	scale under a PaaS model
	under the IaaS model

	
	
	
	

	Technology,
	Commodity hardware.
	Custom hardware, Open
	e-commerce platform,

	Virtualization,
	Application-level API,
	software, Hadoop library,
	virtualization based on XEN,

	and Reliability
	simple service, and high
	virtualization with XEN and
	and simple reliability

	
	reliability
	PowerVM, high reliability
	

	
	
	
	

	System
	Datacenter security is
	WebSphere-2 security,
	Rely on PKI and VPN for

	Vulnerability,
	loose, no copyright
	PowerVM could be tuned
	authentication and access

	and Security
	protection, Google
	for security protection, and
	control, lack of security

	Resilience
	rewrites desktop
	access control and VPN
	defense mechanisms

	
	applications for web
	support
	

	
	
	
	

1.3 Performance, Security, and Energy-Efficiency

In this section, we introduce the fundamental design principles and rules of thumb for building massively distributed computing systems. We study scalability, availability, programming models, and security issues that are encountered in clusters, grids, P2P networks, and Internet clouds.

System Performance and Scalability Analysis

Performance metrics are needed to measure various distributed systems. We present various dimensions of scalability and performance laws. Then we examine system scalability against OS image and the limiting factors encountered.

Performance Metrics: We have usedCPU speedin MIPS andnetwork bandwidthin Mbps in Section 1.3.1to estimate processor and network performance. In a distributed system, the performance is attributed to a large number of factors. The system throughput is often measured by the MIPS rate, Tflops (Tera floating-point operations per second), TPS (transactions per second), etc. Other measures include the job response time and network latency.

We desire to use an interconnection network that has low latency and high bandwidth. System overhead is often attributed to OS boot time, compile time, I/O data rate, and run-time support system used. Other pereformanc-related metrics include the quality of service (QoS) for Internet and Web services; system availability and dependability; and security resilience for system defense against network attacks.We will study some of these in remaining subsections.

Dimensions of Scalability: We want to design a distributed system to achieve scalable performance. Anyresource upgrade in a system should be backward compatible with the existing hardware and software resources. Overdesign may not be cost-effective. System scaling can increase or decrease resources depending on many practical factors. We characterize the following dimensions of scalability in parallel

1 - 28
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page30]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

and distributed systems.

Size Scalability: This refers to achieve higher performance or performing more functionality byincreasing the machine size. The word “size” refers to adding the number of pr ocessors; more cache, memory, storage or I/O channels. The most obvious way to simple counting the number of processors installed. Not all parallel computer or distributed architectures are equally size-scalable. For example, IBM S2 was scaled up to 512 processors in 1997. But in 2008, the IBM BlueGene/L system can scale up to 65,000 processors.

Software Scalability: This refers to upgrades in OS or compilers, adding mathematical andengineering libraries, porting new application software, and install more user-friendly programming environment. Some software upgrade may not work with large system configurations. Testing and fine-tuning of new software on larger system is a non-trivial job.

Application scalability: This refers to the match ofproblem sizescalability with themachine sizescalability. Problem size affects the size of the data set or the workload increase. Instead of increasing machine size, we enlarge the problem size to enhance the system efficiency or cost-effectiveness.

Technology Scalability: This refers to a system that can adapt to changes in building technologies,such as those component and networking technologies discussed in Section 3.1. Scaling a system design with new technology must consider three aspects: time, space, and heterogeneity. Time refers to generation scalability. Changing to new-generation processors, one must consider the impact to motherboard, power supply, packaging and cooling, etc. Based on the past experience, most system upgrade their commodity processors every 3 to 5 years. Space is more related to packaging and energy concerns. Heterogeneity scalability demands harmony and portability among different component suppliers.

Scalability vs. OS Image Count: In Fig.1.18, we estimate thescalable performanceagainst themultiplicityof OS images in distributed systems deployed up to 2010. Scalable performance implies that the system canachieve higher speed performance by adding more processors or servers, enlarging the physical node memory size, extending the disk capacity, or adding more I/O channels, etc. The OS image is counted by the number of independent OS images observed in a cluster, grid, P2P network, or the cloud. We include the SMP and NUMA in the comparison. An SMP server has a single system image. Which could be a single node in a large cluster. By 2010 standard, the largest shared–memory SMP node has at most hundreds of processors. This low scalability of SMP system is constrained by the packaging and system-interconnect used.

1 - 29
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page31]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010
[image:]

Figure 1.18 System scalability versus multiplicity of OS images in HPC clusters, MPP, and grids and HTC systems like P2P networks and the clouds. (The magnitude of scalability and OS imagecount are estimated based on system configurations deployed up to 2010. The SMP and NUMA are included for comparison purpose)

The NUMA machines are often made out of SMP nodes with distributed shared memories. A NUMA machine can run with multiple operating systems. It can scale to a few thousands of processors communicating with MPI library. For example, an NUMA machine may have 2048 processors running by 32 SMP operating systems. Thus, there are 32 OS images in the 2048-processor NUMA system. The cluster nodes can be either SMP servers or high-end machines that are loosely coupled together. Therefore, clusters have much higher scalability than NUMA machines. The number of OS images in a cluster is counted by the cluster nodes concurrently in use. The cloud could be a virtualized cluster. By 2010, the largest cloud in use commercially has size that can scale up to a few thousand VMs at most.

Reviewing the fact many cluster nodes are SMP (multiprocessor) or multicore servers, the total number of processors or cores in a cluster system is one or two orders of magnitude greater than the number of OS images running in the cluster. The node in a computational grid could be either a server cluster, or a mainframe, or a supercomputer, or a massively parallel processor (MPP). Therefore, OS image count in a large grid structure could be hundreds or thousands times fewer than the total number of processors in the grid. A P2P network can easily scale to millions of independent peer nodes, essentially desktop machines. The performance of a P2P file-sharing network depends on the quality of service (QoS) received in a public networks. We plot the low-speed P2P networks in Fig.1.15. Internet clouds are evaluated similarly to the way we assess cluster performance.

Amdahl’s Law: Consider the execution of a given program on a uniprocessor workstation with a totalexecution time of T minutes. Now, the program has been parallelized or partitioned for parallel execution on a cluster of many processing nodes. Assume that a fraction α of the code must be executed sequentially, called the sequential bottleneck. Therefore, (1- α) of the code can be compiled for parallel execution by n processors. The total execution time of the program is calculated by αT+ (1-α)T/n , where the first term is the sequential execution time on a single processor. The second term is the parallel execution time on n processing nodes.

We will ignore all system or communication overheads, I/O time, or exception handling time in the then following speedup analysis. Amdahl’s Law states that: The speedup factor of using the n-processor system over the use of a single processor is expressed by:

1 - 30
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page32]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

	Speedup = S = T / [αT + (1-α)T/ n] = 1 / [α + (1-α) /n]
	(1.1)

The maximum speedup of n is achieved, only if the sequential bottleneckα is reduced to zero or the code is fully parallelizable with α = 0. As the cluster becomes sufficiently large, i.e. n→ ∞, we have S = 1/ α , an upper bound on the speedup S. Surprisingly, this upper bound is independent of the cluster size n. Sequential bottleneck is the portion of the code that cannot be parallelized. For example, the maximum speedup achieved speedup is 4, if α= 0.25 or 1-α= 0.75, even we use hundreds of processors. Amdahl’s law teaches us that we should make the sequential bottleneck as small as possible. By increasing the cluster size alone may not give us a good speedup we expected.

Problem with Fixed Workload: In Amdahl’s law, we have assumed the same amount of workload forboth sequential and parallel execution of the program with a fixed problem size or dataset. This was called fixed-workload speedup by Hwang and Xu [14]. To execute a fixed workload onnprocessors, parallelprocessing may lead to a system efficiency defined as follows:

	E = S / n = 1 / [α n +1-α]
	(1.2)

Very often the system efficiency is rather low, especially when the cluster size is very large. To execute the aforementioned program on a cluster with n = 256 nodes, extremely low efficiency E = 1/[0.25 x256 + 0.75] = 1.5% is observed. This is due to the fact that only a few processors (say 4) are kept busy, while the majority of the nodes are left idling.

Scaled-Workload Speedup: To achieve higher efficiency in using a large cluster, we must consider scalingthe problem size to match with the cluster capability. This leads to the following speedup law proposed by John Gustafson (1988). Let W be the workload in a given program. When we use an n-processor system, we scale the workload to W’ = αW+(1-α)nW. Note that only the parallelizable portion of the workload is scaled n times in the second term. This scaled workload W’ is essentially the sequential execution time on a single processor. The parallel execution time of W’ workload on n processors is kept at the level of the original workload W. Thus, a scaled-workload speedup is defined as follows:

	S’ = W’/W = [αW+(1–α)nW] /W =α+(1–α)n
	(1.3)

This speedup is known as Gustafson’s Law. By fixing the parallel execution time at level W, we achieve the following efficiency expression:

	E’ = S’ / n = α/n + (1- α)
	(1.4)

For the above program with a scaled workload, we can improve the efficiency of using a 256-node cluster to E’ = 0.25/256 + 0.75 = 0.751. We shall apply either the Amdahl’s Law or Gustafson’s Law under differentworkload conditions. For fixed workload, we apply Amdahl’s law. To solve scaled problems, we apply Gustafson’s Law.

System Availability and Application Flexibility

In addition to performance, system availability and application flexibility are two other most important design goals in a distributed computing system. We check these related two concerns, separately.

System Availability: High availability(HA) is desired in all clusters, grids, P2P, and cloud systems. Asystem is highly available if it has long mean time to failure (MTTF) and short mean time to repair (MTTR).

1 - 31
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page33]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

The system availability is formally defined as flows:

	System Availability = MTTF / (MTTF + MTTR)
	(1.5)

The system availability is attributed to many factors. All hardware, software, and network components may fail. Any failure that will pull down the operation of the entire system is called a single point of failure. The rule of thumb is to design a dependable computing system with no single point of failure. Adding hardware redundancy, increasing component reliability, and design for testability will all help enhance the system availability and dependability.

In Fig.1.19, we estimate the effects on system availability by scaling the system size in term of the number of processor cores in a system. In general, as a distributed system increases in size, the availability decrease due to higher chance of failure and difficulty to isolate the failures. Both SMP and MPP are most vulnerable under the mangement of a single OS. Increasing system size will result in higher chance to break down. The NUMA machine has limited improvement in availability from an SMP due to use of multiple system managements.

Most clusters are designed to have high-availability (HA) with failover capability, even as the cluster gets much bigger. Vrtualized clouds form a subclass of the hosting server clusters at various datacenters. Hence a cloud has an estimated availability similar to that of the hosting cluster. A grid is visualized as a hierarchical cluster of clusters. They have even higher availability due to the isolation of faults. Therefore, clusters, clouds, and grids have a decreasing availability as system gets larger. A P2P file-sharing network hass the highest aggregation of client machines. However, they operate essentially independently with low availability even many peer nodes depart or fail simultaneously.
[image:]

Figure 1.19 Estimated effects on the system availability by the size of clusters, MPP, Grids, P2P file-sharing networks, and computing clouds. (The estimate is based on reported experiences in hardware,OS, storage, network, and packaging technologies in available system configurations in 2010.)

1.4.3 Security Threats and Defense Technologies

Clusters, Grids, P2P, and Clouds all demand security and copyright protection. These are crucial to their acceptance by a digital society. In this section, we introduce the system vulnerability, network threats, defense countermeasures, and copyright protection in distributed or cloud computing systems.

Threats To Systems and Networks : Network viruses have threatened many users in widespread attacks

1 - 32
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page34]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

constantly. These incidents created worm epidemic by pulling down many routers and servers. These attacks had caused billions of dollars loss in business, government, and services. Various attack types and the potential damages to users are summarized in Fig.1.20. Information leakage leads to the loss of confidentiality. Loss of data integrity may be caused by user alteration, Trojan horse, and service spoofing attacks. The denial of service (DoS) result in loss of system operation and Internet connections.

Lack of authentication or authorization lead to illegitimate use of computing resources by attackers. Open resources like datacenters, P2P networks, grid and cloud infrastructures could well become the next targets. We need to protect clusters, grids, clouds, and P2P systems. Otherwise, no users dare to use or trust them for outsourced work. Malicious intrusions to these systems may destroy valuable hosts, network, and storage resources. Internet anomalies found in routers, gateways, and distributed hosts may hinder the acceptance of these public-resource computing services.

Security Responsibilities: We identify three security requirements:confidentiality, integrity, andavailability for most internet service providers and cloud users. As shown in Fig.1.21, in the order of SaaS,PaaS, and IaaS, the providers gradually release the responsibilities of security control to the cloud users. In summary, the SaaS model relies on the cloud provider to perform all security functions. On the other extreme, the IaaS model wants the users to assume almost all security functions except leaving the availability to the hands of the providers. The PaaS model relies on the provider to maintain data integrity and availability, but burdens the user with confidentiality and privacy control.
[image:]

Figure 1.20 Various system attacks and network threats to cyberspace.

System Defense Technologies: Three generations of network defense technologies have appeared in thepast. In the first generation, tools were designed to prevent or avoid intrusions. These tools usually manifested as access control policies or tokens, cryptographic systems, etc. However, the intruder can always penetrate a secure system because there is always a weakest link in the security provisioning process. The second generation detects intrusions timely to exercise remedial actions. These techniques include firewalls, Intrusion Detection Systems (IDS), PKI service, reputation systems, etc. The third generation provides more intelligent responses to intrusions.

1 - 33
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page35]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010
[image:]

Figure 1.21: Internet security responsibilities by cloud service providers and by the user mass.

Copyright Protection: Collusive piracy is the main source of intellectual property violations within theboundary of a P2P network. Paid clients (colluders) may illegally share copyrighted content files with unpaid clients (pirates). On-line piracy has hindered the use of open P2P networks for commercial content delivery. One can develop a proactive content poisoning scheme to stop colluders and pirates from alleged copyright infringements in P2P file sharing. Pirates are detected timely with identity-based signatures and time-stamped tokens. The scheme stops collusive piracy without hurting legitimate P2P clients. We will cover grid security, P2P reputation systems, and copyright-protection issues in Chapters 5 and 7.

Data Protection Infrastructure: Security infrastructure is needed to support safeguard web and cloudservices. At the user level, we need to perform trust negotiation and reputation aggregation over all users. At the application end, we need to establish security precautions in worm containment and intrusion detection against virus, worm, and DDoS attacks. We need also deploy mechanism to prevent on-line piracy and copyright violations of digital contents. In Chapter 6, we will study reputation system for protecting distributed systems and datacenters.

1.4.4 Energy-Efficiency in Distributed Computing

Primary performance goals in conventional parallel and distributed computing systems are high performance and high throughput, considering some form of performance reliability, e.g., fault tolerance and security. However, these systems recently encounter new challenging issues including energy efficiency, and workload and resource outsourcing. These emerging issues are crucial not only in their own, but also for the sustainability of large-scale computing systems in general. In this section, we review energy consumption issues in servers and HPC systems. The issue of workload and resource outsourcing for cloud computing is discussed. Then we introduce the protection issues of datacenters and explore solutions.

The energy consumption in parallel and distributed computing systems raises various monetary, environmental and system performance issues. For example, Earth Simulator and Petaflop are two example systems with 12 and 100 megawatts of peak power, respectively. With an approximate price of 100 dollars per megawatt, their energy costs during peak operation times are 1,200 and 10,000 dollars per hour; this is

1 - 34
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page36]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

beyond the acceptable budget of many (potential) system operators. In addition to power cost, cooling is another issue that must be addressed due to negative effects of high temperature on electronic components. The rising temperature of a circuit not only derails the circuit from its normal range but also results in decreasing the lifetime of its components.

Energy consumption of unused servers: To run a server farm (data center) a company has to spend a hugeamount of money for hardware, software (software licences), operational support and energy every year. Therefore, the company should thoroughly identify weather the installed server farm (more specifically, the volume of provisioned resources) is at an appropriate level in terms particularly of utilization. Some analysts estimate that on average around one-sixth (15%) of the full-time servers in a company is left powered on without being actively used (i.e., idling) on a daily basis. This indicates that with 44 million servers in the world, around 4.7 million servers are not doing any useful work.

The potential savings by turning off these servers are large, globally $3.8 billion in energy costs alone and $24.7 billion in the total cost of running non-productive servers according to a study by 1E Company in partnership with the Alliance to Save Energy (ASE). With the respect to environment, this amount of energy

wasting is equal to entering 11.8 million tons of carbon dioxide per year which is equivalent to the CO2 pollution of 2.1 million cars. This ratio in the U.S comes to 3.17 million tons of carbon dioxide, or 580,678 cars. Therefore, the first step in IT departments is to analyze their servers to find out unused and/or underutilized servers.

Reducing energy in active servers: In addition to the identification of unused/under-utilized servers forenergy savings, the application of appropriate techniques to decrease energy consumption in active distributed systems with negligible influence on their performance is necessary. Power management issue in distributed computing platforms can be categorized into four layers (Fig.1.22): application layer, middleware layer, resource layer and network layer.

1 - 35
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page37]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010
[image:]

Figure 1.22 Four operational layers of distributed computing systems

Application layer: Until now, most user applications in science, business, engineering, and financial areas,tend to increase the speed or quality performance. By introducing energy-aware applications, the challenge is how to design sophisticated multilevel and multi-domain energy management applications without hurting performance. The first step is to explore a relationship between performance and energy consumption. Indeed, the energy consumption of an application has a strong dependency with the number of instructions needed to execute the application and the number of transactions with storage unit (or memory). As well these two factors (computation and storage) are correlated and they affect application completion time.

Middleware layer: The middleware layer acts as a bridge between the application layer and the resourcelayer. This layer provides resource broker, communication service, task analyzer, task scheduler, security access, reliability control and information service. This layer is susceptible for applying energy-efficient techniques particularly in task scheduling. Until recently, scheduling is aimed to minimize a cost function generally the makespan, i.e., the whole execution time of a set of tasks. Distributed computing systems necessitates a new cost function covering both makespan and energy consumption.

Resource layer: The resource layer consists of a wide range of resources including computing nodes andstorage units. This layer generally interacts with hardware devices and also operating system; and therefore it is responsible for controlling all distributed resources in distributed computing systems. In the recent past, several mechanisms have been developed for more efficient power management of hardware and operating systems. The majority of them are hardware approaches particularly for processors. Dynamic power

1 - 36
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page38]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

management (DPM) and dynamic voltage-frequency scaling (DVFS) are two popular methods incorporatedin recent computer hardware systems In DPM, hardware devices, such as CPU have the capability to switch from idle mode to one or more lower-power modes. In DVFS, energy savings are achieved on the fact that the power consumption in CMOS circuits has the direct relationship with frequency and the square of voltage supply. In this case, the execution time and power consumption are controllable by switching between different frequencies and voltages. Figure 1.23 shows the principle of the DVFS method. This method enables the exploitation of the slack time (idle time) typically incurred by inter-task relationships (e.g., precedence constraints) [24]. Specifically, the slack time associated with a task is utilized to execute the task in a lower voltage-frequency. The relationship between energy and voltage-frequency in CMOS circuits is related by the following expression:

	
	C eff
	fv
	2
	

	
	
	
	t
	(1.6)

	f
	 K
	(v
	
	v t)2
	

v

where v, Ceff,K, and vt are the voltage, circuit switching capacity, a technology dependent factor, and threshold voltage, respectively. The parameter t is the execution time of the task under clock frequency f .

By reducing voltage and frequency the energy consumption of device can be reduced. However, both DPM and DVFS techniques may cause some negative effects on power consumption of a device in both active and idle, and create a transition overload for switching between states or voltage/frequencies. Transition overload is especially important in DPM technique: if the transition latencies between lower-power modes are assumed to be negligible, then energy can be saved by simply switching between these modes. However, this assumption is rarely valuable and therefore switching between low-power modes affects performance.
[image:]

Figure 1.23 DVFS technique (right) original task (left) voltage-frequency scaled task (Courtesy of R.Ge, et al,

“Performance Constrained Distributed DVS Scheduling for Scientific Applications on Power-aware Clusters”, Proc. ofACM Supercomputing Conf., Wash. DC, 2005 [16].)

Another important issue in the resource layer is in the storage area. Storage units interact with the computing nodes greatly. This huge amount of interactions keeps the storage units always active. This results in large energy consumption. Storage devices spend about 27% of the total energy consumption in a data center. What is even worse is this figure increases rapidly due to 60% increase in storage need annually.

Network layer: Routing and transferring packets and enabling network services to the resource layer arethe main responsibility of the network layer in distributed computing systems. The major challenge to build energy-efficient networks is again how to measure, predict and make balance between energy consumption and performance. Two major challenges to design energy-efficient networks are identified below:
	The models should represent the networks comprehensively as they should give a full understanding

1 - 37
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page39]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

of interactions between time, space and energy.

New energy-efficient routing algorithms need to be developed. New energy-efficient protocols should be developed against network attacks.

As information resources drive economic and social development, datacenters become increasingly important as where the information items are stored, processed, and services provided. Datacenters becomes another core infrastructure just like power grid and transportation systems. Traditional datacenter suffers from high construction and operational cost, complex resource management and poor usability, low security and reliability, and huge energy consumption etc. It is necessary to adopt new technologies in next generation datacenter designs as studies in Chapter 7.

References and Homework Problems

In the past 4 decades, parallel processing and distributed computing have been hot topics for research and development. Earlier work in this area were treated in several classic books [1, 11, 20, 21]. More recent coverage can be found in newer books [6, 13, 14, 16, 18, 26] published beyond 2000. Cluster computing was covered in [21, 27] and grid computing in [3, 4, 14, 34]. P2P networks are introduced in [13, 33]. Cloud computing is studied in [7-10, 15, 19, 22, 23, 31]. Virtualization techniques are treated in [28-30]. Distributed algorithms and parallel programming are studied in [2, 12, 18, 21, 25]. Distributed operating systems and software tools are covered in [5, 32]. Energy efficiency and power management are studied in [17, 24, 35]. Clusters serve as the foundation of distributed and cloud computing. All of these topics will be studied in more details in subsequent chapters.

References

G. Almasi and A. Gottlieb, Highly Parallel Computing, Banjamin-Cummins Publisher, 1989.

G. Andrewa, Foundations of multithreaded, Parallel and Distributed Programming,

Addison-Wesley, 2000.

G. Bell, J. Gray. And A. Szalay, “ Petascale Computational Systems : Balanced Cyberstructure in a

Data-Centric World” , IEEE Computer Magazine, 2006

F. Berman, G. Fox, and T. Hey (Editors), Grid Computing, Wiley and Sons, 2003, ISBN: 0-470-85319-0

M. Bever, et al, “ Distributed Systems, OSF DCE, and Beyond” , in DCE-The OSF DistributedComputing Environment, A. Schill (edtor), Belin, Springer-Verlag, pp. 1-20, 1993

K. Birman, Reliable Distributed Systems: Technologes, Web Services, and Applications,

Springer Verlag 2005.

G. Boss, et al, “ Cloud Computing-The BlueCloud Project “ , www.ibm.com/developerworks/websphere/zones/hipods/ Oct. 2007

R. Buyya, C. Yeo; and S. Venugopal, "Market-Oriented Cloud Computing: Vision, Hype, and Reality for Delivering IT Services as Computing Utilities," 10th IEEE Int’l Conf. on High Perf.
Computing and Comm., Sept. 2008

F. Chang, et al., “ Bigtable: A Distributed Storage System for Structured Data” , OSDI 2006.

T. Chou, Introduction to Cloud Computing : Business and Technology, Lecture Notes at Stanford University and at Tsinghua University, Active Book Press, 2010.

D. Culler, J. Singh, and A. Gupta, Parallel Computer Architecture, Kaufmann Publishers,

1 - 38
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page40]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

1999.

J. Dean and S. Ghemawat, “ MapReduce: Simplified Data Processing on Large Clusters” ,

Proc. of OSDI 2004.

J. Dillimore, T. Kindberg, and G. Coulouris, Distributed Systems: Concepts and Design, (4th Edition), Addison Wesley, May 2005, ISBN -10-03-2126-3545.

J. Dongarra, et al, (editors), Source Book of Parallel Computing, Morgan Kaufmann, 2003.

I. Foster, Y. Zhao, J.Raicu, and S. Lu, "Cloud Computing and Grid Computing 360-Degree Compared," Grid Computing Environments Workshop, 12-16 Nov. 2008.

V. K. Garg, Elements of Distributed Computing, Wiley-IEEE Press, 2002.

R.Ge, X. .Feng, and K.W.Cameron, “Performance const rained distributed DVS scheduling for scientific applications on power-aware clusters”, Proc. Supercomputing Conf., Wash. DC, 2005.

S. Ghosh, Distributed Systems- An Algorithmic Approach, Chapman & Hiall/CRC, 2007.

Google, Inc. “ Google and the Wisdom of Clouds” , http://www.businessweek.com/magazine/content/ 0752/ b4064048925836.htm

K. Hwang, Advanced Computer Architecture: Parallelism, Scalability, Programming,

McGraw-Hill, 1993.,

K. Hwang and Z. Xu: Scalable Parallel Computing, McGraw-Hill, 1998.

K. Hwang, S. Kulkarni, and Y. Hu, “Cloud Security w ith Virtualized Defense and Reputation-based

Trust Management”, IEEE Conf. Dependable, Autonomous, and Secure Computing (DAC-2009), Chengdu, China, Dec.14, 2009

K. Hwang and D. Li, “ Security and Data Protecti on for Trusted Cloud Computing”, IEEE InternetComputing, September. 2010.

Kelton Research, “1E / Alliance to Save Energy Server Energy & Effi ciency Report”, http://www.1e.com/ EnergyCampaign/downloads/Server_Energy_and_Efficiency_Report_2009.pdf , Sept. 2009.

Y. C. Lee and A. Y. Zomaya, “A Novel State Transiti on Method for Metaheuristic-Based Scheduling in Heterogeneous Computing Systems,” IEEE Trans. Parallel and Distributed Systems, Sept. 2008.

D. Peleg, Distributed Computing : A Locality-Sensitive Approach, SIAM Publisher, 2000.

G.F. Pfister, In Serach of Clusters, (second Edition), Prentice-Hall, 2001

M. Rosenblum and T. Garfinkel, “Virtual Machine Mon itors: Current Technology and Future

Trends”, IEEE Computer, May 2005, pp.39-47.

M. Rosenblum, “Recent Advances in Virtual Machines and Operating Systems” , Keynote Address,

ACM ASPLOS 2006

J. Smith and R. Nair, Virtual Machines, Morgan Kaufmann , 2005

B. Sotomayor, R. Montero, and I. Foster, “Virtual Infrastructure Management in Private and Hybrid Clouds”, IEEE Internet Computing, Sept. 2009

A. Tannenbaum, Distributed Operating Systems, Prentice-Hall, 1995.

I. Taylor, From P2P to Web Services and Grids , Springer-Verlag, London, 2005.

1 - 39
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page41]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

M. Waldrop, “Grid Computing”, IEEE Computer Magazine, 2000

Z. Zong, “Energy-Efficient Resource Management for High-Performance Computing Platforms”,

PhD Dissertation, Auburn University, August 9, 2008

Homework Problems

Problem 1.1: Map ten abbreviated terms and system models on the left with the best-match descriptions onthe right. Just enter the description label (a, b, c, …,j) in the underlined blanks in front of the terms.

	Globus
	(a) A scalable software platform promoted by Apache for web users to write and

	
	
	
	run applications over vast amounts of distributed data.

	______ BitTorrent
	(b) A P2P network for MP3 music delivery using a centralized directory server

	________ Gnutella
	(c) The programming model and associated implementation by Google

	
	
	
	for distributed mapping and reduction of very large data sets

	EC2
	(d) A middleware library jointly developed by USC/ISI and Argonne

	
	
	
	National Lab. for Grid resource management and job scheduling

	TeraGrid
	(e) A distributed storage program by Google for managing structured

	
	
	
	data that can scale to very large size.

	EGEE
	(f)
	A P2P file-sharing network using multiple file index trackers

	__________Hadoop
	(g) A critical design goal of cluster of computers to tolerate

	
	
	
	nodal faults or recovery from host failures.

	______ SETI@home
	(h) The service architecture specification as an open Grid standard

	________ Napster
	(i) An elastic and flexible computing environment that allows web

	
	
	
	application developers to acquire cloud resources effectively

	________ Bigtable
	(j)
	A P2P Grid over 3 millions of desktops for distributed signal processing in

	
	
	
	search of extra-terrestrial intelligence

Problem 1.2: Circle only one correct answer in each of the following questions.

(1) In today’s Top 500 list of the fastest computing systems, which architecture classdominates the population ?

Symmetric shared-memory multiprocessor systems

Centralized massively parallel processor (MPP) systems.

Clusters of cooperative computers.

Which of the following software packages is particularly designed as a distributed storage management system of scalable datasets over Internet clouds?

MapReduce

Hadoop

Bigtable

Which global network system was best designed to eliminate isolated resource islands ?

The Internet for computer-to-computer interaction using Telnet command

The Web service for page-to-page visits using http:// command

The Grid service using midleware to establish interactions between applications running on a federation of cooperative machines.

1 - 40
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page42]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

Which of the following software tools is specifically designed for scalable storage services in distributed cloud computing applications ?

Amazon EC2

Amazon S3

Apache Hadoop library

In a cloud formed by a cluster of servers, all servers must be select as follows:

All cloud machines must be bulit on physical servers

All cloud machines must be built with virtual servers

The cloud machines can be either physical or virtual servers.

Problem 1.3: Content delivery networks have gone through three generations of development: namely theclient-server architecture, massive network of content servers, and P2P networks. Discuss the advantages and shortcomings of using these content delivery networks.

Problem 1.4: Conduct a deeper study of the three cloud platform models presented in Table1.6.Comparetheir advantages and shortcomings in development of distributed applications on each cloud platform. The material in Table 1.7 and Table 1.8 are useful in your assessment.

Problem 1.5: Consider parallel execution of an MPI-coded C program in SPMD (single program andmultiple data streams) mode on a server cluster consisting of n identical Linux servers. SPMD mode means that the same MPI program is running simultaneously on all servers but over different data sets of identical workload. Assume that 25% of the program execution is attributed to the execution of MPI commands. For simplicity, assume that all MPI commands take the same amount of execution time. Answer the following questions using Amdahl’s law:

Given that the total execution time of the MPI program on a 4-server cluster is T minutes. What is the speedup factor of executing the same MPI program on a 256-server cluster, compared with using the 4-server cluster. Assume that the program execution is deadlock-free and ignore all other run-time execution overheads in the calculation.

(b). Suppose that all MPI commands are now enhanced by a factor of 2 by using active messagesexecuted by message handlers at the user space. The enhancement can reduce the execution time of all PMI commands by half. What is the speedup of the 256-server cluster installed with this MPI enhancement, computed with the old 256-server cluster without MPI enhancement?

Problem 1.6: Consider a program to multiply two large-scaleN x Nmatrices, whereNis the matrix size.The sequential multiply time on a single sever is T1=c N3 minutes, where c is a constant decided by the

server used. A MPI-code parallel program requires Tn=c N3/n+d N2/n0.5 minutes to complete execution on an n-server cluster system, where d is a constant determined by the MPI version used. You can assume

the program has a zero sequential bottleneck (α= 0). The second term in Tn accounts for the total message passing overhead experienced by n servers.

Answer the following questions for a given cluster configuration with n = 64 servers and c = 0.8 and d = 0.1. Parts (a, b) have a fixed workload corresponding to the matrix size N = 15,000. Parts (c, d) have a
scaled workload associated with an enlarged matrix size N’=n1/3N = 641/3 x 15,000= 4x15,000 = 60,000. Assume the same cluster configuration to process both workloads. Thus the system parameters n, c, and d stay unchanged. Running the scaled workload, the overhead also increases with the enlarged matrix size N’.

Using Amdahl’s law, calculate the speedup of the n-server cluster over a single server.

What is the efficiency of the cluster system used in Part (a) ?

Calculate the speedup in executing the scaled workload for an enlarged N’ x N’ matrix

1 - 41
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page43]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

on the same cluster configuration using Gustafson Law.

Calculate the efficiency of running the scaled workload in Part (c) on the 64-processor cluster.

Compare the above speedup and efficiency results and comment on their implications.

Problem 1.7: Cloud computing is an emerging distributed computing paradigm. An increasing number oforganizations in industry and business sectors adopt cloud systems as their system of choice. Answer the following questions on cloud computing.

List and describe main characteristics of cloud computing systems.

Discuss key enabling technologies in cloud computing systems.

Discuss different ways for cloud service providers to maximize their revenue.

Problem 1.8: Compare the similarities and differences between traditional computing clusters/grids and thecomputing clouds launched in recent years. You should consider all technical and economic aspects as listed below. Answer the following questions against real example systems or platforms built in recent years. Also discuss the possible convergence of the two computing paradigms in the future..

Hardware, software, and networking support

Resource allocation and provisioning methods

Infrastructure management and protection.

Supporting of utility computing services

Operational and cost models applied.

Problem 1.9: Answer the following questions onpersonal computing(PC) andhigh-performancecomputing (HPC) systems:

Explain why the changes in personal computing (PC) and high-performance computing (HPC) were evolutionary rather revolutionary in the past 30 years.

Discuss the drawbacks in disruptive changes in processor architecture. Why memory wall is a major problem in achieving scalable performance?

Explain why x-86 processors are still dominating the PC and HPC markets ?

Problem 1.10: Multi-core and many-core processors have appeared in widespread use in both desktopcomputers and HPC systems. Answer the following questions in using advanced processors, memory devices, and system interconnects.

What are differences between multi-core CPU and GPU in architecture and usages ?

Explain why parallel programming cannot match with the progress of processor technology.

Suggest ideas and defend your argument by some plausible solutions to this mismatch problem between core scaling and effective programming and use of multicores.

Explain why flash memory SSD can deliver better speedups in some HPC or HTC applications.

Justify the prediction that Infiniband and Ehternet will continue dominating the HPC market.

Problem 1.11 Compare the HPC and HTC computing paradigms and systems. Discuss their commonalityand differences in hardware and software support and application domains.

Problem 1.12 Answer the roles of multicore processors, memory chips, solid-state drives, and disk arrays.in building current and future distributed and cloud computing systems.

Problem 1.13 What are lopment trends of operating systems and programming paradigms in modern

1 - 42
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page44]Chapter 1: System Models and Enabling Technologies (42 pages)

revised May 2, 2010

distributed systems and cloud computing platforms ?

Problem 1.14 Distinguish P2P networks from Grids and P2P Grids by filling the missing table entries.Some entries are already given. You need to study the entries in Table 1.3 , Table 1.5, and Table 1.9 before you try to distinguish these systems precisely.

Discuss the major advantages and disadvantages in the following challenge areas:

Why virtual machines and virtual clusters are suggested in cloud computing systems ?

What are the breakthrough areas needed to build virtualized cloud systems cost effectively ?

What is your observations of the impact of cloud platforms on the future of HPC industry ?

Problem 1.16: Briefly explain each of the following cloud computing services. Identify two clouderproviders in each service category.

Application cloud services

Platform cloud services

Compute and storage services

Co-location cloud services

(e). Network cloud services.

Table 1.11 Comparison among P2P Networks, Grids, and P2P Grids

	Features
	P2P Networks
	Grid Systems
	P2P Grids

	
	
	
	

	Applications
	Distributed file sharing,
	
	

	and Peer or
	content distribution, peer
	
	

	Node Roles
	machines acting as both
	
	

	
	clients and servers
	
	

	System Control
	
	
	Policy-based control in a

	and Service
	
	
	grid infrastructure, all

	Model
	
	
	services from clent

	
	
	
	machines

	
	
	
	

	System
	
	Static conections with
	

	Connectivity
	
	high-speek links over
	

	
	
	grid resource sites
	

	Resource
	Autonomous peers without
	
	

	Discovery and
	discovery, no use of a
	
	

	Job
	central job scheduler
	
	

	Management
	
	
	

	Repersentative
	
	NSF TeraGrid, UK
	

	Systems
	
	EGGE Grid, China Grid
	

Problem 1.15: plain the impacts of machine virtualization to business computing and HPC systems.

Problem 1.17: Briefly explain the following terms associated with network threats or security defense in adistributed computing system:

Denial of service (DoS)

1 - 43
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.

[bookmark: page45]Chapter 1: System Models and Enabling Technologies (42 pages) revised May 2,2010

Trojan horse

Network worms

Masquerade

Evasdropping

Service sproofing

Authorization

Authentication

Data integrity

Confidentaility

Problem 1.18: Briefly answer following questions on green informationtechnology and energy efficiency in distributed systems. You can find answers in later chapters or search over the Web.

Why power consumption is critical to datacenter operations ?

Justify Equation (1.6) by reading a cited information source.

What is dynamic voltage frequency scaling (DVFS) technique ?

Problem Problem 1.19: Distinguish the following terminologies associate withmultithreaded processor architecture:

What is fine-grain multithreading architecture ? Identify two example processors.

What is course-grain multithreading architecture ? Identify two example processors.

What is simultaneously multithreading (SMT) architecture ? Identify two example proccesors.

Problem 1.20: Characterize the following three cloud computing models:

What is an IaaS (Infrastructure as a Service) cloud ? Give one example system.

What is a PaaS (Platform as a Service) cloud ? Give one example system.

What is a SaaS (Sofftware as a Service) cloud ? Give one example system.

[bookmark: page46]

INTRODUCTION TO CLOUD
COMPUTING

CLOUD COMPUTING IN A NUTSHELL

Computing itself, to be considered fully virtualized, must allow computers to be built from distributed components such as processing, storage, data, and software resources.

Technologies such as cluster, grid, and now, cloud computing, have all aimed at allowing access to large amounts of computing power in a fully virtualized manner, by aggregating resources and offering a single system view. Utility computing describes a business model for on-demand delivery of computing power; consumers pay providers based on usage (“payas-you-go”), similar to the way in which we currently obtain services from traditional public utility services such as water, electricity, gas, and telephony.

Cloud computing has been coined as an umbrella term to describe a category of sophisticated on-demand computing services initially offered by commercial providers, such as Amazon, Google, and Microsoft. It denotes a model on which a computing infrastructure is viewed as a “cloud,” from which businesses and individuals access applications from anywhere in the world on demand . The main principle behind this model is offering computing, storage, and software “as a service.”

Many practitioners in the commercial and academic spheres have attempted to define exactly what “cloud computing” is and what unique characteristics it presents. Buyya et al. have defined it as follows: “Cloud is a parallel and distributed computing system consisting of a collection of inter-connected

[bookmark: page47]and virtualised computers that are dynamically provisioned and presented as one or more unified computing resources based on service-level agreements (SLA) established through negotiation between the service provider and consumers.”

Vaquero et al. have stated “clouds are a large pool of easily usable and accessible virtualized resources (such as hardware, development platforms and/or services). These resources can be dynamically reconfigured to adjust to a variable load (scale), allowing also for an optimum resource utilization. This pool of resources is typically exploited by a pay-per-use model in which guarantees are offered by the Infrastructure Provider by means of customized

Service Level Agreements.”

A	recent	McKinsey	and	Co.	report	claims	that	“Clouds	are

hardwarebased services offering compute, network, and storage capacity where: Hardware management is highly abstracted from the buyer, buyers incur infrastructure costs as variable OPEX, and infrastructure capacity is highly elastic.”

A report from the University of California Berkeley	summarized the key

characteristics of cloud computing as: “(1) the illusion of infinite computing resources; (2) the elimination of an up-front commitment by cloud users; and

(3) the ability to pay for use . . . as needed .. .”

The National Institute of Standards and Technology (NIST) characterizes cloud computing as “ ... a pay-per-use model for enabling available, convenient, on-demand network access to a shared pool of configurable computing resources (e.g. networks, servers, storage, applications, services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.”

In a more generic definition, Armbrust et al.	define cloud as the “data

center hardware and	software	that	provide	services.”	Similarly, Sotomayor

et al. point out that “cloud” is more often used to refer to the IT infrastructure deployed on an Infrastructure as a Service provider data center. While there are countless other definitions, there seems to be common characteristics between the most notable ones listed above, which a cloud should have: (i) pay-per-use (no ongoing commitment, utility prices); (ii) elastic capacity and the illusion of

infinite resources;	(iii) self-service	interface;	and (iv) resources that are

abstracted or	virtualised.

ROOTS OF CLOUD COMPUTING

We can track the roots of clouds computing by observing the advancement of several technologies, especially in hardware (virtualization, multi-core chips), Internet technologies (Web services, service-oriented architectures, Web 2.0), distributed computing (clusters, grids), and systems management (autonomic computing, data center automation). Figure 1.1 shows the convergence of technology fields that significantly advanced and contributed to the advent of cloud computing.

Some of these technologies have been tagged as hype in their early stages of development; however, they later received significant attention from academia and were sanctioned by major industry players. Consequently, a specification and standardization process followed, leading to maturity and

[bookmark: page48]wide adoption. The emergence of cloud computing itself is closely linked to the maturity of such technologies. We present a closer look at the technol ogies that form the base of cloud computing, with the aim of providing a clearer picture of the cloud ecosystem as a whole.

From Mainframes to Clouds

We are currently experiencing a switch in the IT world, from in-house generated computing power into utility-supplied computing resources delivered over the Internet as Web services. This trend is similar to what occurred about a century ago when factories, which used to generate their own electric power, realized that it is was cheaper just plugging their machines into the newly formed electric power grid .

Computing delivered as a utility can be defined as “on demand delivery of infrastructure, applications, and business processes in a security-rich, shared, scalable, and based computer environment over the Internet for a fee” .

[bookmark: page49]

	Distributed Computing

Systems Management

Hardware Virtualization
[image:]

	Utility &
	SOA

	
	Cloud

	
	

	Grid
	Web 2.0

	
	Web Services

	
	

Autonomic Computing

Hardware

	Internet Technologies

FIGURE 1.1. Convergence of various advances leading to the advent of cloud computing.

This model brings benefits to both consumers and providers of IT services. Consumers can attain reduction on IT-related costs by choosing to obtain cheaper services from external providers as opposed to heavily investing on IT infrastructure and personnel hiring. The “on-demand” component of this model allows consumers to adapt their IT usage to rapidly increasing or unpredictable computing needs.

Providers of IT services achieve better operational costs; hardware and software infrastructures are built to provide multiple solutions and serve many users, thus increasing efficiency and ultimately leading to faster return on investment (ROI) as well as lower total cost of ownership (TCO).

The mainframe era collapsed with the advent of fast and inexpensive microprocessors and IT data centers moved to collections of commodity servers.

The advent of increasingly fast fiber-optics networks has relit the fire, and new technologies for enabling sharing of computing power over great distances have appeared.

[bookmark: page50]SOA, Web Services, Web 2.0, and Mashups

Web Service
applications running on different messaging product platforms

enabling information from one application to be made available to others

enabling internal applications to be made available over the Internet
SOA

address requirements of loosely coupled, standards-based, and protocol-independent distributed computing

WS ,HTTP, XML

Common mechanism for delivering service

applications is a collection of services that together perform complex business logic
Building block in IaaS

User authentication, payroll management, calender

Grid Computing

Grid computing enables aggregation of distributed resources and transparently access to them. Most production grids such as TeraGrid and EGEE seek to share compute and storage resources distributed across different administrative domains, with their main focus being speeding up a broad range of scientific applications, such as climate modeling, drug design, and protein analysis.

Globus Toolkit is a middleware that implements several standard Grid services and over the years has aided the deployment of several service-oriented Grid infrastructures and applications. An ecosystem of tools is available to interact with service grids, including grid brokers, which facilitate user interaction with multiple middleware and implement policies to meet QoS needs.

Virtualization technology has been identified as the perfect fit to issues that have caused frustration when using grids, such as hosting many dissimilar software applications on a single physical platform. In this direction, some research projects.

Utility Computing

In utility computing environments, users assign a “utility” value to their jobs, where utility is a fixed or time-varying valuation that captures various QoS constraints (deadline, importance, satisfaction). The valuation is the amount they are willing to pay a service provider to satisfy their demands. The service providers then attempt to maximize their own utility, where said utility may directly correlate with their profit. Providers can choose to prioritize high yield (i.e., profit per unit of resource) user jobs, leading to a scenario where shared systems are viewed as a marketplace, where users compete for resources based on the perceived utility or value of their jobs.

[bookmark: page51]
Hardware Virtualization

The idea of virtualizing a computer system’s resources, including processors, memory, and I/O devices, has been well established for decades, aiming at improving sharing and utilization of computer systems . Hardware virtualization allows running multiple operating systems and software stacks on a single physical platform. As depicted in Figure 1.2, a software layer, the virtual machine monitor (VMM), also called a hypervisor, mediates access to the physical hardware presenting to each guest operating system a virtual machine (VM), which is a set of virtual platform interfaces .
[image:]

	Virtual Machine 1
	Virtual Machine 2
	Virtual Machine N

	User software
	User software
	App A
	App X

	
	
	
	
	
	

	Data
	Web
	Java
	Ruby on
	App B
	App Y

	
	
	
	
	
	

	
	
	
	Linux
	Guest OS
	

Virtual Machine Monitor (Hypervisor)

FIGURE 1.2. A hardware virtualized server hosting three virtual machines, each one running distinct operating system and user level software stack.

[bookmark: page52]
Workload isolation is achieved since all program instructions are fully confined inside a VM, which leads to improvements in security. Better reliability is also achieved because software failures inside one VM do not affect others . Moreover, better performance control is attained since execution of one VM should not affect the performance of another VM .

VMWare ESXi. VMware is a pioneer in the virtualization market. Its ecosystemof tools ranges from server and desktop virtualization to high-level management tools . ESXi is a VMM from VMWare. It is a bare-metal hypervisor, meaning that it installs directly on the physical server, whereas others may require a host operating system.

Xen. The Xen hypervisor started as an open-source project and has served as abase to other virtualization products, both commercial and open-source.In addition to an open-source distribution , Xen currently forms the base of commercial hypervisors of a number of vendors, most notably Citrix XenServer and Oracle VM.

KVM. The kernel-based virtual machine (KVM) is a Linux virtualizationsubsystem. Is has been part of the mainline Linux kernel since version 2.6.20, thus being natively supported by several distributions. In addition, activities such as memory management and scheduling are carried out by existing kernel features, thus making KVM simpler and smaller than hypervisors that take control of the entire machine .

KVM leverages hardware-assisted virtualization, which improves performance and allows it to support unmodified guest operating systems ; currently, it supports several versions of Windows, Linux, and UNIX .

Virtual Appliances and the Open Virtualization	Format

An application combined with the environment needed to run it (operating system, libraries, compilers, databases, application containers, and so forth) is referred to as a “virtual appliance.” Packaging application environments in the shape of virtual appliances eases software customization, configuration, and patching and improves portability. Most commonly, an appliance is shaped as a VM disk image associated with hardware requirements, and it can be readily deployed in a hypervisor.

In a multitude of hypervisors, where each one supports a different VM image format and the formats are incompatible with one another, a great deal of interoperability issues arises. For instance, Amazon has its Amazon machine image (AMI) format, made popular on the Amazon EC2 public cloud. Other formats are used by Citrix XenServer, several Linux distributions that ship with KVM, Microsoft Hyper-V, and VMware ESX.

OVF’s extensibility has encouraged additions relevant to management of

[bookmark: page53]data centers and clouds. Mathews et al. have devised virtual machine contracts (VMC) as an extension to OVF. A VMC aids in communicating and managing the complex expectations that VMs have of their runtime environment and vice versa.

[bookmark: page54]
Autonomic Computing

The increasing complexity of computing systems has motivated research on autonomic computing, which seeks to improve systems by decreasing human involvement in their operation. In other words, systems should manage themselves, with high-level guidance from humans .

In this sense, the concepts of autonomic computing inspire software technologies for data center automation, which may perform tasks such as: management of service levels of running applications; management of data center capacity; proactive disaster recovery; and automation of VM provisioning .

LAYERS AND TYPES OF CLOUDS

Cloud computing services are divided into three classes, according to the abstraction level of the capability provided and the service model of providers, namely: (1) Infrastructure as a Service, (2) Platform as a Service, and (3) Software as a Service . Figure 1.3 depicts the layered organization of the cloud stack from physical infrastructure to applications.

These abstraction levels can also be viewed as a layered architecture where services of a higher layer can be composed from services of the underlying layer.

Infrastructure as a	Service

Offering virtualized resources (computation, storage, and communication) on demand is known as Infrastructure as a Service (IaaS) . A cloud infrastructure

[bookmark: page55]Service

SaaS

PaaS

IaaS

	Main Access &
	Service content

	
	

	Web Browser
	Social networks, Office suites, CRM,

	Cloud
	Cloud Platform

	Development
	Programming languages, Frameworks,

	
	

	
	Mashups editors, Structured data

	Virtual
	

	Infrastructure
	Compute Servers, Data Storage,

	
	17

	
	

[image:]

FIGURE 1.3. The cloud computing	stack.

enables on-demand provisioning of servers running several choices of operating systems and a customized software stack. Infrastructure services are considered to be the bottom layer of cloud computing systems .

Platform as a Service

In addition to infrastructure-oriented clouds that provide raw computing and storage services, another approach is to offer a higher level of abstraction to make a cloud easily programmable, known as Platform as a Service (PaaS)..

Google AppEngine, an example of Platform as a Service, offers a scalable environment for developing and hosting Web applications, which should be written in specific programming languages such as Python or Java, and use the services’ own proprietary structured object data store.

Software as a Service

Applications reside on the top of the cloud stack. Services provided by this layer can be accessed by end users through Web portals. Therefore, consumers are increasingly shifting from locally installed computer programs to on-line software services that offer the same functionally. Traditional desktop applications such as word processing and spreadsheet can now be accessed as a

[bookmark: page56]service in the Web.

Deployment Models

Although cloud computing has emerged mainly from the appearance of public computing utilities. In this sense, regardless of its service class, a cloud can be classified as public, private, community, or hybrid based on model of deployment as shown in Figure 1.4.
[image:]

	Public/Internet
	Private/Enterprise
	Hybrid/Mixed Clouds

	Clouds
	
	

	
	
	

	3rd party,
	Cloud computing
	Mixed usage of

	multi-tenant Cloud
	model run
	private and public

	
	
	Clouds:

	
	
	

	infrastructure
	within a company’s
	Leasing public

	& services:
	
	

	
	own Data Center/
	

	
	
	cloud services

	
	infrastructure for
	when private cloud

	
	internal and/or
	capacity is

	
	
	

[image:]

FIGURE 1.4. Types of clouds based on deployment	models.

[bookmark: page57]
Armbrust propose definitions for public cloud as a “cloud made available in a pay-as-you-go manner to the general public” and private cloud as “internal data center of a business or other organization, not made available to the general public.”

A community cloud is “shared by several organizations and supports a specific community that has shared concerns (e.g., mission, security requirements, policy, and compliance considerations) .”

A hybrid cloud takes shape when a private cloud is supplemented with computing capacity from public clouds . The approach of temporarily renting capacity to handle spikes in load is known as “cloud-bursting” .

DESIRED FEATURES OF A CLOUD

Certain features of a cloud are essential to enable services that truly represent the cloud computing model and satisfy expectations of consumers, and cloud offerings must be (i) self-service, (ii) per-usage metered and billed, (iii) elastic, and (iv) customizable.

Self-Service

Consumers of cloud computing services expect on-demand, nearly instant access to resources. To support this expectation, clouds must allow self-service access so that customers can request, customize, pay, and use services without intervention of human operators .

Per-Usage Metering and Billing

Cloud computing eliminates up-front commitment by users, allowing them to request and use only the necessary amount. Services must be priced on a shortterm basis (e.g., by the hour), allowing users to release (and not pay for) resources as soon as they are not needed.

Elasticity

Cloud computing gives the illusion of infinite computing resources available on demand . Therefore users expect clouds to rapidly provide resources in any quantity at any time. In particular, it is expected that the additional resources can be (a) provisioned, possibly automatically, when an application load increases and (b) released when load decreases (scale up and down) .

[bookmark: page58]Customization

In a multi-tenant cloud a great disparity between user needs is often the case. Thus, resources rented from the cloud must be highly customizable. In the case of infrastructure services, customization means allowing users to deploy specialized virtual appliances and to be given privileged (root) access to the virtual servers. Other service classes (PaaS and SaaS) offer less flexibility and are not suitable for general-purpose computing , but still are expected to provide a certain level of customization.

CLOUD INFRASTRUCTURE MANAGEMENT

A key challenge IaaS providers face when building a cloud infrastructure is managing physical and virtual resources, namely servers, storage, and networks, in a holistic fashion . The orchestration of resources must be performed in a way to rapidly and dynamically provision resources to applications .

The availability of a remote cloud-like interface and the ability of managing many users and their permissions are the primary features that would distinguish “cloud toolkits” from “VIMs.” However, in this chapter, we pl ace both categories of tools under the same group (of the VIMs) and, when applicable, we highlight the availability of a remote interface as a feature.

Virtually all VIMs we investigated present a set of basic features related to managing the life cycle of VMs, including networking groups of VMs together and setting up virtual disks for VMs. These basic features pretty much define whether a tool can be used in practical cloud deployments or not. On the other hand, only a handful of software present advanced features (e.g., high availability) which allow them to be used in large-scale production clouds.

Features

We now present a list of both basic and advanced features that are usually available in VIMs.

Virtualization Support. The multi-tenancy aspect of clouds requires multiplecustomers with disparate requirements to be served by a single hardware infrastructure.

Self-Service, On-Demand Resource Provisioning. Self-service access toresources has been perceived as one the most attractive features of clouds. This feature enables users to directly obtain services from clouds.

[bookmark: page59]Multiple Backend Hypervisors. Different virtualization models and tools offerdifferent benefits, drawbacks, and limitations. Thus, some VI managers provide a uniform management layer regardless of the virtualization technology used.

Storage Virtualization. Virtualizing storage means abstracting logical storagefrom physical storage. By consolidating all available storage devices in a data center, it allows creating virtual disks independent from device and location.

In the VI management sphere, storage virtualization support is often restricted to commercial products of companies such as VMWare and Citrix. Other products feature ways of pooling and managing storage devices, but administrators are still aware of each individual device.

Interface to Public Clouds. Researchers have perceived that extending thecapacity of a local in-house computing infrastructure by borrowing resources from public clouds is advantageous. In this fashion, institutions can make good use of their available resources and, in case of spikes in demand, extra load can be offloaded to rented resources .

Virtual Networking. Virtual networks allow creating an isolated network ontop of a physical infrastructure independently from physical topology and locations. A virtual LAN (VLAN) allows isolating traffic that shares a switched network, allowing VMs to be grouped into the same broadcast domain.

Dynamic Resource Allocation. Increased awareness of energy consumption indata centers has encouraged the practice of dynamic consolidating VMs in a fewer number of servers. In cloud infrastructures, where applications have variable and dynamic needs, capacity management and demand prediction are especially complicated. This fact triggers the need for dynamic resource allocation aiming at obtaining a timely match of supply and demand.

Virtual Clusters. Several VI managers can holistically manage groups of VMs.This feature is useful for provisioning computing virtual clusters on demand, and interconnected VMs for multi-tier Internet applications.

Reservation and Negotiation Mechanism. When users request computationalresources to available at a specific time, requests are termed advance reservations (AR), in contrast to best-effort requests, when users request resources whenever available .

Additionally, leases may be negotiated and renegotiated, allowing provider

[bookmark: page60]and consumer to modify a lease or present counter proposals until an agreement is reached.

High Availability and Data Recovery. The high availability (HA) feature of VImanagers aims at minimizing application downtime and preventing business disruption.

For mission critical applications, when a failover solution involving restarting VMs does not suffice, additional levels of fault tolerance that rely on redundancy of VMs are implemented.

Data backup in clouds should take into account the high data volume involved in VM management.

[bookmark: page61]
Case Studies

In this section, we describe the main features of the most popular VI managers available. Only the most prominent and distinguishing features of each tool are discussed in detail. A detailed side-by-side feature comparison of VI managers is presented in Table 1.1.

Apache VCL. The Virtual Computing Lab [60, 61] project has been incepted in2004 by researchers at the North Carolina State University as a way to provide customized environments to computer lab users. The software components that support NCSU’s initiative have been released as open-source and incorporated by the Apache Foundation.

AppLogic. AppLogic is a commercial VI manager, the flagship product of3tera Inc. from California, USA. The company has labeled this product as a Grid Operating System.

AppLogic provides a fabric to manage clusters of virtualized servers, focusing on managing multi-tier Web applications. It views an entire application as a collection of components that must be managed as a single entity.

In summary, 3tera AppLogic provides the following features: Linux-based controller; CLI and GUI interfaces; Xen backend; Global Volume Store (GVS) storage virtualization; virtual networks; virtual clusters; dynamic resource allocation; high availability; and data protection.

[bookmark: page62]TABLE 1.1. Feature Comparison of Virtual Infrastructure Managers

	
	
	
	Installation
	Client
	UI,
	
	
	
	
	
	Advance
	
	

	
	
	
	Platform of
	API, Language
	
	
	
	
	
	Reservation of
	

	
	
	
	Controller
	Bindings
	Backend
	Storage
	Interface to
	Virtual
	Dynamic Resource
	Capacity
	High
	Data

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	Hypervisor(s)
	Virtualization
	Public Cloud
	Networks
	Allocation
	
	Availability
	Protection

	License
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Apache
	Apache v2
	Multi-
	Portal,
	
	VMware
	No
	No
	Yes
	No
	Yes
	No
	No

	
	VCL
	
	
	XML-RPC
	ESX, ESXi,
	
	
	
	
	
	
	

	
	
	
	platform
	
	
	
	
	
	
	
	
	
	

	
	
	
	(Apache/
	
	
	Server
	
	
	
	
	
	
	

	
	
	
	PHP)
	
	
	
	
	
	
	
	
	
	

	
	AppLogic
	Proprietary
	Linux
	GUI,
	CLI
	Xen
	Global
	No
	Yes
	Yes
	No
	Yes
	Yes

	
	
	
	
	
	
	
	Volume
	
	
	
	
	
	

	
	
	
	
	
	
	
	Store (GVS)
	
	
	
	
	
	

	
	Citrix Essentials
	Proprietary
	Windows
	GUI, CLI,
	XenServer,
	Citrix
	No
	Yes
	Yes
	No
	Yes
	Yes

	
	
	
	
	
	
	Hyper-V
	Storage
	
	
	
	
	
	

	
	
	
	
	Portal,
	
	
	Link
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	XML-RPC
	
	
	
	
	
	
	
	

	
	Enomaly ECP
	GPL v3
	Linux
	Portal,
	WS
	Xen
	No
	Amazon EC2
	Yes
	No
	No
	No
	No

	
	Eucalyptus
	BSD
	Linux
	EC2 WS, CLI
	Xen, KVM
	No
	EC2
	Yes
	No
	No
	No
	No

	
	Nimbus
	Apache v2
	Linux
	EC2 WS,
	Xen, KVM
	No
	EC2
	Yes
	Via
	Yes
	(via No
	No

	
	
	
	
	
	
	
	
	
	
	
	integration
	with
	

	WSRF, CLI
	
	
	
	
	
	
	
	
	integration with
	OpenNebula)
	

	
	
	
	
	
	
	
	
	
	
	
	
	

OpenNebula

	[bookmark: page63]
	OpenNEbula
	Apache v2
	Linux
	XML-RPC,
	Xen, KVM
	No
	Amazon EC2,
	Yes
	Yes
	Yes
	No
	No

	
	
	
	
	
	
	
	
	Elastic Hosts
	
	
	
	
	

	CLI, Java
	
	
	
	
	
	
	(via Haizea)
	
	
	
	

	
	OpenPEX
	GPL
	v2
	Multiplatform
	Portal, WS
	XenServer
	No
	No
	No
	No
	Yes
	No
	No

	(Java)
	
	
	
	
	
	
	
	
	
	
	
	

	
	oVirt
	GPL
	v2
	Fedora Linux
	Portal
	KVM
	No
	No
	No
	No
	No
	No
	No

	
	Platform
	Proprietary
	Linux
	Portal
	Hyper-V
	No
	EC2, IBM CoD,
	Yes
	Yes
	Yes
	Unclear
	Unclear

	
	ISF
	
	
	
	
	XenServer,
	
	
	
	
	
	
	

	
	
	
	
	
	
	VMWare ESX
	
	HPEnterprise
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	Services
	
	
	
	
	

	
	Platform VMO
	Proprietary
	Linux,
	Portal
	XenServer
	No
	No
	Yes
	Yes
	No
	Yes
	No

	Windows
	
	
	
	
	
	
	
	
	
	
	
	

	
	VMWare
	Proprietary
	Linux,
	CLI, GUI,
	VMware
	VMware
	VMware
	Yes
	VMware
	No
	Yes
	Yes

	
	vSphere
	
	
	
	
	ESX, ESXi
	vStorage
	vCloud partners
	
	DRM
	
	
	

	
	Windows
	
	
	Portal, WS
	
	VMFS
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

[bookmark: page64]
Citrix Essentials. The Citrix Essentials suite is one the most feature completeVI management software available, focusing on management and automation of data centers. It is essentially a hypervisor-agnostic solution, currently supporting Citrix XenServer and Microsoft Hyper-V.

Enomaly ECP. The Enomaly Elastic Computing Platform, in its most completeedition, offers most features a service provider needs to build an IaaS cloud.

In summary, Enomaly ECP provides the following features: Linux-based controller; Web portal and Web services (REST) interfaces; Xen back-end; interface to the Amazon EC2 public cloud; virtual networks; virtual clusters (ElasticValet).

Eucalyptus. The Eucalyptus framework was one of the first open-sourceprojects to focus on building IaaS clouds. It has been developed with the intent of providing an open-source implementation nearly identical in functionality to Amazon Web Services APIs.

Nimbus3. The Nimbus toolkit is built on top of the Globus framework. Nimbusprovides most features in common with other open-source VI managers, such as an EC2-compatible front-end API, support to Xen, and a backend interface to Amazon EC2.

Nimbus’ core was engineered around the Spring framework to be easily extensible, thus allowing several internal components to be replaced and also eases the integration with other systems.

In summary, Nimbus provides the following features: Linux-based controller; EC2-compatible (SOAP) and WSRF interfaces; Xen and KVM backend and a Pilot program to spawn VMs through an LRM; interface to the Amazon EC2 public cloud; virtual networks; one-click virtual clusters.

OpenNebula. OpenNebula is one of the most feature-rich open-source VImanagers. It was initially conceived to manage local virtual infrastructure, but has also included remote interfaces that make it viable to build public clouds. Altogether, four programming APIs are available: XML-RPC and libvirt for local interaction; a subset of EC2 (Query) APIs and the OpenNebula Cloud API (OCA) for public access [7, 65].

(Amazon EC2, ElasticHosts); virtual networks; dynamic resource allocation; advance reservation of capacity.

OpenPEX. OpenPEX (Open Provisioning and EXecution Environment) wasconstructed around the notion of using advance reservations as the primary method for allocating VM instances.

[bookmark: page65]oVirt. oVirt is an open-source VI manager, sponsored by Red Hat’s Emergent

Technology group. It provides most of the basic features of other VI managers,

[bookmark: page66]
including support for managing physical server pools, storage pools, user accounts, and VMs. All features are accessible through a Web interface.

Platform ISF. Infrastructure Sharing Facility (ISF) is the VI manager offeringfrom Platform Computing [68]. The company, mainly through its LSF family of products, has been serving the HPC market for several years.

ISF is built upon Platform’s VM Orchestrator, which, as a standalone product, aims at speeding up delivery of VMs to end users. It also provides high availability by restarting VMs when hosts fail and duplicating the VM that hosts the VMO controller.

VMWare vSphere and vCloud. vSphere is VMware’s suite of tools aimed attransforming IT infrastructures into private clouds. It distinguishes from other VI managers as one of the most feature-rich, due to the company’s several offerings in all levels the architecture.

In the vSphere architecture, servers run on the ESXi platform. A separate server runs vCenter Server, which centralizes control over the entire virtual infrastructure. Through the vSphere Client software, administrators connect to vCenter Server to perform various tasks.

VMware ESX, ESXi backend; VMware vStorage VMFS storage virtualization; interface to external clouds (VMware vCloud partners); virtual networks (VMWare Distributed Switch); dynamic resource allocation (VMware DRM); high availability; data protection (VMWare Consolidated Backup).

INFRASTRUCTURE AS A SERVICE PROVIDERS

Public Infrastructure as a Service providers commonly offer virtual servers containing one or more CPUs, running several choices of operating systems and a customized software stack. In addition, storage space and communication facilities are often provided.

Features

In spite of being based on a common set of features, IaaS offerings can be distinguished by the availability of specialized features that influence the cost—benefit ratio to be experienced by user applications when moved to the cloud. The most relevant features are: (i) geographic distribution of data centers; (ii) variety of user interfaces and APIs to access the system; (iii) specialized components and services that aid particular applications (e.g., loadbalancers, firewalls); (iv) choice of virtualization platform and operating systems; and (v) different billing methods and period (e.g., prepaid vs. post -

[bookmark: page67]paid, hourly vs. monthly).

Geographic Presence. To improve availability and responsiveness, a providerof worldwide services would typically build several data centers distributed around the world. For example, Amazon Web Services presents the concept of

“availability zones” and “regions” for its EC2 service.

User Interfaces and Access to Servers. Ideally, a public IaaS provider mustprovide multiple access means to its cloud, thus catering for various users and their preferences. Different types of user interfaces (UI) provide different levels of abstraction, the most common being graphical user interfaces (GUI), command-line tools (CLI), and Web service (WS) APIs.

GUIs are preferred by end users who need to launch, customize, and monitor a few virtual servers and do not necessary need to repeat the process several times. On the other hand, CLIs offer more flexibility and the possibility of automating repetitive tasks via scripts.

Advance Reservation of Capacity. Advance reservations allow users to requestfor an IaaS provider to reserve resources for a specific time frame in the future, thus ensuring that cloud resources will be available at that time. However, most clouds only support best-effort requests; that is, users requests are server whenever resources are available.

Automatic Scaling and Load Balancing. As mentioned earlier in this chapter,elasticity is a key characteristic of the cloud computing model. Applications often need to scale up and down to meet varying load conditions. Automatic scaling is a highly desirable feature of IaaS clouds.

Service-Level Agreement. Service-level agreements (SLAs) are offered by IaaSproviders to express their commitment to delivery of a certain QoS. To customers it serves as a warranty. An SLA usually include availability and performance guarantees. Additionally, metrics must be agreed upon by all parties as well as penalties for violating these expectations.

Hypervisor and Operating System Choice. Traditionally, IaaS offerings havebeen based on heavily customized open-source Xen deployments. IaaS providers needed expertise in Linux, networking, virtualization, metering, resource management, and many other low-level aspects to successfully deploy and maintain their cloud offerings.

Case Studies

[bookmark: page68]In this section, we describe the main features of the most popular public IaaS clouds. Only the most prominent and distinguishing features of each one are discussed in detail. A detailed side-by-side feature comparison of IaaS offerings is presented in Table 1.2.

Amazon Web Services. Amazon WS (AWS) is one of the major players in thecloud computing market. It pioneered the introduction of IaaS clouds in 2006.

The Elastic Compute Cloud (EC2) offers Xen-based virtual servers (instances) that can be instantiated from Amazon Machine Images (AMIs). Instances are available in a variety of sizes, operating systems, architectures, and price. CPU capacity of instances is measured in Amazon Compute Units and, although fixed for each instance, vary among instance types from 1 (small instance) to 20 (high CPU instance).

In summary, Amazon EC2 provides the following features: multiple data centers available in the United States (East and West) and Europe; CLI, Web services (SOAP and Query), Web-based console user interfaces; access to instance mainly via SSH (Linux) and Remote Desktop (Windows); advanced reservation of capacity (aka reserved instances) that guarantees availability for periods of 1 and 3 years; 99.5% availability SLA; per hour pricing; Linux and Windows operating systems; automatic scaling; load balancing.

[bookmark: page69]TABLE 1.2. Feature Comparison Public Cloud Offerings (Infrastructure as a Service)

Runtime

Server

Resizing/

Vertical

Scaling
	
	
	ClientUI
	Primary
	Advance
	
	Smallest
	
	Guest
	Automated
	
	
	Instance
	Hardware Capacity

	
	
	API Language
	Access to
	Reservation of
	
	Billing
	
	Operating
	Horizontal
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Geographic
	
	Server
	Capacity
	SLA
	
	
	Systems
	Scaling
	Load
	
	Processor
	Memory
	Storage

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Presence
	Bindings
	
	
	
	Unit
	Hypervisor
	
	
	Balancing
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Amazon
	US East,
	CLI, WS,
	SSH (Linux),
	Amazon
	Uptime
	Hour
	Xen
	Linux,
	Available
	Elastic Load
	No
	1—20 EC2
	1.7—15 160—1690 GB

	
	
	
	
	
	99.95%
	
	
	
	
	
	
	
	

	EC2
	Europe
	Portal
	Remote
	reserved
	
	
	
	Windows
	with
	Balancing
	
	compute
	GB
	1 GB—1 TB

	
	
	
	Desktop
	instances
	
	
	
	
	Amazon
	
	
	units
	
	(per EBS

	
	
	
	(Windows)
	(Available in
	
	
	
	
	CloudWatch
	
	
	
	
	volume)

	
	
	
	
	1 or 3 years
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	terms, starting
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	from reservation
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	time)
	
	
	
	
	
	
	
	
	
	

	Flexiscale
	UK
	Web Console
	SSH
	No
	100%
	Hour
	Xen
	Linux,
	No
	Zeus
	Processors,
	1—4 CPUs
	0.5—16 20—270 GB

	
	
	
	
	
	
	
	
	Windows
	
	software
	memory
	
	GB
	

	loadbalancing
	(requires
	
	
	
	
	
	
	

	reboot)
	
	
	
	
	
	
	
	

	GoGrid
	REST, Java,
	PHP, Python, Ruby
	SSH
	No
	No 100%
	HardwareourXen(F5)
	Linux,NoWindows
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	1

	
	
	
	
	
	
	
	—6
	CPUs

	[bookmark: page70]
	0.5—8
	3G0B—480
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	GB
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Joyent
	US
	SSH,
	No
	100%
	Month
	OS Level
	OpenSolaris
	No
	Both
	Automatic
	1/16—8 CPUs 0.25—32 5—100 GB

	Cloud
	(Emeryville,
	
	
	
	
	(Solaris
	
	
	hardware
	CPU bursting
	
	
	GB

	
	
	VirtualMin
	
	
	
	
	
	
	
	
	
	
	
	

	
	CA; San
	(Web-based
	
	
	
	Containers)
	
	
	(F5 networks)
	(up to 8
	
	
	

	
	Diego,
	system
	
	
	
	
	
	
	and software
	CPUs)
	
	
	

	
	
	administration)
	
	
	
	
	
	
	(Zeus)
	
	
	
	
	

	
	CA; Andover,
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	MA; Dallas,
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	TX)
	
	
	
	
	
	
	
	
	
	
	
	
	

	Rackspace
	US
	Portal, REST, SSH
	No
	100%
	Hour
	Xen
	Linux
	No
	No
	Memory, disk Quad-core
	0.25—16 10—620 GB

	Cloud
	(Dallas, TX)
	Python, PHP,
	
	
	
	
	
	
	
	(requires
	CPU
	(CPU
	GB

	Servers
	
	Java, C#/.
	
	
	
	
	
	
	
	reboot)
	
	
	

	
	
	
	
	
	
	
	
	
	
	Automatic
	power
	
	is

	
	
	
	
	
	
	
	
	
	
	CPU bursting
	
	
	

	
	
	NET
	
	
	
	
	
	
	
	
	weighed
	

	
	
	
	
	
	
	
	
	
	
	(up
	to 100%
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	proportionally

	
	
	
	
	
	
	
	
	
	
	of
	available
	

	
	
	
	
	
	
	
	
	
	
	
	
	to
	memory

	
	
	
	
	
	
	
	
	
	
	CPU
	power
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	size)
	
	

	
	
	
	
	
	
	
	
	
	
	of
	physical
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

host)

[bookmark: page71]
Flexiscale. Flexiscale is a UK-based provider offering services similar innature to Amazon Web Services. However, its virtual servers offer some distinct features, most notably: persistent storage by default, fixed IP addresses, dedicated VLAN, a wider range of server sizes, and runtime adjustment of CPU capacity (aka CPU bursting/vertical scaling). Similar to the clouds, this service is also priced by the hour.

Joyent. Joyent’s Public Cloud offers servers based on Solaris containersvirtualization technology. These servers, dubbed accelerators, allow deploying various specialized software-stack based on a customized version of OpenSolaris operating system, which include by default a Web-based configuration tool and several pre-installed software, such as Apache, MySQL, PHP, Ruby on Rails, and Java. Software load balancing is available as an accelerator in addition to hardware load balancers.

In summary, the Joyent public cloud offers the following features: multiple geographic locations in the United States; Web-based user interface; access to virtual server via SSH and Web-based administration tool; 100% availability SLA; per month pricing; OS-level virtualization Solaris containers; OpenSolaris operating systems; automatic scaling (vertical).

GoGrid. GoGrid, like many other IaaS providers, allows its customers toutilize a range of pre-made Windows and Linux images, in a range of fixed instance sizes. GoGrid also offers “value-added” stacks on top for applications such as high-volume Web serving, e-Commerce, and database stores.

Rackspace Cloud Servers. Rackspace Cloud Servers is an IaaS solution thatprovides fixed size instances in the cloud. Cloud Servers offers a range of Linux-based pre-made images. A user can request different-sized images, where the size is measured by requested RAM, not CPU.

PLATFORM AS A SERVICE PROVIDERS

Public Platform as a Service providers commonly offer a development and deployment environment that allow users to create and run their applications with little or no concern to low-level details of the platform. In addition, specific programming languages and frameworks are made available in the platform, as well as other services such as persistent data storage and inmemory caches.

[bookmark: page72]Features

Programming Models, Languages, and Frameworks. Programming modelsmade available by IaaS providers define how users can express their applications using higher levels of abstraction and efficiently run them on the cloud platform. Each model aims at efficiently solving a particular problem. In the cloud computing domain, the most common activities that require specialized models are: processing of large dataset in clusters of computers (MapReduce model), development of request-based Web services and applications;

Persistence Options. A persistence layer is essential to allow applications torecord their state and recover it in case of crashes, as well as to store user data.

Traditionally, Web and enterprise application developers have chosen relational databases as the preferred persistence method. These databases offer fast and reliable structured data storage and transaction processing, but may lack scalability to handle several petabytes of data stored in commodity computers .

Case Studies

In this section, we describe the main features of some Platform as Service (PaaS) offerings. A more detailed side-by-side feature comparison of VI managers is presented in Table 1.3.

Aneka. Aneka is a .NET-based service-oriented resource management anddevelopment platform. Each server in an Aneka deployment (dubbed Aneka cloud node) hosts the Aneka container, which provides the base infrastructure that consists of services for persistence, security (authorization, authentication and auditing), and communication (message handling and dispatching).

Several programming models are supported by such task models to enable execution of legacy HPC applications and MapReduce, which enables a variety of data-mining and search applications.

App Engine. Google App Engine lets you run your Python and Java Webapplications on elastic infrastructure supplied by Google. The App Engine serving architecture is notable in that it allows real-time auto-scaling without virtualization for many common types of Web applications. However, such auto-scaling is dependent on the

[bookmark: page73]TABLE 1.3. Feature Comparison of Platform-as-a-Service Cloud Offerings

	
	
	Programming
	
	
	
	
	
	Backend
	

	
	
	Language,
	Developer
	Programming
	Persistence
	Automatic
	Infrastructure

	
	Target Use
	Frameworks
	Tools
	Models
	Options
	Scaling
	Providers
	

	
	
	
	
	
	
	
	
	

	Aneka
	.Net enterprise
	.NET
	Standalone
	Threads, Task,
	Flat
	files,
	No
	Amazon EC2

	
	applications,
	
	SDK
	MapReduce
	RDBMS, HDFS
	
	
	

	
	HPC
	
	
	
	
	
	
	
	

	AppEngine
	Web
	Python, Java
	Eclipse-based
	Request-based
	BigTable
	
	Yes
	Own
	data

	
	applications
	
	IDE
	Web
	
	
	
	centers
	

	
	
	
	
	programming
	
	
	
	
	

	Force.com
	Enterprise
	Apex
	Eclipse-based
	Workflow,
	Own object
	Unclear
	Own
	data

	
	applications
	
	IDE, Web-
	Excel-like
	database
	
	
	centers
	

	
	(esp. CRM)
	
	based wizard
	formula
	
	
	
	
	

	
	
	
	
	language,
	
	
	
	
	

	
	
	
	
	Request-based
	
	
	
	
	

	
	
	
	
	web
	
	
	
	
	

	
	
	
	
	programming
	
	
	
	
	

	Microsoft
	Enterprise and
	.NET
	Azure tools for
	Unrestricted
	Table/BLOB/
	Yes
	Own
	data

	Windows
	Web
	
	Microsoft
	
	queue
	storage,
	
	centers
	

	Azure
	applications
	
	Visual Studio
	
	SQL services
	
	
	

	Heroku
	Web
	Ruby on Rails
	Command-line
	Requestbased
	PostgreSQL,
	Yes
	Amazon EC2

	
	applications
	
	tools
	web
	Amazon RDS
	
	
	

	
	
	
	
	programming
	
	
	
	
	

	33

	[bookmark: page74]Amazon
	Data processing Hive and Pig,
	Karmasphere
	MapReduce
	Amazon S3
	No
	Amazon EC2

	Elastic
	Cascading,
	Studio
	for
	
	
	
	

	MapReduce
	Java,
	Ruby,
	Hadoop
	
	
	
	
	

	
	Perl, Python,
	(NetBeans-
	
	
	
	

	
	PHP,
	R,
	based)
	
	
	
	
	

	
	C++
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

[bookmark: page75]application developer using a limited subset of the native APIs on each platform, and in some instances you need to use specific Google APIs such as URLFetch, Datastore, and memcache in place of certain native API calls.

Microsoft Azure. Microsoft Azure Cloud Services offers developers a hosted .NET Stack (C#, VB.Net, ASP.NET). In addition, a Java & Ruby SDK for

.NET Services is also available. The Azure system consists of a number of elements.

Force.com. In conjunction with the Salesforce.com service, the Force.comPaaS allows developers to create add-on functionality that integrates into main Salesforce CRM SaaS application.

Heroku. Heroku is a platform for instant deployment of Ruby on Rails Webapplications. In the Heroku system, servers are invisibly managed by the platform and are never exposed to users.

CHALLENGES AND RISKS

Despite the initial success and popularity of the cloud computing paradigm and the extensive availability of providers and tools, a significant number of challenges and risks are inherent to this new model of computing. Providers, developers, and end users must consider these challenges and risks to take good advantage of cloud computing.

Security, Privacy, and Trust

Ambrust et al. cite information security as a main issue: “current cloud offerings are essentially public . . . exposing the system to more attacks.” For this reason there are potentially additional challenges to make cloud computing environments as secure as in-house IT systems. At the same time, existing, wellunderstood technologies can be leveraged, such as data encryption, VLANs, and firewalls.

Data Lock-In and Standardization

A major concern of cloud computing users is about having their data locked-in by a certain provider. Users may want to move data and applications out from a provider that does not meet their requirements. However, in their current form, cloud computing infrastructures and platforms do not employ standard

[bookmark: page76]methods of storing user data and applications. Consequently, they do not interoperate and user data are not portable.

[bookmark: page77]
Availability, Fault-Tolerance, and Disaster Recovery

It is expected that users will have certain expectations about the service level to be provided once their applications are moved to the cloud. These expectations include availability of the service, its overall performance, and what measures are to be taken when something goes wrong in the system or its components. In summary, users seek for a warranty before they can comfortably move their business to the cloud.

Resource Management and	Energy-Efficiency

One important challenge faced by providers of cloud computing services is the efficient management of virtualized resource pools. Physical resources such as CPU cores, disk space, and network bandwidth must be sliced and shared among virtual machines running potentially heterogeneous workloads.

Another challenge concerns the outstanding amount of data to be managed in various VM management activities. Such data amount is a result of particular abilities of virtual machines, including the ability of traveling through space (i.e., migration) and time (i.e., checkpointing and rewinding), operations that may be required in load balancing, backup, and recovery scenarios. In addition, dynamic provisioning of new VMs and replicating existing VMs require efficient mechanisms to make VM block storage devices (e.g., image files) quickly available at selected hosts.

2.2 MIGRATING INTO A CLOUD

The promise of cloud computing has raised the IT expectations of small and medium enterprises beyond measure. Large companies are deeply debating it. Cloud computing is a disruptive model of IT whose innovation is part technology and part business model—in short a “disruptive techno-commercial model” of IT. This tutorial chapter focuses on the key issues and associated dilemmas faced by decision makers, architects, and systems managers in trying to understand and leverage cloud computing for their IT needs. Questions asked and discussed in this chapter include: when and how to migrate one’s application into a cloud; what part or component of the IT application to migrate into a cloud and what not to migrate into a cloud; what kind of customers really benefit from migrating their IT into the cloud; and so on. We describe the key factors underlying each of the above questions and share a Seven-Step Model of Migration into the Cloud.

Several efforts have been made in the recent past to define the term “cloud computing” and many have not been able to provide a comprehensive one This has been more challenging given the scorching pace of the technological advances as well as the newer business model formulations for the cloud services being offered.

[bookmark: page78]

The Promise of the	Cloud

Most users of cloud computing services offered by some of the large-scale data centers are least bothered about the complexities of the underlying systems or their functioning. More so given the heterogeneity of either the systems or the software running on them.
[image:]

‘Pay per use’ – Lower Cost Barriers
On Demand Resources –Autoscaling
Cloudonomics	• Capex vs OPEX – No capital expenses (CAPEX) and only operational expenses OPEX.

SLA driven operations – Much Lower TCO

Attractive NFR support: Availability, Reliability

‘Infinite’ Elastic availability – Compute/Storage/Bandwidth
Automatic Usage Monitoring and Metering
Technology	• Jobs/ Tasks Virtualized and Transparently ‘Movable’

Integration and interoperability ‘support’ for hybrid ops

Transparently encapsulated & abstracted IT features.

FIGURE 2.1. The promise of the cloud computing services.

.

As shown in Figure 2.1, the promise of the cloud both on the business front (the attractive cloudonomics) and the technology front widely aided the CxOs to spawn out several non-mission critical IT needs from the ambit of their captive traditional data centers to the appropriate cloud service. Invariably, these IT needs had some common features: They were typically Web-oriented; they represented seasonal IT demands; they were amenable to parallel batch processing; they were non-mission critical and therefore did not have high security demands.

The Cloud Service Offerings and Deployment	Models

Cloud computing has been an attractive proposition both for the CFO and the CTO of an enterprise primarily due its ease of usage. This has been achieved by large data center service vendors or now better known as cloud service vendors again primarily due to their scale of operations. Google, Amazon,

[bookmark: page79][image:]
	IaaS
	• Abstract Compute/Storage/Bandwidth Resources
	

	
	• Amazon Web Services[10,9] – EC2, S3, SDB, CDN, CloudWatch

	PaaS
	• Abstracted Programming Platform with encapsulated infrastructure

	
	• Google Apps Engine(Java/Python), Microsoft Azure, Aneka[13]

	SaaS
	• Application with encapsulated infrastructure & platform

	
	• Salesforce.com; Gmail; Yahoo Mail; Facebook; Twitter

	
	Cloud Application Deployment & Consumption Models

	Public Clouds
	Hybrid Clouds
	Private Clouds

FIGURE 2.2. The cloud computing service offering and deployment models.

Microsoft, and a few others have been the key players apart from open source Hadoop built around the Apache ecosystem. As shown in Figure 2.2, the cloud service offerings from these vendors can broadly be classified into three major streams: the Infrastructure as a Service (IaaS), the Platform as a Service (PaaS), and the Software as a Service (SaaS). While IT managers and system administrators preferred IaaS as offered by Amazon for many of their virtualized IT needs, the programmers preferred PaaS offerings like Google AppEngine (Java/Python programming) or Microsoft Azure (.Net programming). Users of large-scale enterprise software invariably found that if they had been using the cloud, it was because their usage of the specific software package was available as a service—it was, in essence, a SaaS offering. Salesforce.com was an exemplary SaaS offering on the Internet.

From a technology viewpoint, as of today, the IaaS type of cloud offerings have been the most successful and widespread in usage. Invariably these reflect the cloud underneath, where storage (most do not know on which system it is) is easily scalable or for that matter where it is stored or located.

Challenges in the Cloud

While the cloud service offerings present a simplistic view of IT in case of IaaS or a simplistic view of programming in case PaaS or a simplistic view of resources usage in case of SaaS, the underlying systems level support challenges are huge and highly complex. These stem from the need to offer a uniformly consistent and robustly simplistic view of computing while the underlying systems are highly failure-prone, heterogeneous, resource hogging, and exhibiting serious security shortcomings. As observed in Figure 2.3, the

[bookmark: page80]promise of the cloud seems very similar to the typical distributed systems properties that most would prefer to have.

[bookmark: page81][image:]
	Distributed System Fallacies
	Challenges in Cloud Technologies

	
	

	Full Network Reliability
	Security

	Zero Network Latency
	Performance Monitoring

	Infinite Bandwidth
	Consistent & Robust Service abstractions

	
	

	Secure Network
	Meta Scheduling

	
	

	No Topology changes
	Energy efficient load balancing

	
	

	
	Scale management

FIGURE 2.3. ‘Under the hood’ challenges of the cloud computing services implementations.

Many of them are listed in Figure 2.3. Prime amongst these are the challenges of security. The Cloud Security Alliance seeks to address many of these issues .

BROAD APPROACHES TO MIGRATING INTO THE	CLOUD

Given that cloud computing is a “techno-business disruptive model” and is on the top of the top 10 strategic technologies to watch for 2010 according to Gartner, migrating into the cloud is poised to become a large-scale effort in leveraging the cloud in several enterprises. “Cloudonomics” deals with the economic rationale for leveraging the cloud and is central to the success of cloud-based enterprise usage.

Why Migrate?

There are economic and business reasons why an enterprise application can be migrated into the cloud, and there are also a number of technological reasons. Many of these efforts come up as initiatives in adoption of cloud technologies in the enterprise, resulting in integration of enterprise applications running off the captive data centers with the new ones that have been developed on the cloud. Adoption of or integration with cloud computing services is a use case of migration.

[bookmark: page82]With due simplification, the migration of an enterprise application is best captured by the following:

	P-P01 P0-P0
	1 P0l

	Cl
	OFC

where P is the application before migration running in captive data center, P0 is the application part after migration either into a (hybrid) cloud, P0l is the partC of application being run in the captive local data center, and P0OFC is the application part optimized for cloud. If an enterprise application cannot be migrated fully, it could result in some parts being run on the captive local data center while the rest are being migrated into the cloud—essentially a case of a hybrid cloud usage. However, when the entire application is migrated onto the cloud, then P0l is null. Indeed, the migration of the enterprise application P can happen at the five levels of application, code, design, architecture, and usage. It can be that the P0C migration happens at any of the five levels without any P0l component. Compound this with the kind of cloud computing service offering being applied—the IaaS model or PaaS or SaaS model—and we have a variety of migration use cases that need to be thought through thoroughly by the migration architects.

Cloudonomics. Invariably, migrating into the cloud is driven by economicreasons of cost cutting in both the IT capital expenses (Capex) as well as operational expenses (Opex). There are both the short-term benefits of opportunistic migration to offset seasonal and highly variable IT loads as well as the long-term benefits to leverage the cloud. For the long-term sustained usage, as of 2009, several impediments and shortcomings of the cloud computing services need to be addressed.

Deciding on the Cloud Migration

In fact, several proof of concepts and prototypes of the enterprise application are experimented on the cloud to take help in making a sound decision on migrating into the cloud. Post migration, the ROI on the migration should be positive for a broad range of pricing variability. Assume that in the M classes of questions, there was a class with a maximum of N questions. We can then model the weightage-based decision making as M 3 N weightage matrix as follows:

	M
	N
	!

	
	
	X

	X
	
	

	Cl#Bi
	
	Aij Xij# Ch

[bookmark: page83]i51	j51

where Cl is the lower weightage threshold and Ch is the higher weightage threshold while Aij is the specific constant assigned for a question and Xij is the fraction between 0 and 1 that represents the degree to which that answer to the question is relevant and applicable.

THE SEVEN-STEP MODEL OF MIGRATION INTO A	CLOUD

Typically migration initiatives into the cloud are implemented in phases or in stages. A structured and process-oriented approach to migration into a cloud has several advantages of capturing within itself the best practices of many migration projects. While migration has been a difficult and vague subject—of not much interest to the academics and left to the industry practitioners—not many efforts across the industry have been put in to consolidate what has been found to be both a top revenue earner and a long standing customer pain. After due study and practice, we share the Seven-Step Model of Migration into the Cloud as part of our efforts in understanding and leveraging the cloud computing service offerings in the enterprise context. In a succinct way, Figure 2.4 captures the essence of the steps in the model of migration into the cloud, while Figure 2.5 captures the iterative process of the seven-step migration into the cloud.

The first step of the iterative process of the seven-step model of migration is basically at the assessment level. Proof of concepts or prototypes for various

	approaches
	to the migration
	along with the leveraging of pricing

	parameters
	enables one to make
	appropriate assessments.

[image:]

Conduct Cloud Migration Assessments

Isolate the Dependencies

Map the Messaging & Environment

Re-architect & Implement the lost Functionalities

Leverage Cloud Functionalities & Features

Test the Migration

Iterate and Optimize

FIGURE 2.4. The Seven-Step Model of Migration into the Cloud. (Source: Infosys Research.)

[bookmark: page84][image:]
START

Assess

Optimize	Isolate

END

The Iterative Seven Step

Test	Map

	Augment
	Re-

	
	

FIGURE 2.5. The iterative Seven-step Model of Migration into the Cloud. (Source: Infosys Research.)

Having done the augmentation, we validate and test the new form of the enterprise application with an extensive test suite that comprises testing the components of the enterprise application on the cloud as well. These test results could be positive or mixed. In the latter case, we iterate and optimize as appropriate. After several such optimizing iterations, the migration is deemed successful. Our best practices indicate that it is best to iterate through this Seven-Step Model process for optimizing and ensuring that the migration into the cloud is both robust and comprehensive. Figure 2.6 captures the typical components of the best practices accumulated in the practice of the Seven-Step Model of Migration into the Cloud. Though not comprehensive in enumeration, it is representative.

	[bookmark: page85]Assess
	Isolate
	Map
	Re-Architect
	Augment
	Test
	Optimize

	• Cloudonomics
	• Runtime
	• Messages
	• Approximate
	• Exploit
	• Augment Test
	• Optimize–

	• Migration
	Environment
	mapping:
	lost
	additional
	Cases and
	rework and

	Costs
	• Licensing
	marshalling &
	functionality
	cloud features
	Test
	iterate

	• Recurring
	• Libraries
	de-marshalling
	using cloud
	• Seek Low-cost
	Automation
	• Significantly

	Costs
	Dependency
	• Mapping
	runtime
	augmentations
	• Run Proof-of-
	satisfy

	• Database data
	• Applications
	Environments
	support API
	• Autoscaling
	Concepts
	cloudonomics

	segmentation
	Dependency
	• Mapping
	• New
	• Storage
	• Test Migration
	of migration

	• Database
	• Latencies
	libraries &
	Usecases
	• Bandwidth
	strategy
	• Optimize

	Migration
	Bottlenecks
	runtime
	• Analysis
	• Security
	• Test new
	compliance

	• Functionality
	• Performance
	approximations
	• Design
	
	testcases due
	with standards

	migration
	bottlenecks
	
	
	
	to cloud
	and

	• NFR Support
	• Architectural
	
	
	
	augmentation
	governance

	
	Dependencies
	
	
	
	• Test for
	• Deliver best

	
	
	
	
	
	Production
	migration ROI

	
	
	
	
	
	Loads
	• Develop

	
	
	
	
	
	
	roadmap for

	
	
	
	
	
	
	leveraging new

	
	
	
	
	
	
	cloud features

[image:]

FIGURE 2.6. Some details of the iterative Seven-Step Model of Migration into the Cloud.

Compared with the typical approach to migration into the Amazon AWS, our Seven-step model is more generic, versatile, and comprehensive. The typical migration into the Amazon AWS is a phased over several steps. It is about six steps as discussed in several white papers in the Amazon website and is as follows: The first phase is the cloud migration assessment phase wherein dependencies are isolated and strategies worked out to handle these dependencies. The next phase is in trying out proof of concepts to build a reference migration architecture. The third phase is the data migration phase wherein database data segmentation and cleansing is completed. This phase also tries to leverage the various cloud storage options as best suited. The fourth phase comprises the application migration wherein either a “forklift strategy” of migrating the key enterprise application along with its dependencies (other applications) into the cloud is pursued.

Migration Risks and Mitigation

The biggest challenge to any cloud migration project is how effectively the migration risks are identified and mitigated. In the Seven-Step Model of Migration into the Cloud, the process step of testing and validating includes efforts to identify the key migration risks. In the optimization step, we address various approaches to mitigate the identified migration risks.

There are issues of consistent identity management as well. These and several of the issues are discussed in Section 2.1. Issues and challenges listed in Figure 2.3 continue to be the persistent research and engineering challenges in coming up with appropriate cloud computing implementations.

[bookmark: page86]

2.3	ENRICHING	THE	‘INTEGRATION	AS	A

SERVICE’ PARADIGM FOR THE CLOUD ERA

AN INTRODUCTION

The trend-setting cloud paradigm actually represents the cool conglomeration of a number of proven and promising Web and enterprise technologies. Cloud Infrastructure providers are establishing cloud centers to host a variety of ICT services and platforms of worldwide individuals, innovators, and institutions. Cloud service providers (CSPs) are very aggressive in experimenting and embracing the cool cloud ideas and today every business and technical services are being hosted in clouds to be delivered to global customers, clients and consumers over the Internet communication infrastructure. For example, security as a service (SaaS) is a prominent cloud-hosted security service that can be subscribed by a spectrum of users of any connected device and the users just pay for the exact amount or time of usage. In a nutshell, on-premise and local applications are becoming online, remote, hosted, on-demand and offpremise applications.

Business-to-business (B2B). It is logical to take the integration middleware to clouds to simplify and streamline the enterprise-toenterprise (E2E), enterprise-to-cloud (E2C) and cloud-to-cloud (C2C) integration.

THE EVOLUTION OF SaaS

SaaS paradigm is on fast track due to its innate powers and potentials. Executives, entrepreneurs, and end-users are ecstatic about the tactic as

[bookmark: page87]
The Web is the
well as strategic success of the emerging and evolving SaaS paradigm. A number of positive and progressive developments started to grip this model. Newer resources and activities are being consistently readied to be delivered as a service. Experts and evangelists are in unison that cloud is to rock the total IT community as the best possible infrastructural solution for effective service delivery.

IT as a Service (ITaaS) is the most recent and efficient delivery method in the decisive IT landscape. With the meteoric and mesmerizing rise of the service orientation principles, every single IT resource, activity and infrastructure is being viewed and visualized as a service that sets the tone for the grand unfolding of the dreamt service era. Integration as a service (IaaS) is the budding and distinctive capability of clouds in fulfilling the business integration requirements. Increasingly business applications are deployed in clouds to reap the business and technical benefits. On the other hand, there are still innumerable applications and data sources locally stationed and sustained primarily due to the security reason.

B2B systems are capable of driving this new on-demand integration model because they are traditionally employed to automate business processes between manufacturers and their trading partners. That means they provide application-to-application connectivity along with the functionality that is very crucial for linking internal and external software securely.

The use of hub & spoke (H&S) architecture further simplifies the implementation and avoids placing an excessive processing burden on the customer sides. The hub is installed at the SaaS provider’s cloud

center to do the heavy lifting such as reformatting files.

largest digital information	superhighway

The Web is the largest repository of all kinds of resources such as web pages, applications comprising enterprise components, business services, beans, POJOs, blogs, corporate data, etc.

The Web is turning out to be the open, cost-effective and generic business execution platform (E-commerce, business, auction, etc. happen in the web for global users) comprising a wider variety of containers, adaptors, drivers, connectors, etc.

The Web is the global-scale communication infrastructure (VoIP, Video conferencing, IP TV etc,)

The Web is the next-generation discovery, Connectivity, and integration middleware

Thus the unprecedented absorption and adoption of the Internet is the key driver for the continued success of the cloud computing.

[bookmark: page88]THE CHALLENGES OF SaaS PARADIGM

As with any new technology, SaaS and cloud concepts too suffer a number of limitations. These technologies are being diligently examined for specific situations and scenarios. The prickling and tricky issues in different layers and levels are being looked into. The overall views are listed out below. Loss or lack of the following features deters the massive adoption of clouds

1. Controllability

1. Visibility & flexibility

1. Security and Privacy

1. High Performance and Availability

1. Integration and Composition

1. Standards

A number of approaches are being investigated for resolving the identified issues and flaws. Private cloud, hybrid and the latest community cloud are being prescribed as the solution for most of these inefficiencies and deficiencies. As rightly pointed out by someone in his weblogs, still there are miles to go. There are several companies focusing on this issue. Boomi (http://www.dell.com/) is one among them. This company has published several well-written white papers elaborating the issues confronting those enterprises thinking and trying to embrace the third-party public clouds for hosting their services and applications.

Integration Conundrum. While SaaS applications offer outstandingvalue in terms of features and functionalities relative to cost, they have introduced several challenges specific to integration.

APIs are Insufficient. Many SaaS providers have responded to theintegration challenge by developing application programming interfaces (APIs). Unfortunately, accessing and managing data via an API requires a significant amount of coding as well as maintenance due to frequent API modifications and updates.

Data Transmission Security. SaaS providers go to great length toensure that customer data is secure within the hosted environment. However, the need to transfer data from on-premise systems or

[bookmark: page89]applications behind the firewall with SaaS applications.

For any relocated application to provide the promised value for businesses and users, the minimum requirement is the interoperability between SaaS applications and on-premise enterprise packages.

The Impacts of Clouds. On the infrastructural front, in the recent past,the clouds have arrived onto the scene powerfully and have extended the horizon and the boundary of business applications, events and data. Thus there is a clarion call for adaptive integration engines that seamlessly and spontaneously connect enterprise applications with cloud applications. Integration is being stretched further to the level of the expanding Internet and this is really a litmus test for system architects and integrators.

The perpetual integration puzzle has to be solved meticulously for the originally visualised success of SaaS style.

APPROACHING THE SaaS INTEGRATION ENIGMA

Integration as a Service (IaaS) is all about the migration of the functionality of a typical enterprise application integration (EAI) hub / enterprise service bus (ESB) into the cloud for providing for smooth data transport between any enterprise and SaaS applications. Users subscribe to IaaS as they would do for any other SaaS application. Cloud middleware is the next logical evolution of traditional middleware solutions.

Service orchestration and choreography enables process integration. Service interaction through ESB integrates loosely coupled systems whereas CEP connects decoupled systems.

With the unprecedented rise in cloud usage, all these integration software are bound to move to clouds. SQS also doesn’t promise in-order and exactly-once delivery. These simplifications let Amazon make SQS more scalable, but they also mean that developers must use SQS differently from an on-premise message queuing technology.

As per one of the David Linthicum’s white papers, approaching

SaaS-toenterprise integration is really a matter of making informed and intelligent choices.The need for integration between remote cloud platforms with on-premise enterprise platforms.

[bookmark: page90]Why SaaS Integration is hard?. As indicated in the white paper, there isa mid-sized paper company that recently became a Salesforce.com CRM customer. The company currently leverages an on-premise custom system that uses an Oracle database to track inventory and sales. The use of the Salesforce.com system provides the company with a significant value in terms of customer and sales management.

Having understood and defined the “to be” state, data synchronization technology is proposed as the best fit between the source, meaning Salesforce. com, and the target, meaning the existing legacy system that leverages Oracle. First of all, we need to gain the insights about the special traits and tenets of SaaS applications in order to arrive at a suitable integration route. The constraining attributes of SaaS applications are

● Dynamic nature of the SaaS interfaces that constantly	change

1. Dynamic nature of the metadata native to a SaaS provider such as Salesforce.com

1. Managing assets that exist outside of the firewall

1. Massive amounts of information that need to move between SaaS and on-premise systems daily and the need to maintain data quality and integrity.

As SaaS are being deposited in cloud infrastructures vigorously, we need to ponder about the obstructions being imposed by clouds and prescribe proven solutions. If we face difficulty with local integration, then the cloud integration is bound to be more complicated. The most probable reasons are

1. New integration scenarios

1. Access to the cloud may be limited

1. Dynamic resources

1. Performance

Limited Access. Access to cloud resources (SaaS, PaaS, and theinfrastructures) is more limited than local applications. Accessing local applications is quite simple and faster. Imbedding integration points in local as well as custom applications is easier.

Dynamic Resources. Cloud resources are virtualized and service-oriented. That is, everything is expressed and exposed as a service. Due to the dynamism factor that is sweeping the whole could ecosystem,

[bookmark: page91]application	versioning	and infrastructural	changes	are	liable	for

dynamic changes.

Performance. Clouds support application scalability and resourceelasticity. However the network distances between elements in the cloud are no longer under our control.

NEW INTEGRATION SCENARIOS

Before the cloud model, we had to stitch and tie local systems together. With the shift to a cloud model is on the anvil, we now have to connect local applications to the cloud, and we also have to connect cloud applications to each other, which add new permutations to the complex integration channel matrix.All of this means integration must criss-cross firewalls somewhere.

Cloud Integration Scenarios. We have identified three major integrationscenarios as discussed below.

Within a Public Cloud (figure 3.1). Two different applications arehosted in a cloud. The role of the cloud integration middleware (say cloud-based ESB or internet service bus (ISB)) is to seamlessly enable these applications to talk to each other. The possible sub-scenarios include these applications can be owned
[image:]

	App1
	ISB
	App2

	
	
	

	
	
	

FIGURE 3.1.	Within a Public	Cloud.

[bookmark: page92][image:]

	Cloud 1
	ISB
	Cloud 2

	
	
	

FIGURE 3.2.	Across Homogeneous Clouds.
[image:]

Public Cloud

ISB

Private Cloud

FIGURE 3.3.	Across Heterogeneous Clouds.

by two different companies. They may live in a single physical server but run on different virtual machines.

Homogeneous Clouds (figure 3.2). The applications to be integrated areposited in two geographically separated cloud infrastructures. The integration middleware can be in cloud 1 or 2 or in a separate cloud.

There is a need for data and protocol transformation and they get done by the ISB. The approach is more or less compatible to enterprise application integration procedure.

[bookmark: page93]Heterogeneous Clouds (figure 3.3). One application is in public cloudand the other application is private cloud.

[bookmark: page94]
THE INTEGRATION METHODOLOGIES

Excluding the custom integration through hand-coding, there are three types for cloud integration

1. Traditional Enterprise Integration Tools can be empowered with special connectors to access Cloud-located Applications—This is the most likely approach for IT organizations, which have already invested a lot in integration suite for their application integration needs.

1. Traditional Enterprise Integration Tools are hosted in the Cloud—This approach is similar to the first option except that the integration software suite is now hosted in any third-party cloud infrastructures so that the enterprise does not worry about procuring and managing the hardware or installing the integration software.

1. Integration-as-a-Service (IaaS) or On-Demand Integration Offerings— These are SaaS applications that are designed to deliver the integration service securely over the Internet and are able to integrate cloud applications with the on-premise systems, cloud-to-cloud applications.

In a nutshell, the integration requirements can be realised using any one of the following methods and middleware products.

Hosted and extended ESB (Internet service bus / cloud integration bus)

Online Message Queues, Brokers and Hubs

Wizard and configuration-based integration platforms (Niche integration solutions)

Integration Service Portfolio Approach

Appliance-based Integration (Standalone or Hosted)

With the emergence of the cloud space, the integration scope grows further and hence people are looking out for robust and resilient solutions and services that would speed up and simplify the whole process of integration.

[bookmark: page95]Characteristics of Integration Solutions and Products. The keyattributes of integration platforms and backbones gleaned and gained from integration projects experience are connectivity, semantic mediation, Data mediation, integrity, security, governance etc

Connectivity refers to the ability of the integration engine to engage with both the source and target systems using available native interfaces.

Semantic Mediation refers to the ability to account for the differences between application semantics between two or more systems.

Data Mediation converts data from a source data format into destination data format.

Data Migration is the process of transferring data between storage types, formats, or systems.

1. Data Security means the ability to insure that information extracted from the source systems has to securely be placed into target systems.

1. Data Integrity means data is complete and consistent. Thus, integrity has to be guaranteed when data is getting mapped and maintained during integration operations, such as data synchronization between on-premise and SaaS-based systems.

1. Governance refers to the processes and technologies that surround a system or systems, which control how those systems are accessed and leveraged.

These are the prominent qualities carefully and critically analyzed for when deciding the cloud / SaaS integration providers.

Data Integration Engineering Lifecycle. As business data are stillstored and sustained in local and on-premise server and storage machines, it is imperative for a lean data integration lifecycle. The pivotal phases, as per Mr. David Linthicum, a world-renowned integration expert, are understanding, definition, design, implementation, and testing.

1. Understanding the existing problem domain means defining the metadata that is native within the source system (say Salesforce.com) and the target system.

1. Definition refers to the process of taking the information culled

[bookmark: page96]during the previous step and defining it at a high level including what the information represents, ownership, and physical attributes.

1. Design the integration solution around the movement of data from one point to another accounting for the differences in the

semantics using the underlying data transformation and mediation layer by mapping one schema from the source to the schema of the target.

Implementation refers to actually implementing the data integration solution within the selected technology.

Testing refers to assuring that the integration is properly designed and implemented and that the data synchronizes properly between the involved systems.

SaaS INTEGRATION PRODUCTS AND PLATFORMS

Cloud-centric integration solutions are being developed and demonstrated for showcasing their capabilities for integrating enterprise and cloud applications. The integration puzzle has been the toughest assignment for long due to heterogeneity and multiplicity-induced complexity.

Jitterbit

Force.com is a Platform as a Service (PaaS), enabling developers to create and deliver any kind of on-demand business application.

	[bookmark: page97][image:]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	Google
	Salesforce
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	Microsoft
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	THE CLOUD
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	Zoho
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	Amazon
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	Yahoo
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

FIGURE 3.4. The Smooth and Spontaneous Cloud Interaction via Open Clouds.

Until now, integrating force.com applications with other on-demand applications and systems within an enterprise has seemed like a daunting and doughty task that required too much time, money, and expertise.

Jitterbit is a fully graphical integration solution that provides users a versatile platform and a suite of productivity tools to reduce the integration efforts sharply. Jitterbit is comprised of two major components:

1. Jitterbit Integration Environment An intuitive point-and-click graphical UI that enables to quickly configure, test, deploy and manage integration projects on the Jitterbit server.

1. Jitterbit Integration Server A powerful and scalable run-time engine

that processes all the integration operations, fully configurable and manageable from the Jitterbit application.

Jitterbit is making integration easier, faster, and more affordable than ever before. Using Jitterbit, one can connect force.com with a wide variety

[bookmark: page98][image:]
	
	PROBLEM
	
	SOLUTION

	
	
	Manufacturing
	
	
	Manufacturing
	Consumer

	
	
	
	Consumer
	
	Sales
	

	
	Sales
	
	
	
	
	

	
	
	
	
	
	
	

	R & D
	
	
	Marketing
	R & D
	
	Marketing

	
	
	
	
	
	
	

FIGURE 3.5. Linkage of On-Premise with Online and On-Demand Applications.

of on-premise systems including ERP, databases, flat files and custom applications. The figure 3.5 vividly illustrates how Jitterbit links a number of functional and vertical enterprise systems with on-demand applications

Boomi Software

Boomi AtomSphere is an integration service that is completely on-demand and connects any combination of SaaS, PaaS, cloud, and on-premise applications without the burden of installing and maintaining software packages or appliances. Anyone can securely build, deploy and manage simple to complex integration processes using only a web browser. Whether connecting SaaS applications found in various lines of business or integrating across geographic boundaries,

Bungee Connect

For professional developers, Bungee Connect enables cloud computing by offering an application development and deployment platform that enables highly interactive applications integrating multiple data

[bookmark: page99]sources and facilitating instant deployment.

OpSource Connect

Expands on the OpSource Services Bus (OSB) by providing the infrastructure for two-way web services interactions, allowing customers to consume and publish applications across a common web services infrastructure.

The Platform Architecture. OpSource Connect is made up of keyfeatures including

1. OpSource Services Bus

1. OpSource Service Connectors

● OpSource Connect Certified Integrator	Program

1. OpSource Connect ServiceXchange

1. OpSource Web Services Enablement Program

The OpSource Services Bus (OSB) is the foundation for OpSource’s turnkey development and delivery environment for SaaS and web companies.

SnapLogic

SnapLogic is a capable, clean, and uncluttered solution for data integration that can be deployed in enterprise as well as in cloud landscapes. The free community edition can be used for the most common point-to-point data integration tasks, giving a huge productivity boost beyond custom code.

Changing data sources. SaaS and on-premise applications, Web APIs, and RSS feeds

Changing deployment options. On-premise, hosted, private and public cloud platforms

Changing delivery needs. Databases, files, and data services

Transformation Engine and Repository. SnapLogic is a single data

[bookmark: page100]integration platform designed to meet data integration needs. The SnapLogic server is built on a core of connectivity and transformation components, which can be used to solve even the most complex data integration scenarios.

The SnapLogic designer provides an initial hint of the web principles at work behind the scenes. The SnapLogic server is based on the web architecture and exposes all its capabilities through web interfaces to outside world.

The Pervasive DataCloud

Platform (figure 3.6) is unique multi-tenant platform. It provides dynamic “compute capacity in the sky” for deploying on-demand integration and other
[image:]

Managem ent
[image:]
	
	Schedule Events
	
	

	
	eCommerce
	
	

	
	
	Users Load Balancer

	
	&
	
	
	

	Resources
	
	
	

	
	Message Queues
	

	Engine
	Engine
	Engine
	Engine
	Engine Queue

	Queue
	Queue
	Queue
	Queue
	Listener

	Listen
	Listen
	Listen
	Listen
	

	er
	er
	er
	er
	

[image:]

Scalable Computing Cluster

[bookmark: page101]
SaaS	SaaS

Applic	Applic

ation	ation

[bookmark: page102]
Customer	Customer

FIGURE	3.6.	Pervasive Integrator	Connects	Different

Resources.

data-centric applications. Pervasive DataCloud is the first multi-tenant platform for delivering the following.

1. Integration as a Service (IaaS) for both hosted and on-premises applications and data sources

1. Packaged turnkey integration

1. Integration that supports every integration scenario

1. Connectivity to hundreds of different applications and data sources

Pervasive DataCloud hosts Pervasive and its partners’ data-centric applications. Pervasive uses Pervasive DataCloud as a platform for deploying on-demand integration via

The Pervasive DataSynch family of packaged integrations. These are highly affordable, subscription-based, and packaged integration solutions.

Pervasive Data Integrator. This runs on the Cloud or on-premises and is a design-once and deploy anywhere solution to support every integration scenario

Data migration, consolidation and conversion

ETL / Data warehouse

B2B / EDI integration

Application integration (EAI)

SaaS /Cloud integration

SOA / ESB / Web Services

Data Quality/Governance

Hubs

[bookmark: page103]
Pervasive DataCloud provides multi-tenant, multi-application and multicustomer deployment. Pervasive DataCloud is a platform to deploy applications that are

●	Scalable—Its multi-tenant architecture can support multiple users and applications for delivery of diverse data-centric solutions such as data integration. The applications themselves scale to handle fluctuating data volumes.

1. Flexible—Pervasive DataCloud supports SaaS-to-SaaS, SaaS-to-on premise or on-premise to on-premise integration.

1. Easy to Access and Configure—Customers can access, configure and run Pervasive DataCloud-based integration solutions via a browser.

1. Robust—Provides automatic delivery of updates as well as monitoring activity by account, application or user, allowing effortless result tracking.

1. Secure—Uses the best technologies in the market coupled with the best data centers and hosting services to ensure that the service remains secure and available.

1. Affordable—The platform enables delivery of packaged solutions in a SaaS-friendly pay-as-you-go model.

Bluewolf

Has announced its expanded “Integration-as-a-Service” solution, the first to offer ongoing support of integration projects guaranteeing successful integration between diverse SaaS solutions, such as salesforce.com, BigMachines, eAutomate, OpenAir and back office systems (e.g. Oracle, SAP, Great Plains, SQL Service and MySQL). Called the Integrator, the solution is the only one to include proactive monitoring and consulting services to ensure integration success. With remote monitoring of integration jobs via a dashboard included as part of the Integrator solution, Bluewolf proactively alerts its customers of any issues with integration and helps to solves them quickly.

Online MQ

[bookmark: page104]Online MQ is an Internet-based queuing system. It is a complete and secure online messaging solution for sending and receiving messages over any network. It is a cloud messaging queuing service.

1. Ease of Use. It is an easy way for programs that may each be running on different platforms, in different systems and different networks, to communicate with each other without having to write any low-level communication code.

1. No Maintenance. No need to install any queuing software/server and no need to be concerned with MQ server uptime, upgrades and maintenance.

1. Load Balancing and High Availability. Load balancing can be achieved on a busy system by arranging for more than one program instance to service a queue. The performance and availability features are being met through clustering. That is, if one system fails, then the second system can take care of users’ requests without any delay.

1. Easy Integration. Online MQ can be used as a web-service (SOAP) and as a REST service. It is fully JMS-compatible and can hence integrate easily with any Java EE application servers. Online MQ is not limited to any specific platform, programming language or communication protocol.

CloudMQ

This leverages the power of Amazon Cloud to provide enterprise-grade message queuing capabilities on demand. Messaging allows us to reliably break up a single process into several parts which can then be executed asynchronously.

Linxter

Linxter is a cloud messaging framework for connecting all kinds of applications, devices, and systems. Linxter is a behind-the-scenes, messageoriented and cloud-based middleware technology and smoothly automates the complex tasks that developers face when creating communication-based products and services.

Online MQ, CloudMQ and Linxter are all accomplishing message-based application and service integration. As these suites are being hosted in clouds, messaging is being provided as a service to hundreds of distributed and enterprise applications using the much-maligned multi-tenancy property. “Messaging middleware as a service (MMaaS)” is the grand derivative of the SaaS paradigm.

[bookmark: page105]

SaaS INTEGRATION SERVICES

We have seen the state-of-the-art cloud-based data integration platforms for real-time data sharing among enterprise information systems and cloud applications.

There are fresh endeavours in order to achieve service composition in cloud ecosystem. Existing frameworks such as service component architecture (SCA) are being revitalised for making it fit for cloud environments. Composite applications, services, data, views and processes will be become cloud-centric and hosted in order to support spatially separated and heterogeneous systems.

Informatica On-Demand

Informatica offers a set of innovative on-demand data integration solutions called Informatica On-Demand Services. This is a cluster of easy-to-use SaaS offerings, which facilitate integrating data in SaaS applications, seamlessly and securely across the Internet with data in on-premise applications. There are a few key benefits to leveraging this maturing technology.

Rapid development and deployment with zero maintenance of the integration technology.

● Automatically upgraded and continuously enhanced by	vendor.

1. Proven SaaS integration solutions, such as integration with Salesforce

.com, meaning that the connections and the metadata understanding are provided.

1. Proven data transfer and translation technology, meaning that core integration services such as connectivity and semantic mediation are built into the technology.

Informatica On-Demand has taken the unique approach of moving its industry leading PowerCenter Data Integration Platform to the hosted model and then configuring it to be a true multi-tenant solution.

[bookmark: page106]Microsoft Internet Service Bus (ISB)

Azure is an upcoming cloud operating system from Microsoft. This makes development, depositing and delivering Web and Windows application on cloud centers easier and cost-effective.

Microsoft .NET Services. is a set of Microsoft-built and hosted cloudinfrastructure services for building Internet-enabled applications and the ISB acts as the cloud middleware providing diverse applications with a common infrastructure to name, discover, expose, secure and orchestrate web services. The following are the three broad areas.

.NET Service Bus. The .NET Service Bus (figure 3.7) provides a hosted,secure, and broadly accessible infrastructure for pervasive communication,
[image:]

Console Application Exposing Web Services
[image:]

	End Users
	End Users

	
	Azure Service Platform

	Google App Engine
	Windows Azure

via Service Bus

FIGURE 3.7.	.NET Service Bus.

[bookmark: page107]
large-scale event distribution, naming, and service publishing. Services can be exposed through the Service Bus Relay, providing connectivity options for service endpoints that would otherwise be difficult or impossible to reach.

.NET Access Control Service. The .NET Access Control Service is ahosted, secure, standards-based infrastructure for multiparty, federated authentication, rules-driven, and claims-based authorization.

.NET Workflow Service. The .NET Workflow Service provide a hostedenvironment for service orchestration based on the familiar Windows Workflow Foundation (WWF) development experience.

The most important part of the Azure is actually the service bus represented as a WCF architecture. The key capabilities of the Service Bus are

A federated namespace model that provides a shared, hierarchical namespace into which services can be mapped.

A service registry service that provides an opt-in model for publishing service endpoints into a lightweight, hierarchical, and RSS-based discovery mechanism.

● A lightweight and scalable publish/subscribe event	bus.

1. A relay and connectivity service with advanced NAT traversal and pullmode message delivery capabilities acting as a “perimeter network (also known as DMZ, demilitarized zone, and screened subnet) in the sky”

Relay Services. Often when we connect a service, it is located behindthe firewall and behind the load balancer. Its address is dynamic and can be

[bookmark: page108][image:]
Relay Service

Client	Service

FIGURE 3.8.	The .NET Relay Service.

resolved only on local network. When we are having the service call-backs to the client, the connectivity challenges lead to scalability, availability and security issues. The solution to Internet connectivity challenges is instead of connecting client directly to the service we can use a relay service as pictorially represented in the relay service figure 3.8.

BUSINESSES-TO-BUSINESS INTEGRATION (B2Bi) SERVICES

B2Bi has been a mainstream activity for connecting geographically distributed businesses for purposeful and beneficial cooperation. Products vendors have come out with competent B2B hubs and suites for enabling smooth data sharing in standards-compliant manner among the participating enterprises.

Just as these abilities ensure smooth communication between manufacturers and their external suppliers or customers, they also enable reliable interchange between hosted and installed applications.

The IaaS model also leverages the adapter libraries developed by B2Bi vendors to provide rapid integration with various business systems.

[bookmark: page109]Cloudbased Enterprise Mashup Integration Services for B2B Scenarios

. There is a vast need for infrequent, situational and ad-hoc B2Bapplications desired by the mass of business end-users..

Especially in the area of applications to support B2B collaborations, current offerings are characterized by a high richness but low reach, like B2B hubs that focus on many features enabling electronic collaboration, but lack availability for especially small organizations or even individuals.

Enterprise Mashups, a kind of new-generation Web-based applications, seem to adequately fulfill the individual and heterogeneous requirements of end-users and foster End User Development (EUD).

Another challenge in B2B integration is the ownership of and responsibility for processes. In many inter-organizational settings, business processes are only sparsely structured and formalized, rather

	loosely coupled and/or based
	on
	ad-hoc
	cooperation.
	Inter-

	organizational collaborations tend
	to
	involve
	more and
	more

	participants and the growing number of participants
	also draws a huge

amount of differing requirements.

Now, in supporting supplier and partner co-innovation and customer cocreation, the focus is shifting to collaboration which has to embrace the participants, who are influenced yet restricted by multiple domains of control and disparate processes and practices.

Both Electronic data interchange translators (EDI) and Managed file transfer (MFT) have a longer history, while B2B gateways only have emerged during the last decade.

Enterprise Mashup Platforms and Tools.

Mashups are the adept combination of different and distributed resources including content, data or application functionality. Resources represent the core building blocks for mashups. Resources can be accessed through APIs, which encapsulate the resources and describe the interface through which they are made available. Widgets or gadgets primarily put a face on the underlying resources by providing a graphical representation for them and piping the data received from the resources. Piping can include operators like aggregation, merging or filtering. Mashup platform is a Web based tool that allows the creation of Mashups by piping resources into Gadgets and wiring Gadgets together.

The Mashup integration services are being implemented as a prototype in the FAST project. The layers of the prototype are illustrated in figure 3.9 illustrating the architecture, which describes how these services work together. The authors of this framework have given an outlook on the technical realization of the services using cloud

[bookmark: page110]infrastructures and	services.

[bookmark: page111]
COMPANY	A	COMPANY B
[image:]

	HTTP
	HTTP
	HTTP
	HTTP
	HTTP
	HTTP

	R
	R
	R
	R
	R
	R

	
	
	
	
	
	Enterprise Mashup Platform
	
	
	
	
	
	
	
	Enterprise Mashup Platform

	
	
	
	
	
	
	
	(i.e. FAST)
	
	
	
	
	
	
	
	(i.e. SAP Research Rooftop)

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	R
	
	
	
	
	
	
	
	
	
	
	
	R
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	REST
	
	
	
	
	
	
	
	
	
	
	REST
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Mashup
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	Integration Service Logic
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Integration
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Services
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Platform
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	(i.e., Google
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	Identity
	
	
	
	
	
	
	
	
	
	Routing Engine
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	Management
	
	Error Handling
	
	Translation
	
	
	
	Persistent
	
	
	Message
	

	
	
	
	
	
	
	
	
	and Monitoring
	
	
	Engine
	
	
	
	Storage
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	Organization
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Semantic
	
	
	
	
	
	Infrastructure

	
	
	
	
	
	
	R
	
	
	
	
	
	
	
	
	
	
	R
	
	
	R
	
	R
	
	
	
	
	R

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Cloud Based
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[image:][image:][image:]
[bookmark: page112]

	OpenID/Oauth
	MuleonDemand
	MuleonDemand
	Amazon S3
	Amazon SQS

FIGURE	3.9.	Cloudbased Enterprise Mashup Integration Platform

Architecture.

To simplify this, a Gadget could be provided for the end-user. The routing engine is also connected to a message queue via an API. Thus, different message queue engines are attachable. The message queue is responsible for storing and forwarding the messages controlled by the routing engine. Beneath the message queue, a persistent storage, also connected via an API to allow exchangeability, is available to store large data. The error handling and monitoring service allows tracking the message-flow to detect errors and to collect statistical data. The Mashup integration service is hosted as a cloud-based service. Also, there are cloud-based services available which provide the functionality required by the integration service. In this way, the Mashup integration service can reuse and leverage the existing cloud services to speed up the implementation.

Message	Queue.	The	message	queue	could	be	realized	by	using

Amazon’s Simple Queue Service (SQS). SQS is a web-service which provides a queue for messages and stores them until they can be processed. The Mashup integration services, especially the routing engine, can put messages into the queue and recall them when they are needed.

[bookmark: page113]
Persistent Storage. Amazon Simple Storage Service5 (S3) is also awebservice. The routing engine can use this service to store large files.

Translation Engine. This is primarily focused on translating betweendifferent protocols which the Mashup platforms it connects can understand, e.g. REST or SOAP web services. However, if the need of translation of the objects transferred arises, this could be attached to the translation engine.

Interaction between the Services. The diagram describes the process ofa message being delivered and handled by the Mashup Integration Services Platform. The precondition for this process is that a user already established a route to a recipient.

A FRAMEWORK OF SENSOR—CLOUD INTEGRATION

In the past few years, wireless sensor networks (WSNs) have been gaining significant attention because of their potentials of enabling of novel and attractive solutions in areas such as industrial automation, environmental monitoring, transportation business, health-care etc.

With the faster adoption of micro and nano technologies, everyday things are destined to become digitally empowered and smart in their operations and offerings. Thus the goal is to link smart materials, appliances, devices, federated messaging middleware, enterprise information systems and packages, ubiquitous services, handhelds, and sensors with one another smartly to build and sustain cool, charismatic and catalytic situation-aware applications.

[bookmark: page114]A virtual community consisting of team of researchers have come together to solve a complex problem and they need data storage, compute capability, security; and they need it all provided now. For example, this team is working on an outbreak of a new virus strain moving through a population. This requires more than a Wiki or other social organization tool. They deploy bio-sensors on patient body to monitor patient condition continuously and to use this data for large and multi-scale simulations to track the spread of infection as well as the virus mutation and possible cures. This may require computational resources and a platform for sharing data and results that are not immediately available to the team.

Traditional HPC approach like Sensor-Grid model can be used in this case, but setting up the infrastructure to deploy it so that it can scale out quickly is not easy in this environment. However, the cloud paradigm is an excellent move.

Here, the researchers need to register their interests to get various patients’ state (blood pressure, temperature, pulse rate etc.) from bio-sensors for largescale parallel analysis and to share this information with each other to find useful solution for the problem. So the sensor data needs to be aggregated, processed and disseminated based on subscriptions.

To integrate sensor networks to cloud, the authors have proposed a contentbased pub-sub model. In this framework, like MQTT-S, all of the system complexities reside on the broker’s side but it differs from

MQTT-S in that it uses content-based pubsub broker rather than topic-based which is suitable for the application scenarios considered.

To deliver published sensor data or events to subscribers, an efficient and scalable event matching algorithm is required by the pub-sub broker.

Moreover, several SaaS applications may have an interest in the same sensor data but for different purposes. In this case, the SA nodes would need to manage and maintain communication means with multiple applications in parallel. This might exceed the limited capabilities of the simple and low-cost SA devices. So pub-sub broker is needed and it is located in the cloud side because of its higher performance in terms of bandwidth and capabilities. It has four components describes as follows:

[bookmark: page115][image:]

	
	Social Network
	
	
	
	
	
	

	
	
	of doctors for
	
	
	
	
	
	

	
	
	monitoring
	Environmental
	
	
	Urban Trafic
	
	

	
	
	patient
	
	
	
	
	
	

	
	
	
	data analysis
	
	
	
	
	

	
	
	healthcare for
	
	
	
	prediction
	
	

	
	
	
	and
	
	
	
	
	

	
	
	virus infection
	
	
	
	and
	
	Other data

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	analysis or

	WSN 1
	
	1
	1
	
	
	1
	
	1

	
	
	
	
	
	
	
	
	

	
	Gateway
	
	
	
	
	
	

	
	
	
	
	
	
	System
	
	

	
	
	
	Application Specific 2
	
	
	3
	Provisioning

	
	
	
	
	
	
	
	
	

	
	
	
	Services
	
	
	3
	
	

	
	
	
	
	
	3
	
	
	4

	
	Actuator
	
	2
	
	
	
	
	

	
	
	Gateway
	
	4
	
	Monitoring
	
	4

	
	
	
	
	
	
	
	
	

	Sensor
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

Servers

	WSN 2
	Gateway
	Event
	Registry
	Mediator
	Service

	
	
	Monitoring Analyzer
	
	

	
	
	
	
	

	
	
	
	
	

	
	3
	Processing Dissem-

	
	
	

	
	
	Policy

	
	
	Sensor

	Actuator
	Gateway
	Collaborator

	
	
	

Sensor

Cloud Provider (CLP)

FIGURE 3.10.	The Framework Architecture of Sensor—Cloud

Integration.

Stream monitoring and processing component (SMPC). The sensorstream comes in many different forms. In some cases, it is raw data that must be captured, filtered and analyzed on the fly and in other cases, it is stored or cached. The style of computation required depends on the nature of the streams. So the SMPC component running on the cloud monitors the event streams and invokes correct analysis method. Depending on the data rates and the amount of processing that is required, SMP manages parallel execution framework on cloud.

Registry component (RC). Different SaaS applications register to pub-subbroker for various sensor data required by the community user.

Analyzer component (AC). When sensor data or events come to the pub-

[bookmark: page116]sub broker, analyzer component determines which applications they are belongs to and whether they need periodic or emergency deliver.

Disseminator component (DC). For each SaaS application, it disseminatessensor data or events to subscribed users using the event matching algorithm. It can utilize cloud’s parallel execution framework for fast event delivery. The pub-sub components workflow in the framework is as follows:

Users register their information and subscriptions to various SaaS applications which then transfer all this information to pub/sub broker registry. When sensor data reaches to the system from gateways, event/stream monitoring and processing component (SMPC) in the pub/sub broker determines whether it needs processing or just store for periodic send or for immediate delivery.

Mediator. The (resource) mediator is a policy-driven entity within a VO toensure that the participating entities are able to adapt to changing circumstances and are able to achieve their objectives in a dynamic and uncertain environment.

Policy Repository (PR). The PR virtualizes all of the policies within theVO. It includes the mediator policies, VO creation policies along with any policies for resources delegated to the VO as a result of a collaborating arrangement.

Collaborating Agent (CA). The CA is a policy-driven resource discoverymodule for VO creation and is used as a conduit by the mediator to exchange policy and resource information with other CLPs.

SaaS INTEGRATION APPLIANCES

Appliances are a good fit for high-performance requirements. Clouds too have gone in the same path and today there are cloud appliances (also termed as “cloud in a box”). In this section, we are to see an integration appliance.

Cast Iron Systems . This is quite different from the above-mentionedschemes. Appliances with relevant software etched inside are being established as a high-performance and hardware-centric solution for several

[bookmark: page117]IT needs.

Cast Iron Systems (www.ibm.com) provides pre-configured solutions for each of today’s leading enterprise and On-Demand applications. These solutions, built using the Cast Iron product offerings offer out-of-the-box connectivity to specific applications, and template integration processes (TIPs) for the most common integration scenarios.

2.4 THE ENTERPRISE CLOUD COMPUTING

PARADIGM

Cloud computing is still in its early stages and constantly undergoing changes as new vendors, offers, services appear in the cloud market. Enterprises will place stringent requirements on cloud providers to pave the way for more widespread adoption of cloud computing, leading to what is known as the enterprise cloud paradigm computing. Enterprise cloud computing is the alignment of a cloud computing model with an organization’s business objectives (profit, return on investment, reduction of operations costs) and processes. This chapter explores this paradigm with respect to its motivations, objectives, strategies and methods.

Section 4.2 describes a selection of deployment models and strategies for enterprise cloud computing, while Section 4.3 discusses the issues of moving [traditional] enterprise applications to the cloud. Section 4.4 describes the technical and market evolution for enterprise cloud computing, describing some potential opportunities for multiple stakeholders in the provision of enterprise cloud computing.

[bookmark: page118]
BACKGROUND

According to NIST [1], cloud computing is composed of five essential characteristics: on-demand self-service, broad network access, resource pooling, rapid elasticity, and measured service. The ways in which these characteristics are manifested in an enterprise context vary according to the deployment model employed.

Relevant Deployment Models for Enterprise Cloud Computing

There are some general cloud deployment models that are accepted by the majority of cloud stakeholders today, as suggested by the references [1] and and discussed in the following:

Public clouds are provided by a designated service provider for generalpublic under a utility based pay-per-use consumption model.

Private clouds are built, operated, and managed by an organization for itsinternal use only to support its business operations exclusively.

Virtual private clouds are a derivative of the private cloud deploymentmodel but are further characterized by an isolated and secure segment of resources, created as an overlay on top of public cloud infrastructure using advanced network virtualization capabilities..

Community clouds are shared by several organizations and support aspecific community that has shared concerns (e.g., mission, security requirements, policy, and compliance considerations).

Managed clouds arise when the physical infrastructure is owned by and/orphysically located in the organization’s data centers with an extension of management and security control plane controlled by the managed service provider .

Hybrid clouds are a composition of two or more clouds (private,community, or public) that remain unique entities but are bound together by standardized or proprietary technology that enables data and application portability (e.g., cloud bursting for load-balancingbetween clouds).

Adoption and Consumption Strategies

The selection of strategies for enterprise cloud computing is critical for IT capability as well as for the earnings and costs the organization experiences, motivating efforts toward convergence of business strategies and IT. Some critical questions toward this convergence in the enterprise cloud paradigm are as follows:

[bookmark: page119]
1. Will an enterprise cloud strategy increase overall business value?

1. Are the effort and risks associated with transitioning to an enterprise cloud strategy worth it?

1. Which areas of business and IT capability should be considered for the enterprise cloud?

● Which cloud offerings are relevant for the purposes of an	organization?

How can the process of transitioning to an enterprise cloud strategy be piloted and systematically executed?

These questions are addressed from two strategic perspectives: (1) adoption and (2) consumption. Figure 4.1 illustrates a framework for enterprise cloud adoption strategies, where an organization makes a decision to adopt a cloud computing model based on fundamental drivers for cloud computing— scalability, availability, cost and convenience. The notion of a Cloud Data Center (CDC) is used, where the CDC could be an external, internal or federated provider of infrastructure, platform or software services.

An optimal adoption decision cannot be established for all cases because the types of resources (infrastructure, storage, software) obtained from a CDC depend on the size of the organisation understanding of IT impact on business, predictability of workloads, flexibility of existing IT landscape and available budget/resources for testing and piloting. The strategic decisions using these four basic drivers are described in following, stating objectives, conditions and actions.

[bookmark: page120][image:]

Cloud Data Center(s)

(CDC)

Availability-driven:

Use of load-balanced and localised cloud resources to increase availability and reduce response time

Conveniencedriv en: Use cloudresources so that there is no need to maintain local resources.

Market-driven:

Users and providers of cloud resources make decisions based on the potential saving and profit

Scalability-driven: Use of cloudresources to support additional load or as back-up.

FIGURE 4.1. Enterprise cloud adoption strategies using fundamental cloud	drivers.

1. Scalability-Driven	Strategy.	The	objective	is	to	support	increasing

[bookmark: page121]workloads of the organization without investment and expenses exceeding returns.

1. Availability-Driven Strategy. Availability has close relations to scalability but is more concerned with the assurance that IT capabilities and functions are accessible, usable and acceptable by the standards of users.

1. Market-Driven Strategy. This strategy is more attractive and viable for small, agile organizations that do not have (or wish to have) massive investments in their IT infrastructure.

[bookmark: page122]

(1) Software Provision: Cloud provides instances

of software but data is maintained within user’s

(3) Solution Provision: Software and storageare maintained in cloud and the user does not maintain a data center

(2) Storage Provision: Cloud provides data

management and software accesses data

(4) Redundancy Services: Cloud is used as analternative or extension of user’s data center for software and storage

[bookmark: page123]
FIGURE 4.2. Enterprise cloud consumption	strategies.

on their profiles and requests service requirements .

1. Convenience-Driven Strategy. The objective is to reduce the load and need for dedicated system administrators and to make access to IT capabilities by users easier, regardless of their location and connectivity (e.g. over the Internet).

There are four consumptions strategies identified, where the differences in objectives, conditions and actions reflect the decision of an organization to trade-off hosting costs, controllability and resource elasticity of IT resources for software and data. These are discussed in the following.

Software Provision. This strategy is relevant when the elasticity requirement is high for software and low for data, the controllability concerns are low for software and high for data, and the cost reduction concerns for software are high, while cost reduction is not a priority for data, given the high controllability concerns for data, that is, data are highly sensitive.

Storage Provision. This strategy is relevant when the elasticity requirements is high for data and low for software, while the controllability of software is more critical than for data. This can be the case for data intensive applications, where the results from processing in the application are more critical and sensitive than the data itself.

Solution Provision. This strategy is relevant when the elasticity and cost reduction requirements are high for software and data, but the controllability requirements can be entrusted to the CDC.

Redundancy Services. This strategy can be considered as a hybrid enterprise cloud strategy, where the organization switches between traditional, software, storage or solution management based on changes in its operational conditions and business demands.

Even though an organization may find a strategy that appears to provide it significant benefits, this does not mean that immediate adoption of the strategy is advised or that the returns on investment will be observed immediately.

ISSUES FOR ENTERPRISE APPLICATIONS ON THE	CLOUD

[bookmark: page124]
Enterprise Resource Planning (ERP) is the most comprehensive definition of enterprise application today. For these reasons, ERP solutions have emerged as the core of successful information management and the enterprise backbone of nearly any organization . Organizations that have successfully implemented the ERP systems are reaping the benefits of having integrating working environment, standardized process and operational benefits to the organization .

One of the first issues is that of infrastructure availability. Al-Mashari and Yasser argued that adequate IT infrastructure, hardware and networking are crucial for an ERP system’s success.

One of the ongoing discussions concerning future scenarios considers varying infrastructure requirements and constraints given different workloads and development phases. Recent surveys among companies in North America and Europe with enterprise-wide IT systems showed that nearly all kinds of workloads are seen to be suitable to be transferred to IaaS offerings.

Considering Transactional and Analytical Capabilities

Transactional type of applications or so-called OLTP (On-line Transaction Processing) applications, refer to a class of systems that manage transactionoriented applications, typically using relational databases. These applications rely on strong ACID (atomicity, consistency, isolation,durability) properties and are relatively write/update-intensive. Typical OLTP-type ERP components are sales and distributions (SD), banking and financials, customer relationship management (CRM) and supply chain management (SCM).

One can conclude that analytical applications will benefit more than their transactional counterparts from the opportunities created by cloud computing, especially on compute elasticity and efficiency.

2.4.1	TRANSITION CHALLENGES

The very concept of cloud represents a leap from traditional approach for IT to deliver mission critical services. With any leap comes the gap of risk and challenges to overcome. These challenges can be classified in five different categories, which are the five aspects of the enterprise cloud stages: build, develop, migrate, run, and consume (Figure 4.3).

The requirement for a company-wide cloud approach should then become the number one priority of the CIO, especially when it comes to having a coherent and cost effective development and migration of services on this architecture.

[bookmark: page125][image:]
Develop

Build	Run	Consume

Migrate

FIGURE 4.3. Five stages of the	cloud.

A second challenge is migration of existing or “legacy” applications to “the cloud.” The expected average lifetime of ERP product is B15 years, which means that companies will need to face this aspect sooner than later as they try to evolve toward the new IT paradigm.

The ownership of enterprise data conjugated with the integration with others applications integration in and from outside the cloud is one of the key challenges. Future enterprise application development frameworks will need to enable the separation of data management from ownership. From this, it can be extrapolated that SOA, as a style, underlies the architecture and, moreover, the operation of the enterprise cloud.

One of these has been notoriously hard to upgrade: the human factor; bringing staff up to speed on the requirements of cloud computing with respect to architecture, implementation, and operation has always been a tedious task.

Once the IT organization has either been upgraded to provide cloud or is able to tap into cloud resource, they face the difficulty of maintaining the services in the cloud. The first one will be to maintain interoperability between in-house infrastructure and service and the CDC (Cloud Data Center).

	Before leveraging such
	features, much more basic functionalities are

	problematic: monitoring,
	troubleshooting, and comprehensive
	capacity

	planning are actually missing in most offers. Without such features it
	becomes

very hard to gain visibility into the return on investment and the consumption of cloud services.

Today there are two major cloud pricing models: Allocation based and Usage based . The first one is provided by the poster child of cloud computing, namely, Amazon. The principle relies on allocation of resource for a fixed amount of time. As companies need to evaluate the offers they need to also include the hidden costs such as lost IP, risk, migration, delays and provider overheads. This combination can be compared to trying to choose a new mobile

[bookmark: page126]with carrier plan.The market dynamics will hence evolve alongside the technology for the enterprise cloud computing paradigm.

ENTERPRISE CLOUD TECHNOLOGY AND MARKET	EVOLUTION

This section discusses the potential factors which will influence this evolution of cloud computing and today’s enterprise landscapes to the enterprise computing paradigm, featuring the convergence of business and IT and an open, service oriented marketplace.

Technology Drivers for Enterprise Cloud Computing Evolution

This will put pressure on cloud providers to build their offering on open interoperable standards to be considered as a candidate by enterprises. There have been a number initiatives emerging in this space. Amazon, Google, and Microsoft, who currently do not actively participate in these efforts. True interoperability across

[bookmark: page127]
the board in the near future seems unlikely. However, if achieved, it could lead to facilitation of advanced scenarios and thus drive the mainstream adoption of the enterprise cloud computing paradigm.

Part of preserving investments is maintaining the assurance that cloud resources and services powering the business operations perform according to the business requirements. Underperforming resources or service disruptions lead to business and financial loss, reduced business credibility, reputation, and marginalized user productivity. Another important factor in this regard is lack of insights into the performance and health of the resources and service deployed on the cloud, such that this is another area of technology evolution that will be pushed.

This would prove to be a critical capability empowering third-party organizations to act as independent auditors especially with respect to SLA compliance auditing and for mediating the SLA penalty related issues.

Emerging trend in the cloud application space is the divergence from the traditional RDBMS based data store backend. Cloud computing has given rise to alternative data storage technologies (Amazon Dynamo, Facebook Cassandra, Google BigTable, etc.) based on key-type storage models as compared to the relational model, which has been the mainstream choice for data storage for enterprise applications.

As these technologies evolve into maturity, the PaaS market will consolidate into a smaller number of service providers. Moreover, big traditional software vendors will also join this market which will potentially trigger this consolidation through acquisitions and mergers. These views are along the lines of the research published by Gartner. Gartner predicts that from 2011 to 2015 market competition and maturing developer practises will drive consolidation around a small group of industry-dominant cloud technology providers.

A recent report published by Gartner presents an interesting perspective on cloud evolution. The report argues that as cloud services proliferate, services would become complex to be handled directly by the consumers. To cope with these scenarios, meta-services or cloud brokerage services will emerge. These brokerages will use several types of brokers and platforms to enhance service delivery and, ultimately service value. According to Gartner, before these scenarios can be enabled, there is a need for brokerage business to use these brokers and platforms. According to Gartner, the following types of cloud service brokerages (CSB) are foreseen:

ᜀĀᜀĀ Cloud Service Intermediation. An intermediation broker providers a service that directly enhances a given service delivered one or more service consumers, essentially on top of a given service to enhance a specific capability.

ᜀĀᜀĀ Aggregation. An aggregation brokerage service combines multiple services into one or more new services.

ᜀĀᜀĀ Cloud Service Arbitrage. These services will provide flexibility and opportunistic choices for the service aggregator.

[bookmark: page128]
The above shows that there is potential for various large, medium, and small organizations to become players in the enterprise cloud marketplace. The dynamics of such a marketplace are still to be explored as the enabling technologies and standards continue to mature.

BUSINESS DRIVERS TOWARD A MARKETPLACE FOR

ENTERPRISE CLOUD COMPUTING

In order to create an overview of offerings and consuming players on the market, it is important to understand the forces on the market and motivations of each player.

The Porter model consists of five influencing factors/views (forces) on the market (Figure 4.4). The intensity of rivalry on the market is traditionally influenced by industry-specific characteristics :

●	Rivalry: The amount of companies dealing with cloud and virtualization technology is quite high at the moment; this might be a sign for high
[image:]

New Market Entrants

• Geographical factors

• Entrant strategy

• Routes to market

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	Suppliers
	
	
	
	
	Cloud Market
	
	
	
	Buyers (Consumers)
	

	
	•
	Level of quality
	
	
	
	•
	Cost structure
	
	
	•
	Buyer size
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	• Supplier’s size
	
	
	
	• Product/service ranges
	
	
	• Buyers number
	

	
	•
	Bidding processes/
	
	
	
	•
	Differentiation, strategy
	
	
	•
	Product/service
	

	
	
	capabilities
	
	
	
	•
	Number/size of players
	
	
	•
	Requirements
	

Technology Development

Substitutes

Trends

Legislative effects

FIGURE 4.4. Porter’s five forces market model (adjusted for the cloud market)	.

	[bookmark: page129]BUSINESS DRIVERS TOWARD A MARKETPLACE FOR ENTERPRISE
	113

rivalry. But also the products and offers are quite various, so many niche products tend to become established.

●	Obviously, the cloud-virtualization market is presently booming and will keep growing during the next years. Therefore the fight for customers and struggle for market share will begin once the market becomes saturated and companies start offering comparable products.

The initial costs for huge data centers are enormous. By building up federations of computing and storing utilities, smaller companies can try to make use of this scale effect as well.

Low switching costs or high exit barriers influence rivalry. When a customer can freely switch from one product to another, there is a greater struggle to capture customers. From the opposite point of view high exit barriers discourage customers to buy into a new technology. The trends towards standardization of formats and architectures try to face this problem and tackle it. Most current cloud providers are only paying attention to standards related to the interaction with the end user. However, standards for clouds interoperability are still to be developed .

[bookmark: page130]Market

Regulations	Business Model	Hype

Market

Technology

FIGURE 4.5. Dynamic business models (based on [49] extend by influence factors identified by [50]).

.

THE CLOUD SUPPLY CHAIN

One indicator of what such a business model would look like is in the complexity of deploying, securing, interconnecting and maintaining enterprise landscapes and solutions such as ERP, as discussed in Section 4.3. The concept of a Cloud Supply Chain (C-SC) and hence Cloud Supply Chain Management (C-SCM) appear to be viable future business models for the enterprise cloud computing paradigm. The idea of C-SCM represents the management of a network of interconnected businesses involved in the end-to-end provision of product and service packages required by customers. The established understanding of a supply chain is two or more parties linked by a flow of goods, information, and funds [55], [56] A specific definition for a C-SC is hence: “two or more parties linked by the provision of cloud services, related information and funds.” Figure 4.6 represents a concept for the C-SC, showing the flow of products along different organizations such as hardware suppliers, software component suppliers, data center operators, distributors and the end customer.

Figure	4.6	also	makes	a distinction	between innovative	and	functional

[bookmark: page131]products in the C-SC. Fisher classifies products primarily on the basis of their demand patterns into two categories: primarily functional or primarily innovative [57]. Due to their stability, functional products favor competition, which leads to low profit margins and, as a consequence of their properties, to low inventory costs, low product variety, low stockout costs, and low obsolescence [58], [57]. Innovative products are characterized by additional (other) reasons for a customer in addition to basic needs that lead to purchase, unpredictable demand (that is high uncertainties, difficult to forecast and variable demand), and short product life cycles (typically 3 months to 1 year). Cloud services

Cloud services, information, funds
[image:]

	
	Data center
	

	Fuctional
	operator
	Distributor

	
	
	

	
	
	

End

customer
Product	Cloud supply chain

Innovative

	Hardware
	Component

	supplier
	supplier

Potential Closed Loop Cooperation

FIGURE 4.6. Cloud supply chain	(C-SC).

[bookmark: page132]
should fulfill basic needs of customers and favor competition due to their reproducibility. Table 4.1 presents a comparison of Traditional

TABLE 4.1. Comparison of Traditional and Emerging ICT Supply Chainsa

	
	
	
	
	
	
	Emerging ICT

	
	
	
	
	
	
	

	
	
	
	Traditional Supply
	Chain Concepts
	
	Concepts

	
	
	Efficient SC
	Responsive SC
	
	Cloud SC

	Primary
	goal
	Supply demand at
	Respond quickly
	
	Supply demand at the

	
	
	
	
	
	
	

	
	
	the lowest level of
	to demand
	
	lowest level of costs

	
	
	
	(changes)
	
	and respond quickly

	
	
	cost
	
	
	

	
	
	
	
	
	to demand

	
	
	
	
	
	
	

	Product design
	
	Maximize
	Create modularity
	
	Create modularity to

	strategy
	
	
	performance at the
	to allow
	
	allow individual

	
	
	
	minimum product
	postponement
	
	setting while

	
	
	
	cost
	
	
	maximizing the

	
	
	
	
	of product
	
	performance of

	
	
	
	
	differentiation
	
	services

	Pricing
	strategy
	
	Lower margins
	Higher margins,
	
	Lower margins, as

	
	
	
	
	because price is
	
	high competition and

	
	
	
	because price is a
	not a prime
	
	comparable products

	
	
	
	prime customer
	customer driver
	
	

	
	
	
	driver
	
	
	

	Manufacturing
	Lead time strategy
	Lower costs

	
	
	

	strategy
	
	through high

	
	
	utilization

	
	Supplier strategy
	Minimize

	Inventory
	
	inventory to

	strategy
	
	lower cost

	
	Transportation
	

	
	strategy
	

Reduce but not at the expense of costs

Select based on cost and quality

Greater reliance on low cost modes

[bookmark: page133]Maintain capacity flexibility to meet unexpected demand

Maintain buffer inventory to meet unexpected demand

Aggressively reduce even if the costs are significant

Select based on speed, flexibility, and quantity

Greater reliance on responsive modes

High utilization while flexible reaction on demand

Optimize of buffer for unpredicted demand, and best utilization

Strong service-level agreements (SLA) for ad hoc provision

Select on complex optimum of speed, cost, and flexibility

Implement highly responsive and low cost modes

a Based on references 54 and 57.

[bookmark: page134]
Supply Chain concepts such as the efficient SC and responsive SC and a new concept for emerging ICT as the cloud computing area with cloud services as traded proxy.
INTRODUCTION TO CLOUD
COMPUTING

CLOUD COMPUTING IN A NUTSHELL

Computing itself, to be considered fully virtualized, must allow computers to be built from distributed components such as processing, storage, data, and software resources.

Technologies such as cluster, grid, and now, cloud computing, have all aimed at allowing access to large amounts of computing power in a fully virtualized manner, by aggregating resources and offering a single system view. Utility computing describes a business model for on-demand delivery of computing power; consumers pay providers based on usage (“payas-you-go”), similar to the way in which we currently obtain services from traditional public utility services such as water, electricity, gas, and telephony.

Cloud computing has been coined as an umbrella term to describe a category of sophisticated on-demand computing services initially offered by commercial providers, such as Amazon, Google, and Microsoft. It denotes a model on which a computing infrastructure is viewed as a “cloud,” from which businesses and individuals access applications from anywhere in the world on demand . The main principle behind this model is offering computing, storage, and software “as a service.”

Many practitioners in the commercial and academic spheres have attempted to define exactly what “cloud computing” is and what unique characteristics it presents. Buyya et al. have defined it as follows: “Cloud is a parallel and distributed computing system consisting of a collection of inter-connected

[bookmark: page135]and virtualised computers that are dynamically provisioned and presented as one or more unified computing resources based on service-level agreements (SLA) established through negotiation between the service provider and consumers.”

Vaquero et al. have stated “clouds are a large pool of easily usable and accessible virtualized resources (such as hardware, development platforms and/or services). These resources can be dynamically reconfigured to adjust to a variable load (scale), allowing also for an optimum resource utilization. This pool of resources is typically exploited by a pay-per-use model in which guarantees are offered by the Infrastructure Provider by means of customized

Service Level Agreements.”

A	recent	McKinsey	and	Co.	report	claims	that	“Clouds	are

hardwarebased services offering compute, network, and storage capacity where: Hardware management is highly abstracted from the buyer, buyers incur infrastructure costs as variable OPEX, and infrastructure capacity is highly elastic.”

A report from the University of California Berkeley	summarized the key

characteristics of cloud computing as: “(1) the illusion of infinite computing resources; (2) the elimination of an up-front commitment by cloud users; and

(3) the ability to pay for use . . . as needed .. .”

The National Institute of Standards and Technology (NIST) characterizes cloud computing as “ ... a pay-per-use model for enabling available, convenient, on-demand network access to a shared pool of configurable computing resources (e.g. networks, servers, storage, applications, services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.”

In a more generic definition, Armbrust et al.	define cloud as the “data

center hardware and	software	that	provide	services.”	Similarly, Sotomayor

et al. point out that “cloud” is more often used to refer to the IT infrastructure deployed on an Infrastructure as a Service provider data center. While there are countless other definitions, there seems to be common characteristics between the most notable ones listed above, which a cloud should have: (i) pay-per-use (no ongoing commitment, utility prices); (ii) elastic capacity and the illusion of

infinite resources;	(iii) self-service	interface;	and (iv) resources that are

abstracted or	virtualised.

ROOTS OF CLOUD COMPUTING

We can track the roots of clouds computing by observing the advancement of several technologies, especially in hardware (virtualization, multi-core chips), Internet technologies (Web services, service-oriented architectures, Web 2.0), distributed computing (clusters, grids), and systems management (autonomic computing, data center automation). Figure 1.1 shows the convergence of technology fields that significantly advanced and contributed to the advent of cloud computing.

Some of these technologies have been tagged as hype in their early stages of development; however, they later received significant attention from academia and were sanctioned by major industry players. Consequently, a specification and standardization process followed, leading to maturity and

[bookmark: page136]wide adoption. The emergence of cloud computing itself is closely linked to the maturity of such technologies. We present a closer look at the technol ogies that form the base of cloud computing, with the aim of providing a clearer picture of the cloud ecosystem as a whole.

From Mainframes to Clouds

We are currently experiencing a switch in the IT world, from in-house generated computing power into utility-supplied computing resources delivered over the Internet as Web services. This trend is similar to what occurred about a century ago when factories, which used to generate their own electric power, realized that it is was cheaper just plugging their machines into the newly formed electric power grid .

Computing delivered as a utility can be defined as “on demand delivery of infrastructure, applications, and business processes in a security-rich, shared, scalable, and based computer environment over the Internet for a fee” .

[bookmark: page137]

	Distributed Computing

Systems Management

Hardware Virtualization
[image:]

	Utility &
	SOA

	
	Cloud

	
	

	Grid
	Web 2.0

	
	Web Services

	
	

Autonomic Computing

Hardware

	Internet Technologies

FIGURE 1.1. Convergence of various advances leading to the advent of cloud computing.

This model brings benefits to both consumers and providers of IT services. Consumers can attain reduction on IT-related costs by choosing to obtain cheaper services from external providers as opposed to heavily investing on IT infrastructure and personnel hiring. The “on-demand” component of this model allows consumers to adapt their IT usage to rapidly increasing or unpredictable computing needs.

Providers of IT services achieve better operational costs; hardware and software infrastructures are built to provide multiple solutions and serve many users, thus increasing efficiency and ultimately leading to faster return on investment (ROI) as well as lower total cost of ownership (TCO).

The mainframe era collapsed with the advent of fast and inexpensive microprocessors and IT data centers moved to collections of commodity servers.

The advent of increasingly fast fiber-optics networks has relit the fire, and new technologies for enabling sharing of computing power over great distances have appeared.

[bookmark: page138]SOA, Web Services, Web 2.0, and Mashups

Web Service
applications running on different messaging product platforms

enabling information from one application to be made available to others

enabling internal applications to be made available over the Internet
SOA

address requirements of loosely coupled, standards-based, and protocol-independent distributed computing

WS ,HTTP, XML

Common mechanism for delivering service

applications is a collection of services that together perform complex business logic
Building block in IaaS

User authentication, payroll management, calender

Grid Computing

Grid computing enables aggregation of distributed resources and transparently access to them. Most production grids such as TeraGrid and EGEE seek to share compute and storage resources distributed across different administrative domains, with their main focus being speeding up a broad range of scientific applications, such as climate modeling, drug design, and protein analysis.

Globus Toolkit is a middleware that implements several standard Grid services and over the years has aided the deployment of several service-oriented Grid infrastructures and applications. An ecosystem of tools is available to interact with service grids, including grid brokers, which facilitate user interaction with multiple middleware and implement policies to meet QoS needs.

Virtualization technology has been identified as the perfect fit to issues that have caused frustration when using grids, such as hosting many dissimilar software applications on a single physical platform. In this direction, some research projects.

Utility Computing

In utility computing environments, users assign a “utility” value to their jobs, where utility is a fixed or time-varying valuation that captures various QoS constraints (deadline, importance, satisfaction). The valuation is the amount they are willing to pay a service provider to satisfy their demands. The service providers then attempt to maximize their own utility, where said utility may directly correlate with their profit. Providers can choose to prioritize high yield (i.e., profit per unit of resource) user jobs, leading to a scenario where shared systems are viewed as a marketplace, where users compete for resources based on the perceived utility or value of their jobs.

[bookmark: page139]
Hardware Virtualization

The idea of virtualizing a computer system’s resources, including processors, memory, and I/O devices, has been well established for decades, aiming at improving sharing and utilization of computer systems . Hardware virtualization allows running multiple operating systems and software stacks on a single physical platform. As depicted in Figure 1.2, a software layer, the virtual machine monitor (VMM), also called a hypervisor, mediates access to the physical hardware presenting to each guest operating system a virtual machine (VM), which is a set of virtual platform interfaces .
[image:]

	Virtual Machine 1
	Virtual Machine 2
	Virtual Machine N

	User software
	User software
	App A
	App X

	
	
	
	
	
	

	Data
	Web
	Java
	Ruby on
	App B
	App Y

	
	
	
	
	
	

	
	
	
	Linux
	Guest OS
	

Virtual Machine Monitor (Hypervisor)

FIGURE 1.2. A hardware virtualized server hosting three virtual machines, each one running distinct operating system and user level software stack.

[bookmark: page140]
Workload isolation is achieved since all program instructions are fully confined inside a VM, which leads to improvements in security. Better reliability is also achieved because software failures inside one VM do not affect others . Moreover, better performance control is attained since execution of one VM should not affect the performance of another VM .

VMWare ESXi. VMware is a pioneer in the virtualization market. Its ecosystemof tools ranges from server and desktop virtualization to high-level management tools . ESXi is a VMM from VMWare. It is a bare-metal hypervisor, meaning that it installs directly on the physical server, whereas others may require a host operating system.

Xen. The Xen hypervisor started as an open-source project and has served as abase to other virtualization products, both commercial and open-source.In addition to an open-source distribution , Xen currently forms the base of commercial hypervisors of a number of vendors, most notably Citrix XenServer and Oracle VM.

KVM. The kernel-based virtual machine (KVM) is a Linux virtualizationsubsystem. Is has been part of the mainline Linux kernel since version 2.6.20, thus being natively supported by several distributions. In addition, activities such as memory management and scheduling are carried out by existing kernel features, thus making KVM simpler and smaller than hypervisors that take control of the entire machine .

KVM leverages hardware-assisted virtualization, which improves performance and allows it to support unmodified guest operating systems ; currently, it supports several versions of Windows, Linux, and UNIX .

Virtual Appliances and the Open Virtualization	Format

An application combined with the environment needed to run it (operating system, libraries, compilers, databases, application containers, and so forth) is referred to as a “virtual appliance.” Packaging application environments in the shape of virtual appliances eases software customization, configuration, and patching and improves portability. Most commonly, an appliance is shaped as a VM disk image associated with hardware requirements, and it can be readily deployed in a hypervisor.

In a multitude of hypervisors, where each one supports a different VM image format and the formats are incompatible with one another, a great deal of interoperability issues arises. For instance, Amazon has its Amazon machine image (AMI) format, made popular on the Amazon EC2 public cloud. Other formats are used by Citrix XenServer, several Linux distributions that ship with KVM, Microsoft Hyper-V, and VMware ESX.

OVF’s extensibility has encouraged additions relevant to management of

[bookmark: page141]data centers and clouds. Mathews et al. have devised virtual machine contracts (VMC) as an extension to OVF. A VMC aids in communicating and managing the complex expectations that VMs have of their runtime environment and vice versa.

[bookmark: page142]
Autonomic Computing

The increasing complexity of computing systems has motivated research on autonomic computing, which seeks to improve systems by decreasing human involvement in their operation. In other words, systems should manage themselves, with high-level guidance from humans .

In this sense, the concepts of autonomic computing inspire software technologies for data center automation, which may perform tasks such as: management of service levels of running applications; management of data center capacity; proactive disaster recovery; and automation of VM provisioning .

LAYERS AND TYPES OF CLOUDS

Cloud computing services are divided into three classes, according to the abstraction level of the capability provided and the service model of providers, namely: (1) Infrastructure as a Service, (2) Platform as a Service, and (3) Software as a Service . Figure 1.3 depicts the layered organization of the cloud stack from physical infrastructure to applications.

These abstraction levels can also be viewed as a layered architecture where services of a higher layer can be composed from services of the underlying layer.

Infrastructure as a	Service

Offering virtualized resources (computation, storage, and communication) on demand is known as Infrastructure as a Service (IaaS) . A cloud infrastructure

[bookmark: page143]Service

SaaS

PaaS

IaaS

	Main Access &
	Service content

	
	

	Web Browser
	Social networks, Office suites, CRM,

	Cloud
	Cloud Platform

	Development
	Programming languages, Frameworks,

	
	

	
	Mashups editors, Structured data

	Virtual
	

	Infrastructure
	Compute Servers, Data Storage,

	
	17

	
	

[image:]

FIGURE 1.3. The cloud computing	stack.

enables on-demand provisioning of servers running several choices of operating systems and a customized software stack. Infrastructure services are considered to be the bottom layer of cloud computing systems .

Platform as a Service

In addition to infrastructure-oriented clouds that provide raw computing and storage services, another approach is to offer a higher level of abstraction to make a cloud easily programmable, known as Platform as a Service (PaaS)..

Google AppEngine, an example of Platform as a Service, offers a scalable environment for developing and hosting Web applications, which should be written in specific programming languages such as Python or Java, and use the services’ own proprietary structured object data store.

Software as a Service

Applications reside on the top of the cloud stack. Services provided by this layer can be accessed by end users through Web portals. Therefore, consumers are increasingly shifting from locally installed computer programs to on-line software services that offer the same functionally. Traditional desktop applications such as word processing and spreadsheet can now be accessed as a

[bookmark: page144]service in the Web.

Deployment Models

Although cloud computing has emerged mainly from the appearance of public computing utilities. In this sense, regardless of its service class, a cloud can be classified as public, private, community, or hybrid based on model of deployment as shown in Figure 1.4.
[image:]

	Public/Internet
	Private/Enterprise
	Hybrid/Mixed Clouds

	Clouds
	
	

	
	
	

	3rd party,
	Cloud computing
	Mixed usage of

	multi-tenant Cloud
	model run
	private and public

	
	
	Clouds:

	
	
	

	infrastructure
	within a company’s
	Leasing public

	& services:
	
	

	
	own Data Center/
	

	
	
	cloud services

	
	infrastructure for
	when private cloud

	
	internal and/or
	capacity is

	
	
	

[image:]

FIGURE 1.4. Types of clouds based on deployment	models.

[bookmark: page145]
Armbrust propose definitions for public cloud as a “cloud made available in a pay-as-you-go manner to the general public” and private cloud as “internal data center of a business or other organization, not made available to the general public.”

A community cloud is “shared by several organizations and supports a specific community that has shared concerns (e.g., mission, security requirements, policy, and compliance considerations) .”

A hybrid cloud takes shape when a private cloud is supplemented with computing capacity from public clouds . The approach of temporarily renting capacity to handle spikes in load is known as “cloud-bursting” .

DESIRED FEATURES OF A CLOUD

Certain features of a cloud are essential to enable services that truly represent the cloud computing model and satisfy expectations of consumers, and cloud offerings must be (i) self-service, (ii) per-usage metered and billed, (iii) elastic, and (iv) customizable.

Self-Service

Consumers of cloud computing services expect on-demand, nearly instant access to resources. To support this expectation, clouds must allow self-service access so that customers can request, customize, pay, and use services without intervention of human operators .

Per-Usage Metering and Billing

Cloud computing eliminates up-front commitment by users, allowing them to request and use only the necessary amount. Services must be priced on a shortterm basis (e.g., by the hour), allowing users to release (and not pay for) resources as soon as they are not needed.

Elasticity

Cloud computing gives the illusion of infinite computing resources available on demand . Therefore users expect clouds to rapidly provide resources in any quantity at any time. In particular, it is expected that the additional resources can be (a) provisioned, possibly automatically, when an application load increases and (b) released when load decreases (scale up and down) .

[bookmark: page146]Customization

In a multi-tenant cloud a great disparity between user needs is often the case. Thus, resources rented from the cloud must be highly customizable. In the case of infrastructure services, customization means allowing users to deploy specialized virtual appliances and to be given privileged (root) access to the virtual servers. Other service classes (PaaS and SaaS) offer less flexibility and are not suitable for general-purpose computing , but still are expected to provide a certain level of customization.

CLOUD INFRASTRUCTURE MANAGEMENT

A key challenge IaaS providers face when building a cloud infrastructure is managing physical and virtual resources, namely servers, storage, and networks, in a holistic fashion . The orchestration of resources must be performed in a way to rapidly and dynamically provision resources to applications .

The availability of a remote cloud-like interface and the ability of managing many users and their permissions are the primary features that would distinguish “cloud toolkits” from “VIMs.” However, in this chapter, we place both categories of tools under the same group (of the VIMs) and, when applicable, we highlight the availability of a remote interface as a feature.

Virtually all VIMs we investigated present a set of basic features related to managing the life cycle of VMs, including networking groups of VMs together and setting up virtual disks for VMs. These basic features pretty much define whether a tool can be used in practical cloud deployments or not. On the other hand, only a handful of software present advanced features (e.g., high availability) which allow them to be used in large-scale production clouds.

Features

We now present a list of both basic and advanced features that are usually available in VIMs.

Virtualization Support. The multi-tenancy aspect of clouds requires multiplecustomers with disparate requirements to be served by a single hardware infrastructure.

Self-Service, On-Demand Resource Provisioning. Self-service access toresources has been perceived as one the most attractive features of clouds. This feature enables users to directly obtain services from clouds.

[bookmark: page147]Multiple Backend Hypervisors. Different virtualization models and tools offerdifferent benefits, drawbacks, and limitations. Thus, some VI managers provide a uniform management layer regardless of the virtualization technology used.

Storage Virtualization. Virtualizing storage means abstracting logical storagefrom physical storage. By consolidating all available storage devices in a data center, it allows creating virtual disks independent from device and location.

In the VI management sphere, storage virtualization support is often restricted to commercial products of companies such as VMWare and Citrix. Other products feature ways of pooling and managing storage devices, but administrators are still aware of each individual device.

Interface to Public Clouds. Researchers have perceived that extending thecapacity of a local in-house computing infrastructure by borrowing resources from public clouds is advantageous. In this fashion, institutions can make good use of their available resources and, in case of spikes in demand, extra load can be offloaded to rented resources .

Virtual Networking. Virtual networks allow creating an isolated network ontop of a physical infrastructure independently from physical topology and locations. A virtual LAN (VLAN) allows isolating traffic that shares a switched network, allowing VMs to be grouped into the same broadcast domain.

Dynamic Resource Allocation. Increased awareness of energy consumption indata centers has encouraged the practice of dynamic consolidating VMs in a fewer number of servers. In cloud infrastructures, where applications have variable and dynamic needs, capacity management and demand prediction are especially complicated. This fact triggers the need for dynamic resource allocation aiming at obtaining a timely match of supply and demand.

Virtual Clusters. Several VI managers can holistically manage groups of VMs.This feature is useful for provisioning computing virtual clusters on demand, and interconnected VMs for multi-tier Internet applications.

Reservation and Negotiation Mechanism. When users request computationalresources to available at a specific time, requests are termed advance reservations (AR), in contrast to best-effort requests, when users request resources whenever available .

Additionally, leases may be negotiated and renegotiated, allowing provider

[bookmark: page148]and consumer to modify a lease or present counter proposals until an agreement is reached.

High Availability and Data Recovery. The high availability (HA) feature of VImanagers aims at minimizing application downtime and preventing business disruption.

For mission critical applications, when a failover solution involving restarting VMs does not suffice, additional levels of fault tolerance that rely on redundancy of VMs are implemented.

Data backup in clouds should take into account the high data volume involved in VM management.

[bookmark: page149]
Case Studies

In this section, we describe the main features of the most popular VI managers available. Only the most prominent and distinguishing features of each tool are discussed in detail. A detailed side-by-side feature comparison of VI managers is presented in Table 1.1.

Apache VCL. The Virtual Computing Lab [60, 61] project has been incepted in2004 by researchers at the North Carolina State University as a way to provide customized environments to computer lab users. The software components that support NCSU’s initiative have been released as open-source and incorporated by the Apache Foundation.

AppLogic. AppLogic is a commercial VI manager, the flagship product of3tera Inc. from California, USA. The company has labeled this product as a Grid Operating System.

AppLogic provides a fabric to manage clusters of virtualized servers, focusing on managing multi-tier Web applications. It views an entire application as a collection of components that must be managed as a single entity.

In summary, 3tera AppLogic provides the following features: Linux-based controller; CLI and GUI interfaces; Xen backend; Global Volume Store (GVS) storage virtualization; virtual networks; virtual clusters; dynamic resource allocation; high availability; and data protection.

[bookmark: page150]TABLE 1.1. Feature Comparison of Virtual Infrastructure Managers

	
	
	
	Installation
	Client
	UI,
	
	
	
	
	
	Advance
	
	

	
	
	
	Platform of
	API, Language
	
	
	
	
	
	Reservation of
	

	
	
	
	Controller
	Bindings
	Backend
	Storage
	Interface to
	Virtual
	Dynamic Resource
	Capacity
	High
	Data

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	Hypervisor(s)
	Virtualization
	Public Cloud
	Networks
	Allocation
	
	Availability
	Protection

	License
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Apache
	Apache v2
	Multi-
	Portal,
	
	VMware
	No
	No
	Yes
	No
	Yes
	No
	No

	
	VCL
	
	
	XML-RPC
	ESX, ESXi,
	
	
	
	
	
	
	

	
	
	
	platform
	
	
	
	
	
	
	
	
	
	

	
	
	
	(Apache/
	
	
	Server
	
	
	
	
	
	
	

	
	
	
	PHP)
	
	
	
	
	
	
	
	
	
	

	
	AppLogic
	Proprietary
	Linux
	GUI,
	CLI
	Xen
	Global
	No
	Yes
	Yes
	No
	Yes
	Yes

	
	
	
	
	
	
	
	Volume
	
	
	
	
	
	

	
	
	
	
	
	
	
	Store (GVS)
	
	
	
	
	
	

	
	Citrix Essentials
	Proprietary
	Windows
	GUI, CLI,
	XenServer,
	Citrix
	No
	Yes
	Yes
	No
	Yes
	Yes

	
	
	
	
	
	
	Hyper-V
	Storage
	
	
	
	
	
	

	
	
	
	
	Portal,
	
	
	Link
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	XML-RPC
	
	
	
	
	
	
	
	

	
	Enomaly ECP
	GPL v3
	Linux
	Portal,
	WS
	Xen
	No
	Amazon EC2
	Yes
	No
	No
	No
	No

	
	Eucalyptus
	BSD
	Linux
	EC2 WS, CLI
	Xen, KVM
	No
	EC2
	Yes
	No
	No
	No
	No

	
	Nimbus
	Apache v2
	Linux
	EC2 WS,
	Xen, KVM
	No
	EC2
	Yes
	Via
	Yes
	(via No
	No

	
	
	
	
	
	
	
	
	
	
	
	integration
	with
	

	WSRF, CLI
	
	
	
	
	
	
	
	
	integration with
	OpenNebula)
	

	
	
	
	
	
	
	
	
	
	
	
	
	

OpenNebula

	[bookmark: page151]
	OpenNEbula
	Apache v2
	Linux
	XML-RPC,
	Xen, KVM
	No
	Amazon EC2,
	Yes
	Yes
	Yes
	No
	No

	
	
	
	
	
	
	
	
	Elastic Hosts
	
	
	
	
	

	CLI, Java
	
	
	
	
	
	
	(via Haizea)
	
	
	
	

	
	OpenPEX
	GPL
	v2
	Multiplatform
	Portal, WS
	XenServer
	No
	No
	No
	No
	Yes
	No
	No

	(Java)
	
	
	
	
	
	
	
	
	
	
	
	

	
	oVirt
	GPL
	v2
	Fedora Linux
	Portal
	KVM
	No
	No
	No
	No
	No
	No
	No

	
	Platform
	Proprietary
	Linux
	Portal
	Hyper-V
	No
	EC2, IBM CoD,
	Yes
	Yes
	Yes
	Unclear
	Unclear

	
	ISF
	
	
	
	
	XenServer,
	
	
	
	
	
	
	

	
	
	
	
	
	
	VMWare ESX
	
	HPEnterprise
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	Services
	
	
	
	
	

	
	Platform VMO
	Proprietary
	Linux,
	Portal
	XenServer
	No
	No
	Yes
	Yes
	No
	Yes
	No

	Windows
	
	
	
	
	
	
	
	
	
	
	
	

	
	VMWare
	Proprietary
	Linux,
	CLI, GUI,
	VMware
	VMware
	VMware
	Yes
	VMware
	No
	Yes
	Yes

	
	vSphere
	
	
	
	
	ESX, ESXi
	vStorage
	vCloud partners
	
	DRM
	
	
	

	
	Windows
	
	
	Portal, WS
	
	VMFS
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

[bookmark: page152]
Citrix Essentials. The Citrix Essentials suite is one the most feature completeVI management software available, focusing on management and automation of data centers. It is essentially a hypervisor-agnostic solution, currently supporting Citrix XenServer and Microsoft Hyper-V.

Enomaly ECP. The Enomaly Elastic Computing Platform, in its most completeedition, offers most features a service provider needs to build an IaaS cloud.

In summary, Enomaly ECP provides the following features: Linux-based controller; Web portal and Web services (REST) interfaces; Xen back-end; interface to the Amazon EC2 public cloud; virtual networks; virtual clusters (ElasticValet).

Eucalyptus. The Eucalyptus framework was one of the first open-sourceprojects to focus on building IaaS clouds. It has been developed with the intent of providing an open-source implementation nearly identical in functionality to Amazon Web Services APIs.

Nimbus3. The Nimbus toolkit is built on top of the Globus framework. Nimbusprovides most features in common with other open-source VI managers, such as an EC2-compatible front-end API, support to Xen, and a backend interface to Amazon EC2.

Nimbus’ core was engineered around the Spring framework to be easily extensible, thus allowing several internal components to be replaced and also eases the integration with other systems.

In summary, Nimbus provides the following features: Linux-based controller; EC2-compatible (SOAP) and WSRF interfaces; Xen and KVM backend and a Pilot program to spawn VMs through an LRM; interface to the Amazon EC2 public cloud; virtual networks; one-click virtual clusters.

OpenNebula. OpenNebula is one of the most feature-rich open-source VImanagers. It was initially conceived to manage local virtual infrastructure, but has also included remote interfaces that make it viable to build public clouds. Altogether, four programming APIs are available: XML-RPC and libvirt for local interaction; a subset of EC2 (Query) APIs and the OpenNebula Cloud API (OCA) for public access [7, 65].

(Amazon EC2, ElasticHosts); virtual networks; dynamic resource allocation; advance reservation of capacity.

OpenPEX. OpenPEX (Open Provisioning and EXecution Environment) wasconstructed around the notion of using advance reservations as the primary method for allocating VM instances.

[bookmark: page153]oVirt. oVirt is an open-source VI manager, sponsored by Red Hat’s EmergentTechnology group. It provides most of the basic features of other VI managers,

[bookmark: page154]
including support for managing physical server pools, storage pools, user accounts, and VMs. All features are accessible through a Web interface.

Platform ISF. Infrastructure Sharing Facility (ISF) is the VI manager offeringfrom Platform Computing [68]. The company, mainly through its LSF family of products, has been serving the HPC market for several years.

ISF is built upon Platform’s VM Orchestrator, which, as a standalone product, aims at speeding up delivery of VMs to end users. It also provides high availability by restarting VMs when hosts fail and duplicating the VM that hosts the VMO controller.

VMWare vSphere and vCloud. vSphere is VMware’s suite of tools aimed attransforming IT infrastructures into private clouds. It distinguishes from other VI managers as one of the most feature-rich, due to the company’s several offerings in all levels the architecture.

In the vSphere architecture, servers run on the ESXi platform. A separate server runs vCenter Server, which centralizes control over the entire virtual infrastructure. Through the vSphere Client software, administrators connect to vCenter Server to perform various tasks.

VMware ESX, ESXi backend; VMware vStorage VMFS storage virtualization; interface to external clouds (VMware vCloud partners); virtual networks (VMWare Distributed Switch); dynamic resource allocation (VMware DRM); high availability; data protection (VMWare Consolidated Backup).

INFRASTRUCTURE AS A SERVICE PROVIDERS

Public Infrastructure as a Service providers commonly offer virtual servers containing one or more CPUs, running several choices of operating systems and a customized software stack. In addition, storage space and communication facilities are often provided.

Features

In spite of being based on a common set of features, IaaS offerings can be distinguished by the availability of specialized features that influence the cost—benefit ratio to be experienced by user applications when moved to the cloud. The most relevant features are: (i) geographic distribution of data centers; (ii) variety of user interfaces and APIs to access the system; (iii) specialized components and services that aid particular applications (e.g., loadbalancers, firewalls); (iv) choice of virtualization platform and operating systems; and (v) different billing methods and period (e.g., prepaid vs. post -

[bookmark: page155]paid, hourly vs. monthly).

Geographic Presence. To improve availability and responsiveness, a providerof worldwide services would typically build several data centers distributed around the world. For example, Amazon Web Services presents the concept of

“availability zones” and “regions” for its EC2 service.

User Interfaces and Access to Servers. Ideally, a public IaaS provider mustprovide multiple access means to its cloud, thus catering for various users and their preferences. Different types of user interfaces (UI) provide different levels of abstraction, the most common being graphical user interfaces (GUI), command-line tools (CLI), and Web service (WS) APIs.

GUIs are preferred by end users who need to launch, customize, and monitor a few virtual servers and do not necessary need to repeat the process several times. On the other hand, CLIs offer more flexibility and the possibility of automating repetitive tasks via scripts.

Advance Reservation of Capacity. Advance reservations allow users to requestfor an IaaS provider to reserve resources for a specific time frame in the future, thus ensuring that cloud resources will be available at that time. However, most clouds only support best-effort requests; that is, users requests are server whenever resources are available.

Automatic Scaling and Load Balancing. As mentioned earlier in this chapter,elasticity is a key characteristic of the cloud computing model. Applications often need to scale up and down to meet varying load conditions. Automatic scaling is a highly desirable feature of IaaS clouds.

Service-Level Agreement. Service-level agreements (SLAs) are offered by IaaSproviders to express their commitment to delivery of a certain QoS. To customers it serves as a warranty. An SLA usually include availability and performance guarantees. Additionally, metrics must be agreed upon by all parties as well as penalties for violating these expectations.

Hypervisor and Operating System Choice. Traditionally, IaaS offerings havebeen based on heavily customized open-source Xen deployments. IaaS providers needed expertise in Linux, networking, virtualization, metering, resource management, and many other low-level aspects to successfully deploy and maintain their cloud offerings.

Case Studies

[bookmark: page156]In this section, we describe the main features of the most popular public IaaS clouds. Only the most prominent and distinguishing features of each one are discussed in detail. A detailed side-by-side feature comparison of IaaS offerings is presented in Table 1.2.

Amazon Web Services. Amazon WS (AWS) is one of the major players in thecloud computing market. It pioneered the introduction of IaaS clouds in 2006.

The Elastic Compute Cloud (EC2) offers Xen-based virtual servers (instances) that can be instantiated from Amazon Machine Images (AMIs). Instances are available in a variety of sizes, operating systems, architectures, and price. CPU capacity of instances is measured in Amazon Compute Units and, although fixed for each instance, vary among instance types from 1 (small instance) to 20 (high CPU instance).

In summary, Amazon EC2 provides the following features: multiple data centers available in the United States (East and West) and Europe; CLI, Web services (SOAP and Query), Web-based console user interfaces; access to instance mainly via SSH (Linux) and Remote Desktop (Windows); advanced reservation of capacity (aka reserved instances) that guarantees availability for periods of 1 and 3 years; 99.5% availability SLA; per hour pricing; Linux and Windows operating systems; automatic scaling; load balancing.

[bookmark: page157]TABLE 1.2. Feature Comparison Public Cloud Offerings (Infrastructure as a Service)

Runtime

Server

Resizing/

Vertical

Scaling
	
	
	ClientUI
	Primary
	Advance
	
	Smallest
	
	Guest
	Automated
	
	
	Instance
	Hardware Capacity

	
	
	API Language
	Access to
	Reservation of
	
	Billing
	
	Operating
	Horizontal
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Geographic
	
	Server
	Capacity
	SLA
	
	
	Systems
	Scaling
	Load
	
	Processor
	Memory
	Storage

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Presence
	Bindings
	
	
	
	Unit
	Hypervisor
	
	
	Balancing
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Amazon
	US East,
	CLI, WS,
	SSH (Linux),
	Amazon
	Uptime
	Hour
	Xen
	Linux,
	Available
	Elastic Load
	No
	1—20 EC2
	1.7—15 160—1690 GB

	
	
	
	
	
	99.95%
	
	
	
	
	
	
	
	

	EC2
	Europe
	Portal
	Remote
	reserved
	
	
	
	Windows
	with
	Balancing
	
	compute
	GB
	1 GB—1 TB

	
	
	
	Desktop
	instances
	
	
	
	
	Amazon
	
	
	units
	
	(per EBS

	
	
	
	(Windows)
	(Available in
	
	
	
	
	CloudWatch
	
	
	
	
	volume)

	
	
	
	
	1 or 3 years
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	terms, starting
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	from reservation
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	time)
	
	
	
	
	
	
	
	
	
	

	Flexiscale
	UK
	Web Console
	SSH
	No
	100%
	Hour
	Xen
	Linux,
	No
	Zeus
	Processors,
	1—4 CPUs
	0.5—16 20—270 GB

	
	
	
	
	
	
	
	
	Windows
	
	software
	memory
	
	GB
	

	loadbalancing
	(requires
	
	
	
	
	
	
	

	reboot)
	
	
	
	
	
	
	
	

	GoGrid
	REST, Java,
	PHP, Python, Ruby
	SSH
	No
	No 100%
	HardwareouXen(F5)
	Linux,NoWindows
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	1

	
	
	
	
	
	
	
	—6
	CPUs

	[bookmark: page158]
	0.5—8
	3G0B—480
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	GB
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Joyent
	US
	SSH,
	No
	100%
	Month
	OS Level
	OpenSolaris
	No
	Both
	Automatic
	1/16—8 CPUs 0.25—32 5—100 GB

	Cloud
	(Emeryville,
	
	
	
	
	(Solaris
	
	
	hardware
	CPU bursting
	
	
	GB

	
	
	VirtualMin
	
	
	
	
	
	
	
	
	
	
	
	

	
	CA; San
	(Web-based
	
	
	
	Containers)
	
	
	(F5 networks)
	(up to 8
	
	
	

	
	Diego,
	system
	
	
	
	
	
	
	and software
	CPUs)
	
	
	

	
	
	administration)
	
	
	
	
	
	
	(Zeus)
	
	
	
	
	

	
	CA; Andover,
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	MA; Dallas,
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	TX)
	
	
	
	
	
	
	
	
	
	
	
	
	

	Rackspace
	US
	Portal, REST, SSH
	No
	100%
	Hour
	Xen
	Linux
	No
	No
	Memory, disk Quad-core
	0.25—16 10—620 GB

	Cloud
	(Dallas, TX)
	Python, PHP,
	
	
	
	
	
	
	
	(requires
	CPU
	(CPU
	GB

	Servers
	
	Java, C#/.
	
	
	
	
	
	
	
	reboot)
	
	
	

	
	
	
	
	
	
	
	
	
	
	Automatic
	power
	
	is

	
	
	
	
	
	
	
	
	
	
	CPU bursting
	
	
	

	
	
	NET
	
	
	
	
	
	
	
	
	weighed
	

	
	
	
	
	
	
	
	
	
	
	(up
	to 100%
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	proportionally

	
	
	
	
	
	
	
	
	
	
	of
	available
	

	
	
	
	
	
	
	
	
	
	
	
	
	to
	memory

	
	
	
	
	
	
	
	
	
	
	CPU
	power
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	size)
	
	

	
	
	
	
	
	
	
	
	
	
	of
	physical
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

host)

[bookmark: page159]
Flexiscale. Flexiscale is a UK-based provider offering services similar innature to Amazon Web Services. However, its virtual servers offer some distinct features, most notably: persistent storage by default, fixed IP addresses, dedicated VLAN, a wider range of server sizes, and runtime adjustment of CPU capacity (aka CPU bursting/vertical scaling). Similar to the clouds, this service is also priced by the hour.

Joyent. Joyent’s Public Cloud offers servers based on Solaris containersvirtualization technology. These servers, dubbed accelerators, allow deploying various specialized software-stack based on a customized version of OpenSolaris operating system, which include by default a Web-based configuration tool and several pre-installed software, such as Apache, MySQL, PHP, Ruby on Rails, and Java. Software load balancing is available as an accelerator in addition to hardware load balancers.

In summary, the Joyent public cloud offers the following features: multiple geographic locations in the United States; Web-based user interface; access to virtual server via SSH and Web-based administration tool; 100% availability SLA; per month pricing; OS-level virtualization Solaris containers; OpenSolaris operating systems; automatic scaling (vertical).

GoGrid. GoGrid, like many other IaaS providers, allows its customers toutilize a range of pre-made Windows and Linux images, in a range of fixed instance sizes. GoGrid also offers “value-added” stacks on top for applications such as high-volume Web serving, e-Commerce, and database stores.

Rackspace Cloud Servers. Rackspace Cloud Servers is an IaaS solution thatprovides fixed size instances in the cloud. Cloud Servers offers a range of Linux-based pre-made images. A user can request different-sized images, where the size is measured by requested RAM, not CPU.

PLATFORM AS A SERVICE PROVIDERS

Public Platform as a Service providers commonly offer a development and deployment environment that allow users to create and run their applications with little or no concern to low-level details of the platform. In addition, specific programming languages and frameworks are made available in the platform, as well as other services such as persistent data storage and inmemory caches.

[bookmark: page160]Features

Programming Models, Languages, and Frameworks. Programming modelsmade available by IaaS providers define how users can express their applications using higher levels of abstraction and efficiently run them on the cloud platform. Each model aims at efficiently solving a particular problem. In the cloud computing domain, the most common activities that require specialized models are: processing of large dataset in clusters of computers (MapReduce model), development of request-based Web services and applications;

Persistence Options. A persistence layer is essential to allow applications torecord their state and recover it in case of crashes, as well as to store user data.

Traditionally, Web and enterprise application developers have chosen relational databases as the preferred persistence method. These databases offer fast and reliable structured data storage and transaction processing, but may lack scalability to handle several petabytes of data stored in commodity computers .

Case Studies

In this section, we describe the main features of some Platform as Service (PaaS) offerings. A more detailed side-by-side feature comparison of VI managers is presented in Table 1.3.

Aneka. Aneka is a .NET-based service-oriented resource management anddevelopment platform. Each server in an Aneka deployment (dubbed Aneka cloud node) hosts the Aneka container, which provides the base infrastructure that consists of services for persistence, security (authorization, authentication and auditing), and communication (message handling and dispatching).

Several programming models are supported by such task models to enable execution of legacy HPC applications and MapReduce, which enables a variety of data-mining and search applications.

App Engine. Google App Engine lets you run your Python and Java Webapplications on elastic infrastructure supplied by Google. The App Engine serving architecture is notable in that it allows real-time auto-scaling without virtualization for many common types of Web applications. However, such auto-scaling is dependent on the

[bookmark: page161]TABLE 1.3. Feature Comparison of Platform-as-a-Service Cloud Offerings

	
	
	Programming
	
	
	
	
	
	Backend
	

	
	
	Language,
	Developer
	Programming
	Persistence
	Automatic
	Infrastructure

	
	Target Use
	Frameworks
	Tools
	Models
	Options
	Scaling
	Providers
	

	
	
	
	
	
	
	
	
	

	Aneka
	.Net enterprise
	.NET
	Standalone
	Threads, Task,
	Flat
	files,
	No
	Amazon EC2

	
	applications,
	
	SDK
	MapReduce
	RDBMS, HDFS
	
	
	

	
	HPC
	
	
	
	
	
	
	
	

	AppEngine
	Web
	Python, Java
	Eclipse-based
	Request-based
	BigTable
	
	Yes
	Own
	data

	
	applications
	
	IDE
	Web
	
	
	
	centers
	

	
	
	
	
	programming
	
	
	
	
	

	Force.com
	Enterprise
	Apex
	Eclipse-based
	Workflow,
	Own object
	Unclear
	Own
	data

	
	applications
	
	IDE, Web-
	Excel-like
	database
	
	
	centers
	

	
	(esp. CRM)
	
	based wizard
	formula
	
	
	
	
	

	
	
	
	
	language,
	
	
	
	
	

	
	
	
	
	Request-based
	
	
	
	
	

	
	
	
	
	web
	
	
	
	
	

	
	
	
	
	programming
	
	
	
	
	

	Microsoft
	Enterprise and
	.NET
	Azure tools for
	Unrestricted
	Table/BLOB/
	Yes
	Own
	data

	Windows
	Web
	
	Microsoft
	
	queue
	storage,
	
	centers
	

	Azure
	applications
	
	Visual Studio
	
	SQL services
	
	
	

	Heroku
	Web
	Ruby on Rails
	Command-line
	Requestbased
	PostgreSQL,
	Yes
	Amazon EC2

	
	applications
	
	tools
	web
	Amazon RDS
	
	
	

	
	
	
	
	programming
	
	
	
	
	

	33

	[bookmark: page162]Amazon
	Data processing Hive and Pig,
	Karmasphere
	MapReduce
	Amazon S3
	No
	Amazon EC2

	Elastic
	Cascading,
	Studio
	for
	
	
	
	

	MapReduce
	Java,
	Ruby,
	Hadoop
	
	
	
	
	

	
	Perl, Python,
	(NetBeans-
	
	
	
	

	
	PHP,
	R,
	based)
	
	
	
	
	

	
	C++
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

[bookmark: page163]application developer using a limited subset of the native APIs on each platform, and in some instances you need to use specific Google APIs such as URLFetch, Datastore, and memcache in place of certain native API calls.

Microsoft Azure. Microsoft Azure Cloud Services offers developers a hosted .NET Stack (C#, VB.Net, ASP.NET). In addition, a Java & Ruby SDK for

.NET Services is also available. The Azure system consists of a number of elements.

Force.com. In conjunction with the Salesforce.com service, the Force.comPaaS allows developers to create add-on functionality that integrates into main Salesforce CRM SaaS application.

Heroku. Heroku is a platform for instant deployment of Ruby on Rails Webapplications. In the Heroku system, servers are invisibly managed by the platform and are never exposed to users.

CHALLENGES AND RISKS

Despite the initial success and popularity of the cloud computing paradigm and the extensive availability of providers and tools, a significant number of challenges and risks are inherent to this new model of computing. Providers, developers, and end users must consider these challenges and risks to take good advantage of cloud computing.

Security, Privacy, and Trust

Ambrust et al. cite information security as a main issue: “current cloud offerings are essentially public . . . exposing the system to more attacks.” For this reason there are potentially additional challenges to make cloud computing environments as secure as in-house IT systems. At the same time, existing, wellunderstood technologies can be leveraged, such as data encryption, VLANs, and firewalls.

Data Lock-In and Standardization

A major concern of cloud computing users is about having their data locked-in by a certain provider. Users may want to move data and applications out from a provider that does not meet their requirements. However, in their current form, cloud computing infrastructures and platforms do not employ standard

[bookmark: page164]methods of storing user data and applications. Consequently, they do not interoperate and user data are not portable.

[bookmark: page165]
Availability, Fault-Tolerance, and Disaster Recovery

It is expected that users will have certain expectations about the service level to be provided once their applications are moved to the cloud. These expectations include availability of the service, its overall performance, and what measures are to be taken when something goes wrong in the system or its components. In summary, users seek for a warranty before they can comfortably move their business to the cloud.

Resource Management and	Energy-Efficiency

One important challenge faced by providers of cloud computing services is the efficient management of virtualized resource pools. Physical resources such as CPU cores, disk space, and network bandwidth must be sliced and shared among virtual machines running potentially heterogeneous workloads.

Another challenge concerns the outstanding amount of data to be managed in various VM management activities. Such data amount is a result of particular abilities of virtual machines, including the ability of traveling through space (i.e., migration) and time (i.e., checkpointing and rewinding), operations that may be required in load balancing, backup, and recovery scenarios. In addition, dynamic provisioning of new VMs and replicating existing VMs require efficient mechanisms to make VM block storage devices (e.g., image files) quickly available at selected hosts.

2.2 MIGRATING INTO A CLOUD

The promise of cloud computing has raised the IT expectations of small and medium enterprises beyond measure. Large companies are deeply debating it. Cloud computing is a disruptive model of IT whose innovation is part technology and part business model—in short a “disruptive techno-commercial model” of IT. This tutorial chapter focuses on the key issues and associated dilemmas faced by decision makers, architects, and systems managers in trying to understand and leverage cloud computing for their IT needs. Questions asked and discussed in this chapter include: when and how to migrate one’s application into a cloud; what part or component of the IT application to migrate into a cloud and what not to migrate into a cloud; what kind of customers really benefit from migrating their IT into the cloud; and so on. We describe the key factors underlying each of the above questions and share a Seven-Step Model of Migration into the Cloud.

Several efforts have been made in the recent past to define the term “cloud computing” and many have not been able to provide a comprehensive one This has been more challenging given the scorching pace of the technological advances as well as the newer business model formulations for the cloud services being offered.

[bookmark: page166]

The Promise of the	Cloud

Most users of cloud computing services offered by some of the large-scale data centers are least bothered about the complexities of the underlying systems or their functioning. More so given the heterogeneity of either the systems or the software running on them.
[image:]

‘Pay per use’ – Lower Cost Barriers
On Demand Resources –Autoscaling
Cloudonomics	• Capex vs OPEX – No capital expenses (CAPEX) and only operational expenses OPEX.

SLA driven operations – Much Lower TCO

Attractive NFR support: Availability, Reliability

‘Infinite’ Elastic availability – Compute/Storage/Bandwidth
Automatic Usage Monitoring and Metering
Technology	• Jobs/ Tasks Virtualized and Transparently ‘Movable’

Integration and interoperability ‘support’ for hybrid ops

Transparently encapsulated & abstracted IT features.

FIGURE 2.1. The promise of the cloud computing services.

.

As shown in Figure 2.1, the promise of the cloud both on the business front (the attractive cloudonomics) and the technology front widely aided the CxOs to spawn out several non-mission critical IT needs from the ambit of their captive traditional data centers to the appropriate cloud service. Invariably, these IT needs had some common features: They were typically Web-oriented; they represented seasonal IT demands; they were amenable to parallel batch processing; they were non-mission critical and therefore did not have high security demands.

The Cloud Service Offerings and Deployment	Models

Cloud computing has been an attractive proposition both for the CFO and the CTO of an enterprise primarily due its ease of usage. This has been achieved by large data center service vendors or now better known as cloud service vendors again primarily due to their scale of operations. Google, Amazon,

[bookmark: page167][image:]
	IaaS
	• Abstract Compute/Storage/Bandwidth Resources
	

	
	• Amazon Web Services[10,9] – EC2, S3, SDB, CDN, CloudWatch

	PaaS
	• Abstracted Programming Platform with encapsulated infrastructure

	
	• Google Apps Engine(Java/Python), Microsoft Azure, Aneka[13]

	SaaS
	• Application with encapsulated infrastructure & platform

	
	• Salesforce.com; Gmail; Yahoo Mail; Facebook; Twitter

	
	Cloud Application Deployment & Consumption Models

	Public Clouds
	Hybrid Clouds
	Private Clouds

FIGURE 2.2. The cloud computing service offering and deployment models.

Microsoft, and a few others have been the key players apart from open source Hadoop built around the Apache ecosystem. As shown in Figure 2.2, the cloud service offerings from these vendors can broadly be classified into three major streams: the Infrastructure as a Service (IaaS), the Platform as a Service (PaaS), and the Software as a Service (SaaS). While IT managers and system administrators preferred IaaS as offered by Amazon for many of their virtualized IT needs, the programmers preferred PaaS offerings like Google AppEngine (Java/Python programming) or Microsoft Azure (.Net programming). Users of large-scale enterprise software invariably found that if they had been using the cloud, it was because their usage of the specific software package was available as a service—it was, in essence, a SaaS offering. Salesforce.com was an exemplary SaaS offering on the Internet.

From a technology viewpoint, as of today, the IaaS type of cloud offerings have been the most successful and widespread in usage. Invariably these reflect the cloud underneath, where storage (most do not know on which system it is) is easily scalable or for that matter where it is stored or located.

Challenges in the Cloud

While the cloud service offerings present a simplistic view of IT in case of IaaS or a simplistic view of programming in case PaaS or a simplistic view of resources usage in case of SaaS, the underlying systems level support challenges are huge and highly complex. These stem from the need to offer a uniformly consistent and robustly simplistic view of computing while the underlying systems are highly failure-prone, heterogeneous, resource hogging, and exhibiting serious security shortcomings. As observed in Figure 2.3, the

[bookmark: page168]promise of the cloud seems very similar to the typical distributed systems properties that most would prefer to have.

[bookmark: page169][image:]
	Distributed System Fallacies
	Challenges in Cloud Technologies

	
	

	Full Network Reliability
	Security

	Zero Network Latency
	Performance Monitoring

	Infinite Bandwidth
	Consistent & Robust Service abstractions

	
	

	Secure Network
	Meta Scheduling

	
	

	No Topology changes
	Energy efficient load balancing

	
	

	
	Scale management

FIGURE 2.3. ‘Under the hood’ challenges of the cloud computing services implementations.

Many of them are listed in Figure 2.3. Prime amongst these are the challenges of security. The Cloud Security Alliance seeks to address many of these issues .

BROAD APPROACHES TO MIGRATING INTO THE	CLOUD

Given that cloud computing is a “techno-business disruptive model” and is on the top of the top 10 strategic technologies to watch for 2010 according to Gartner, migrating into the cloud is poised to become a large-scale effort in leveraging the cloud in several enterprises. “Cloudonomics” deals with the economic rationale for leveraging the cloud and is central to the success of cloud-based enterprise usage.

Why Migrate?

There are economic and business reasons why an enterprise application can be migrated into the cloud, and there are also a number of technological reasons. Many of these efforts come up as initiatives in adoption of cloud technologies in the enterprise, resulting in integration of enterprise applications running off the captive data centers with the new ones that have been developed on the cloud. Adoption of or integration with cloud computing services is a use case of migration.

[bookmark: page170]With due simplification, the migration of an enterprise application is best captured by the following:

	P-P01 P0-P0
	1 P0l

	Cl
	OFC

where P is the application before migration running in captive data center, P0 is the application part after migration either into a (hybrid) cloud, P0l is the partC of application being run in the captive local data center, and P0OFC is the application part optimized for cloud. If an enterprise application cannot be migrated fully, it could result in some parts being run on the captive local data center while the rest are being migrated into the cloud—essentially a case of a hybrid cloud usage. However, when the entire application is migrated onto the cloud, then P0l is null. Indeed, the migration of the enterprise application P can happen at the five levels of application, code, design, architecture, and usage. It can be that the P0C migration happens at any of the five levels without any P0l component. Compound this with the kind of cloud computing service offering being applied—the IaaS model or PaaS or SaaS model—and we have a variety of migration use cases that need to be thought through thoroughly by the migration architects.

Cloudonomics. Invariably, migrating into the cloud is driven by economicreasons of cost cutting in both the IT capital expenses (Capex) as well as operational expenses (Opex). There are both the short-term benefits of opportunistic migration to offset seasonal and highly variable IT loads as well as the long-term benefits to leverage the cloud. For the long-term sustained usage, as of 2009, several impediments and shortcomings of the cloud computing services need to be addressed.

Deciding on the Cloud Migration

In fact, several proof of concepts and prototypes of the enterprise application are experimented on the cloud to take help in making a sound decision on migrating into the cloud. Post migration, the ROI on the migration should be positive for a broad range of pricing variability. Assume that in the M classes of questions, there was a class with a maximum of N questions. We can then model the weightage-based decision making as M 3 N weightage matrix as follows:

	M
	N
	!

	
	
	X

	X
	
	

	Cl#Bi
	
	Aij Xij# Ch

[bookmark: page171]i51	j51

where Cl is the lower weightage threshold and Ch is the higher weightage threshold while Aij is the specific constant assigned for a question and Xij is the fraction between 0 and 1 that represents the degree to which that answer to the question is relevant and applicable.

THE SEVEN-STEP MODEL OF MIGRATION INTO A	CLOUD

Typically migration initiatives into the cloud are implemented in phases or in stages. A structured and process-oriented approach to migration into a cloud has several advantages of capturing within itself the best practices of many migration projects. While migration has been a difficult and vague subject—of not much interest to the academics and left to the industry practitioners—not many efforts across the industry have been put in to consolidate what has been found to be both a top revenue earner and a long standing customer pain. After due study and practice, we share the Seven-Step Model of Migration into the Cloud as part of our efforts in understanding and leveraging the cloud computing service offerings in the enterprise context. In a succinct way, Figure 2.4 captures the essence of the steps in the model of migration into the cloud, while Figure 2.5 captures the iterative process of the seven-step migration into the cloud.

The first step of the iterative process of the seven-step model of migration is

	basically at the assessment level.
	Proof of concepts or prototypes for various

	approaches
	to the migration
	along with the leveraging of pricing

	parameters
	enables one to make
	appropriate assessments.

[image:]

Conduct Cloud Migration Assessments

Isolate the Dependencies

Map the Messaging & Environment

Re-architect & Implement the lost Functionalities

Leverage Cloud Functionalities & Features

Test the Migration

Iterate and Optimize

FIGURE 2.4. The Seven-Step Model of Migration into the Cloud. (Source: Infosys Research.)

[bookmark: page172][image:]
START

Assess

Optimize	Isolate

END

The Iterative Seven Step

Test	Map

	Augment
	Re-

	
	

FIGURE 2.5. The iterative Seven-step Model of Migration into the Cloud. (Source: Infosys Research.)

Having done the augmentation, we validate and test the new form of the enterprise application with an extensive test suite that comprises testing the components of the enterprise application on the cloud as well. These test results could be positive or mixed. In the latter case, we iterate and optimize as appropriate. After several such optimizing iterations, the migration is deemed successful. Our best practices indicate that it is best to iterate through this Seven-Step Model process for optimizing and ensuring that the migration into the cloud is both robust and comprehensive. Figure 2.6 captures the typical components of the best practices accumulated in the practice of the Seven-Step Model of Migration into the Cloud. Though not comprehensive in enumeration, it is representative.

	[bookmark: page173]Assess
	Isolate
	Map
	Re-Architect
	Augment
	Test
	Optimize

	• Cloudonomics
	• Runtime
	• Messages
	• Approximate
	• Exploit
	• Augment Test
	• Optimize–

	• Migration
	Environment
	mapping:
	lost
	additional
	Cases and
	rework and

	Costs
	• Licensing
	marshalling &
	functionality
	cloud features
	Test
	iterate

	• Recurring
	• Libraries
	de-marshalling
	using cloud
	• Seek Low-cost
	Automation
	• Significantly

	Costs
	Dependency
	• Mapping
	runtime
	augmentations
	• Run Proof-of-
	satisfy

	• Database data
	• Applications
	Environments
	support API
	• Autoscaling
	Concepts
	cloudonomics

	segmentation
	Dependency
	• Mapping
	• New
	• Storage
	• Test Migration
	of migration

	• Database
	• Latencies
	libraries &
	Usecases
	• Bandwidth
	strategy
	• Optimize

	Migration
	Bottlenecks
	runtime
	• Analysis
	• Security
	• Test new
	compliance

	• Functionality
	• Performance
	approximations
	• Design
	
	testcases due
	with standards

	migration
	bottlenecks
	
	
	
	to cloud
	and

	• NFR Support
	• Architectural
	
	
	
	augmentation
	governance

	
	Dependencies
	
	
	
	• Test for
	• Deliver best

	
	
	
	
	
	Production
	migration ROI

	
	
	
	
	
	Loads
	• Develop

	
	
	
	
	
	
	roadmap for

	
	
	
	
	
	
	leveraging new

	
	
	
	
	
	
	cloud features

[image:]

FIGURE 2.6. Some details of the iterative Seven-Step Model of Migration into the Cloud.

Compared with the typical approach to migration into the Amazon AWS, our Seven-step model is more generic, versatile, and comprehensive. The typical migration into the Amazon AWS is a phased over several steps. It is about six steps as discussed in several white papers in the Amazon website and is as follows: The first phase is the cloud migration assessment phase wherein dependencies are isolated and strategies worked out to handle these dependencies. The next phase is in trying out proof of concepts to build a reference migration architecture. The third phase is the data migration phase wherein database data segmentation and cleansing is completed. This phase also tries to leverage the various cloud storage options as best suited. The fourth phase comprises the application migration wherein either a “forklift strategy” of migrating the key enterprise application along with its dependencies (other applications) into the cloud is pursued.

Migration Risks and Mitigation

The biggest challenge to any cloud migration project is how effectively the migration risks are identified and mitigated. In the Seven-Step Model of Migration into the Cloud, the process step of testing and validating includes efforts to identify the key migration risks. In the optimization step, we address various approaches to mitigate the identified migration risks.

There are issues of consistent identity management as well. These and several of the issues are discussed in Section 2.1. Issues and challenges listed in Figure 2.3 continue to be the persistent research and engineering challenges in coming up with appropriate cloud computing implementations.

[bookmark: page174]

2.3	ENRICHING	THE	‘INTEGRATION	AS	A

SERVICE’ PARADIGM FOR THE CLOUD ERA

AN INTRODUCTION

The trend-setting cloud paradigm actually represents the cool conglomeration of a number of proven and promising Web and enterprise technologies. Cloud Infrastructure providers are establishing cloud centers to host a variety of ICT services and platforms of worldwide individuals, innovators, and institutions. Cloud service providers (CSPs) are very aggressive in experimenting and embracing the cool cloud ideas and today every business and technical services are being hosted in clouds to be delivered to global customers, clients and consumers over the Internet communication infrastructure. For example, security as a service (SaaS) is a prominent cloud-hosted security service that can be subscribed by a spectrum of users of any connected device and the users just pay for the exact amount or time of usage. In a nutshell, on-premise and local applications are becoming online, remote, hosted, on-demand and offpremise applications.

Business-to-business (B2B). It is logical to take the integration middleware to clouds to simplify and streamline the enterprise-toenterprise (E2E), enterprise-to-cloud (E2C) and cloud-to-cloud (C2C) integration.

THE EVOLUTION OF SaaS

SaaS paradigm is on fast track due to its innate powers and potentials. Executives, entrepreneurs, and end-users are ecstatic about the tactic as

[bookmark: page175]
The Web is the
well as strategic success of the emerging and evolving SaaS paradigm. A number of positive and progressive developments started to grip this model. Newer resources and activities are being consistently readied to be delivered as a service. Experts and evangelists are in unison that cloud is to rock the total IT community as the best possible infrastructural solution for effective service delivery.

IT as a Service (ITaaS) is the most recent and efficient delivery method in the decisive IT landscape. With the meteoric and mesmerizing rise of the service orientation principles, every single IT resource, activity and infrastructure is being viewed and visualized as a service that sets the tone for the grand unfolding of the dreamt service era. Integration as a service (IaaS) is the budding and distinctive capability of clouds in fulfilling the business integration requirements. Increasingly business applications are deployed in clouds to reap the business and technical benefits. On the other hand, there are still innumerable applications and data sources locally stationed and sustained primarily due to the security reason.

B2B systems are capable of driving this new on-demand integration model because they are traditionally employed to automate business processes between manufacturers and their trading partners. That means they provide application-to-application connectivity along with the functionality that is very crucial for linking internal and external software securely.

The use of hub & spoke (H&S) architecture further simplifies the implementation and avoids placing an excessive processing burden on the customer sides. The hub is installed at the SaaS provider’s cloud

center to do the heavy lifting such as reformatting files.

largest digital information	superhighway

The Web is the largest repository of all kinds of resources such as web pages, applications comprising enterprise components, business services, beans, POJOs, blogs, corporate data, etc.

The Web is turning out to be the open, cost-effective and generic business execution platform (E-commerce, business, auction, etc. happen in the web for global users) comprising a wider variety of containers, adaptors, drivers, connectors, etc.

The Web is the global-scale communication infrastructure (VoIP, Video conferencing, IP TV etc,)

The Web is the next-generation discovery, Connectivity, and integration middleware

Thus the unprecedented absorption and adoption of the Internet is the key driver for the continued success of the cloud computing.

[bookmark: page176]THE CHALLENGES OF SaaS PARADIGM

As with any new technology, SaaS and cloud concepts too suffer a number of limitations. These technologies are being diligently examined for specific situations and scenarios. The prickling and tricky issues in different layers and levels are being looked into. The overall views are listed out below. Loss or lack of the following features deters the massive adoption of clouds

Controllability

Visibility & flexibility

Security and Privacy

High Performance and Availability

Integration and Composition

Standards

A number of approaches are being investigated for resolving the identified issues and flaws. Private cloud, hybrid and the latest community cloud are being prescribed as the solution for most of these inefficiencies and deficiencies. As rightly pointed out by someone in his weblogs, still there are miles to go. There are several companies focusing on this issue. Boomi (http://www.dell.com/) is one among them. This company has published several well-written white papers elaborating the issues confronting those enterprises thinking and trying to embrace the third-party public clouds for hosting their services and applications.

Integration Conundrum. While SaaS applications offer outstandingvalue in terms of features and functionalities relative to cost, they have introduced several challenges specific to integration.

APIs are Insufficient. Many SaaS providers have responded to theintegration challenge by developing application programming interfaces (APIs). Unfortunately, accessing and managing data via an API requires a significant amount of coding as well as maintenance due to frequent API modifications and updates.

Data Transmission Security. SaaS providers go to great length toensure that customer data is secure within the hosted environment. However, the need to transfer data from on-premise systems or

[bookmark: page177]applications behind the firewall with SaaS applications.

For any relocated application to provide the promised value for businesses and users, the minimum requirement is the interoperability between SaaS applications and on-premise enterprise packages.

The Impacts of Clouds. On the infrastructural front, in the recent past,the clouds have arrived onto the scene powerfully and have extended the horizon and the boundary of business applications, events and data. Thus there is a clarion call for adaptive integration engines that seamlessly and spontaneously connect enterprise applications with cloud applications. Integration is being stretched further to the level of the expanding Internet and this is really a litmus test for system architects and integrators.

The perpetual integration puzzle has to be solved meticulously for the originally visualised success of SaaS style.

APPROACHING THE SaaS INTEGRATION ENIGMA

Integration as a Service (IaaS) is all about the migration of the functionality of a typical enterprise application integration (EAI) hub / enterprise service bus (ESB) into the cloud for providing for smooth data transport between any enterprise and SaaS applications. Users subscribe to IaaS as they would do for any other SaaS application. Cloud middleware is the next logical evolution of traditional middleware solutions.

Service orchestration and choreography enables process integration. Service interaction through ESB integrates loosely coupled systems whereas CEP connects decoupled systems.

With the unprecedented rise in cloud usage, all these integration software are bound to move to clouds. SQS also doesn’t promise in-order and exactly-once delivery. These simplifications let Amazon make SQS more scalable, but they also mean that developers must use SQS differently from an on-premise message queuing technology.

As per one of the David Linthicum’s white papers, approaching

SaaS-toenterprise integration is really a matter of making informed and intelligent choices.The need for integration between remote cloud platforms with on-premise enterprise platforms.

[bookmark: page178]Why SaaS Integration is hard?. As indicated in the white paper, there isa mid-sized paper company that recently became a Salesforce.com CRM customer. The company currently leverages an on-premise custom system that uses an Oracle database to track inventory and sales. The use of the Salesforce.com system provides the company with a significant value in terms of customer and sales management.

Having understood and defined the “to be” state, data synchronization technology is proposed as the best fit between the source, meaning Salesforce. com, and the target, meaning the existing legacy system that leverages Oracle. First of all, we need to gain the insights about the special traits and tenets of SaaS applications in order to arrive at a suitable integration route. The constraining attributes of SaaS applications are

● Dynamic nature of the SaaS interfaces that constantly	change

Dynamic nature of the metadata native to a SaaS provider such as Salesforce.com

Managing assets that exist outside of the firewall

Massive amounts of information that need to move between SaaS and on-premise systems daily and the need to maintain data quality and integrity.

As SaaS are being deposited in cloud infrastructures vigorously, we need to ponder about the obstructions being imposed by clouds and prescribe proven solutions. If we face difficulty with local integration, then the cloud integration is bound to be more complicated. The most probable reasons are

New integration scenarios

Access to the cloud may be limited

Dynamic resources

Performance

Limited Access. Access to cloud resources (SaaS, PaaS, and theinfrastructures) is more limited than local applications. Accessing local applications is quite simple and faster. Imbedding integration points in local as well as custom applications is easier.

Dynamic Resources. Cloud resources are virtualized and service-oriented. That is, everything is expressed and exposed as a service. Due to the dynamism factor that is sweeping the whole could ecosystem,

[bookmark: page179]application	versioning	and infrastructural	changes	are	liable	for

dynamic changes.

Performance. Clouds support application scalability and resourceelasticity. However the network distances between elements in the cloud are no longer under our control.

NEW INTEGRATION SCENARIOS

Before the cloud model, we had to stitch and tie local systems together. With the shift to a cloud model is on the anvil, we now have to connect local applications to the cloud, and we also have to connect cloud applications to each other, which add new permutations to the complex integration channel matrix.All of this means integration must criss-cross firewalls somewhere.

Cloud Integration Scenarios. We have identified three major integrationscenarios as discussed below.

Within a Public Cloud (figure 3.1). Two different applications arehosted in a cloud. The role of the cloud integration middleware (say cloud-based ESB or internet service bus (ISB)) is to seamlessly enable these applications to talk to each other. The possible sub-scenarios include these applications can be owned
[image:]

	App1
	ISB
	App2

	
	
	

	
	
	

FIGURE 3.1.	Within a Public	Cloud.

[bookmark: page180][image:]

	Cloud 1
	ISB
	Cloud 2

	
	
	

FIGURE 3.2.	Across Homogeneous Clouds.
[image:]

Public Cloud

ISB

Private Cloud

FIGURE 3.3.	Across Heterogeneous Clouds.

by two different companies. They may live in a single physical server but run on different virtual machines.

Homogeneous Clouds (figure 3.2). The applications to be integrated areposited in two geographically separated cloud infrastructures. The integration middleware can be in cloud 1 or 2 or in a separate cloud.

There is a need for data and protocol transformation and they get done by the ISB. The approach is more or less compatible to enterprise application integration procedure.

[bookmark: page181]Heterogeneous Clouds (figure 3.3). One application is in public cloudand the other application is private cloud.

[bookmark: page182]
THE INTEGRATION METHODOLOGIES

Excluding the custom integration through hand-coding, there are three types for cloud integration

Traditional Enterprise Integration Tools can be empowered with special connectors to access Cloud-located Applications—This is the most likely approach for IT organizations, which have already invested a lot in integration suite for their application integration needs.

Traditional Enterprise Integration Tools are hosted in the Cloud—This approach is similar to the first option except that the integration software suite is now hosted in any third-party cloud infrastructures so that the enterprise does not worry about procuring and managing the hardware or installing the integration software.

Integration-as-a-Service (IaaS) or On-Demand Integration Offerings— These are SaaS applications that are designed to deliver the integration service securely over the Internet and are able to integrate cloud applications with the on-premise systems, cloud-to-cloud applications.

In a nutshell, the integration requirements can be realised using any one of the following methods and middleware products.

Hosted and extended ESB (Internet service bus / cloud integration bus)

Online Message Queues, Brokers and Hubs

Wizard and configuration-based integration platforms (Niche integration solutions)

Integration Service Portfolio Approach

10.Appliance-based Integration (Standalone or Hosted)

With the emergence of the cloud space, the integration scope grows further and hence people are looking out for robust and resilient solutions and services that would speed up and simplify the whole process of integration.

[bookmark: page183]Characteristics of Integration Solutions and Products. The keyattributes of integration platforms and backbones gleaned and gained from integration projects experience are connectivity, semantic mediation, Data mediation, integrity, security, governance etc

Connectivity refers to the ability of the integration engine to engage with both the source and target systems using available native interfaces.

Semantic Mediation refers to the ability to account for the differences between application semantics between two or more systems.

Data Mediation converts data from a source data format into destination data format.

Data Migration is the process of transferring data between storage types, formats, or systems.

Data Security means the ability to insure that information extracted from the source systems has to securely be placed into target systems.

Data Integrity means data is complete and consistent. Thus, integrity has to be guaranteed when data is getting mapped and maintained during integration operations, such as data synchronization between on-premise and SaaS-based systems.

Governance refers to the processes and technologies that surround a system or systems, which control how those systems are accessed and leveraged.

These are the prominent qualities carefully and critically analyzed for when deciding the cloud / SaaS integration providers.

Data Integration Engineering Lifecycle. As business data are stillstored and sustained in local and on-premise server and storage machines, it is imperative for a lean data integration lifecycle. The pivotal phases, as per Mr. David Linthicum, a world-renowned integration expert, are understanding, definition, design, implementation, and testing.

Understanding the existing problem domain means defining the metadata that is native within the source system (say Salesforce.com) and the target system.

Definition refers to the process of taking the information culled

[bookmark: page184]during the previous step and defining it at a high level including what the information represents, ownership, and physical attributes.

Design the integration solution around the movement of data from one point to another accounting for the differences in the

semantics using the underlying data transformation and mediation layer by mapping one schema from the source to the schema of the target.

Implementation refers to actually implementing the data integration solution within the selected technology.

10.Testing refers to assuring that the integration is properlydesigned and implemented and that the data synchronizes properly between the involved systems.

SaaS INTEGRATION PRODUCTS AND PLATFORMS

Cloud-centric integration solutions are being developed and demonstrated for showcasing their capabilities for integrating enterprise and cloud applications. The integration puzzle has been the toughest assignment for long due to heterogeneity and multiplicity-induced complexity.

Jitterbit

Force.com is a Platform as a Service (PaaS), enabling developers to create and deliver any kind of on-demand business application.

	[bookmark: page185][image:]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	Google
	Salesforce
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	Microsoft
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	THE CLOUD
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	Zoho
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	Amazon
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	Yahoo
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

FIGURE 3.4. The Smooth and Spontaneous Cloud Interaction via Open Clouds.

Until now, integrating force.com applications with other on-demand applications and systems within an enterprise has seemed like a daunting and doughty task that required too much time, money, and expertise.

Jitterbit is a fully graphical integration solution that provides users a versatile platform and a suite of productivity tools to reduce the integration efforts sharply. Jitterbit is comprised of two major components:

Jitterbit Integration Environment An intuitive point-and-click graphical UI that enables to quickly configure, test, deploy and manage integration projects on the Jitterbit server.

Jitterbit Integration Server A powerful and scalable run-time engine

that processes all the integration operations, fully configurable and manageable from the Jitterbit application.

Jitterbit is making integration easier, faster, and more affordable than ever before. Using Jitterbit, one can connect force.com with a wide variety

[bookmark: page186][image:]
	
	PROBLEM
	
	SOLUTION

	
	
	Manufacturing
	
	
	Manufacturing
	Consumer

	
	
	
	Consumer
	
	Sales
	

	
	Sales
	
	
	
	
	

	
	
	
	
	
	
	

	R & D
	
	
	Marketing
	R & D
	
	Marketing

	
	
	
	
	
	
	

FIGURE 3.5. Linkage of On-Premise with Online and On-Demand Applications.

of on-premise systems including ERP, databases, flat files and custom applications. The figure 3.5 vividly illustrates how Jitterbit links a number of functional and vertical enterprise systems with on-demand applications

Boomi Software

Boomi AtomSphere is an integration service that is completely on-demand and connects any combination of SaaS, PaaS, cloud, and on-premise applications without the burden of installing and maintaining software packages or appliances. Anyone can securely build, deploy and manage simple to complex integration processes using only a web browser. Whether connecting SaaS applications found in various lines of business or integrating across geographic boundaries,

Bungee Connect

For professional developers, Bungee Connect enables cloud computing by offering an application development and deployment platform that enables highly interactive applications integrating multiple data

[bookmark: page187]sources and facilitating instant deployment.

OpSource Connect

Expands on the OpSource Services Bus (OSB) by providing the infrastructure for two-way web services interactions, allowing customers to consume and publish applications across a common web services infrastructure.

The Platform Architecture. OpSource Connect is made up of keyfeatures including

OpSource Services Bus

OpSource Service Connectors

● OpSource Connect Certified Integrator	Program

OpSource Connect ServiceXchange

OpSource Web Services Enablement Program

The OpSource Services Bus (OSB) is the foundation for OpSource’s turnkey development and delivery environment for SaaS and web companies.

SnapLogic

SnapLogic is a capable, clean, and uncluttered solution for data integration that can be deployed in enterprise as well as in cloud landscapes. The free community edition can be used for the most common point-to-point data integration tasks, giving a huge productivity boost beyond custom code.

Changing data sources. SaaS and on-premise applications, Web APIs, and RSS feeds

Changing deployment options. On-premise, hosted, private and public cloud platforms

Changing delivery needs. Databases, files, and data services

Transformation Engine and Repository. SnapLogic is a single data

[bookmark: page188]integration platform designed to meet data integration needs. The SnapLogic server is built on a core of connectivity and transformation components, which can be used to solve even the most complex data integration scenarios.

The SnapLogic designer provides an initial hint of the web principles at work behind the scenes. The SnapLogic server is based on the web architecture and exposes all its capabilities through web interfaces to outside world.

The Pervasive DataCloud

Platform (figure 3.6) is unique multi-tenant platform. It provides dynamic “compute capacity in the sky” for deploying on-demand integration and other
[image:]

Managem ent
[image:]
	
	Schedule Events
	
	

	
	eCommerce
	
	

	
	
	Users Load Balancer

	
	&
	
	
	

	Resources
	
	
	

	
	Message Queues
	

	Engine
	Engine
	Engine
	Engine
	Engine Queue

	Queue
	Queue
	Queue
	Queue
	Listener

	Listen
	Listen
	Listen
	Listen
	

	er
	er
	er
	er
	

[image:]

Scalable Computing Cluster

[bookmark: page189]
SaaS	SaaS

Applic	Applic

ation	ation

[bookmark: page190]
Customer	Customer

FIGURE	3.6.	Pervasive Integrator	Connects	Different

Resources.

data-centric applications. Pervasive DataCloud is the first multi-tenant platform for delivering the following.

Integration as a Service (IaaS) for both hosted and on-premises applications and data sources

Packaged turnkey integration

Integration that supports every integration scenario

Connectivity to hundreds of different applications and data sources

Pervasive DataCloud hosts Pervasive and its partners’ data-centric applications. Pervasive uses Pervasive DataCloud as a platform for deploying on-demand integration via

The Pervasive DataSynch family of packaged integrations. These are highly affordable, subscription-based, and packaged integration solutions.

Pervasive Data Integrator. This runs on the Cloud or on-premises and is a design-once and deploy anywhere solution to support every integration scenario

Data migration, consolidation and conversion

ETL / Data warehouse

B2B / EDI integration

Application integration (EAI)

SaaS /Cloud integration

SOA / ESB / Web Services

Data Quality/Governance

Hubs

[bookmark: page191]
Pervasive DataCloud provides multi-tenant, multi-application and multicustomer deployment. Pervasive DataCloud is a platform to deploy applications that are

●	Scalable—Its multi-tenant architecture can support multiple users and applications for delivery of diverse data-centric solutions such as data integration. The applications themselves scale to handle fluctuating data volumes.

Flexible—Pervasive DataCloud supports SaaS-to-SaaS, SaaS-to-on premise or on-premise to on-premise integration.

Easy to Access and Configure—Customers can access, configure and run Pervasive DataCloud-based integration solutions via a browser.

Robust—Provides automatic delivery of updates as well as monitoring activity by account, application or user, allowing effortless result tracking.

Secure—Uses the best technologies in the market coupled with the best data centers and hosting services to ensure that the service remains secure and available.

Affordable—The platform enables delivery of packaged solutions in a SaaS-friendly pay-as-you-go model.

Bluewolf

Has announced its expanded “Integration-as-a-Service” solution, the first to offer ongoing support of integration projects guaranteeing successful integration between diverse SaaS solutions, such as salesforce.com, BigMachines, eAutomate, OpenAir and back office systems (e.g. Oracle, SAP, Great Plains, SQL Service and MySQL). Called the Integrator, the solution is the only one to include proactive monitoring and consulting services to ensure integration success. With remote monitoring of integration jobs via a dashboard included as part of the Integrator solution, Bluewolf proactively alerts its customers of any issues with integration and helps to solves them quickly.

Online MQ

[bookmark: page192]Online MQ is an Internet-based queuing system. It is a complete and secure online messaging solution for sending and receiving messages over any network. It is a cloud messaging queuing service.

Ease of Use. It is an easy way for programs that may each be running on different platforms, in different systems and different networks, to communicate with each other without having to write any low-level communication code.

No Maintenance. No need to install any queuing software/server and no need to be concerned with MQ server uptime, upgrades and maintenance.

Load Balancing and High Availability. Load balancing can be achieved on a busy system by arranging for more than one program instance to service a queue. The performance and availability features are being met through clustering. That is, if one system fails, then the second system can take care of users’ requests without any delay.

Easy Integration. Online MQ can be used as a web-service (SOAP) and as a REST service. It is fully JMS-compatible and can hence integrate easily with any Java EE application servers. Online MQ is not limited to any specific platform, programming language or communication protocol.

CloudMQ

This leverages the power of Amazon Cloud to provide enterprise-grade message queuing capabilities on demand. Messaging allows us to reliably break up a single process into several parts which can then be executed asynchronously.

Linxter

Linxter is a cloud messaging framework for connecting all kinds of applications, devices, and systems. Linxter is a behind-the-scenes, messageoriented and cloud-based middleware technology and smoothly automates the complex tasks that developers face when creating communication-based products and services.

Online MQ, CloudMQ and Linxter are all accomplishing message-based application and service integration. As these suites are being hosted in clouds, messaging is being provided as a service to hundreds of distributed and enterprise applications using the much-maligned multi-tenancy property. “Messaging middleware as a service (MMaaS)” is the grand derivative of the SaaS paradigm.

[bookmark: page193]

SaaS INTEGRATION SERVICES

We have seen the state-of-the-art cloud-based data integration platforms for real-time data sharing among enterprise information systems and cloud applications.

There are fresh endeavours in order to achieve service composition in cloud ecosystem. Existing frameworks such as service component architecture (SCA) are being revitalised for making it fit for cloud environments. Composite applications, services, data, views and processes will be become cloud-centric and hosted in order to support spatially separated and heterogeneous systems.

Informatica On-Demand

Informatica offers a set of innovative on-demand data integration solutions called Informatica On-Demand Services. This is a cluster of easy-to-use SaaS offerings, which facilitate integrating data in SaaS applications, seamlessly and securely across the Internet with data in on-premise applications. There are a few key benefits to leveraging this maturing technology.

Rapid development and deployment with zero maintenance of the integration technology.

● Automatically upgraded and continuously enhanced by	vendor.

Proven SaaS integration solutions, such as integration with Salesforce

.com, meaning that the connections and the metadata understanding are provided.

Proven data transfer and translation technology, meaning that core integration services such as connectivity and semantic mediation are built into the technology.

Informatica On-Demand has taken the unique approach of moving its industry leading PowerCenter Data Integration Platform to the hosted model and then configuring it to be a true multi-tenant solution.

[bookmark: page194]Microsoft Internet Service Bus (ISB)

Azure is an upcoming cloud operating system from Microsoft. This makes development, depositing and delivering Web and Windows application on cloud centers easier and cost-effective.

Microsoft .NET Services. is a set of Microsoft-built and hosted cloudinfrastructure services for building Internet-enabled applications and the ISB acts as the cloud middleware providing diverse applications with a common infrastructure to name, discover, expose, secure and orchestrate web services. The following are the three broad areas.

.NET Service Bus. The .NET Service Bus (figure 3.7) provides a hosted,secure, and broadly accessible infrastructure for pervasive communication,
[image:]

Console Application Exposing Web Services
[image:]

	End Users
	End Users

	
	Azure Service Platform

	Google App Engine
	Windows Azure

via Service Bus

FIGURE 3.7.	.NET Service Bus.

[bookmark: page195]
large-scale event distribution, naming, and service publishing. Services can be exposed through the Service Bus Relay, providing connectivity options for service endpoints that would otherwise be difficult or impossible to reach.

.NET Access Control Service. The .NET Access Control Service is ahosted, secure, standards-based infrastructure for multiparty, federated authentication, rules-driven, and claims-based authorization.

.NET Workflow Service. The .NET Workflow Service provide a hostedenvironment for service orchestration based on the familiar Windows Workflow Foundation (WWF) development experience.

The most important part of the Azure is actually the service bus represented as a WCF architecture. The key capabilities of the Service Bus are

A federated namespace model that provides a shared, hierarchical namespace into which services can be mapped.

A service registry service that provides an opt-in model for publishing service endpoints into a lightweight, hierarchical, and RSS-based discovery mechanism.

● A lightweight and scalable publish/subscribe event	bus.

A relay and connectivity service with advanced NAT traversal and pullmode message delivery capabilities acting as a “perimeter network (also known as DMZ, demilitarized zone, and screened subnet) in the sky”

Relay Services. Often when we connect a service, it is located behindthe firewall and behind the load balancer. Its address is dynamic and can be

[bookmark: page196][image:]
Relay Service

Client	Service

FIGURE 3.8.	The .NET Relay Service.

resolved only on local network. When we are having the service call-backs to the client, the connectivity challenges lead to scalability, availability and security issues. The solution to Internet connectivity challenges is instead of connecting client directly to the service we can use a relay service as pictorially represented in the relay service figure 3.8.

BUSINESSES-TO-BUSINESS INTEGRATION (B2Bi) SERVICES

B2Bi has been a mainstream activity for connecting geographically distributed businesses for purposeful and beneficial cooperation. Products vendors have come out with competent B2B hubs and suites for enabling smooth data sharing in standards-compliant manner among the participating enterprises.

Just as these abilities ensure smooth communication between manufacturers and their external suppliers or customers, they also enable reliable interchange between hosted and installed applications.

The IaaS model also leverages the adapter libraries developed by B2Bi vendors to provide rapid integration with various business systems.

[bookmark: page197]Cloudbased Enterprise Mashup Integration Services for B2B Scenarios

. There is a vast need for infrequent, situational and ad-hoc B2Bapplications desired by the mass of business end-users..

Especially in the area of applications to support B2B collaborations, current offerings are characterized by a high richness but low reach, like B2B hubs that focus on many features enabling electronic collaboration, but lack availability for especially small organizations or even individuals.

Enterprise Mashups, a kind of new-generation Web-based applications, seem to adequately fulfill the individual and heterogeneous requirements of end-users and foster End User Development (EUD).

Another challenge in B2B integration is the ownership of and responsibility for processes. In many inter-organizational settings, business processes are only sparsely structured and formalized, rather

	loosely coupled and/or based
	on
	ad-hoc
	cooperation.
	Inter-

	organizational collaborations tend
	to
	involve
	more and
	more

	participants and the growing number of participants
	also draws a huge

amount of differing requirements.

Now, in supporting supplier and partner co-innovation and customer cocreation, the focus is shifting to collaboration which has to embrace the participants, who are influenced yet restricted by multiple domains of control and disparate processes and practices.

Both Electronic data interchange translators (EDI) and Managed file transfer (MFT) have a longer history, while B2B gateways only have emerged during the last decade.

Enterprise Mashup Platforms and Tools.

Mashups are the adept combination of different and distributed resources including content, data or application functionality. Resources represent the core building blocks for mashups. Resources can be accessed through APIs, which encapsulate the resources and describe the interface through which they are made available. Widgets or gadgets primarily put a face on the underlying resources by providing a graphical representation for them and piping the data received from the resources. Piping can include operators like aggregation, merging or filtering. Mashup platform is a Web based tool that allows the creation of Mashups by piping resources into Gadgets and wiring Gadgets together.

The Mashup integration services are being implemented as a prototype in the FAST project. The layers of the prototype are illustrated in figure 3.9 illustrating the architecture, which describes how these services work together. The authors of this framework have given an outlook on the technical realization of the services using cloud

[bookmark: page198]infrastructures and	services.

[bookmark: page199]
COMPANY	A	COMPANY B
[image:]

	HTTP
	HTTP
	HTTP
	HTTP
	HTTP
	HTTP

	R
	R
	R
	R
	R
	R

	
	
	
	
	
	Enterprise Mashup Platform
	
	
	
	
	
	
	
	Enterprise Mashup Platform

	
	
	
	
	
	
	
	(i.e. FAST)
	
	
	
	
	
	
	
	(i.e. SAP Research Rooftop)

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	R
	
	
	
	
	
	
	
	
	
	
	
	R
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	REST
	
	
	
	
	
	
	
	
	
	
	REST
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Mashup
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	Integration Service Logic
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Integration
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Services
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Platform
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	(i.e., Google
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	Identity
	
	
	
	
	
	
	
	
	
	Routing Engine
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	Management
	
	Error Handling
	
	Translation
	
	
	
	Persistent
	
	
	Message
	

	
	
	
	
	
	
	
	
	and Monitoring
	
	
	Engine
	
	
	
	Storage
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	Organization
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Semantic
	
	
	
	
	
	Infrastructure

	
	
	
	
	
	
	R
	
	
	
	
	
	
	
	
	
	
	R
	
	
	R
	
	R
	
	
	
	
	R

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Cloud Based
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[image:][image:][image:]
[bookmark: page200]

	OpenID/Oauth
	MuleonDemand
	MuleonDemand
	Amazon S3
	Amazon SQS

FIGURE	3.9.	Cloudbased Enterprise Mashup Integration Platform

Architecture.

To simplify this, a Gadget could be provided for the end-user. The routing engine is also connected to a message queue via an API. Thus, different message queue engines are attachable. The message queue is responsible for storing and forwarding the messages controlled by the routing engine. Beneath the message queue, a persistent storage, also connected via an API to allow exchangeability, is available to store large data. The error handling and monitoring service allows tracking the message-flow to detect errors and to collect statistical data. The Mashup integration service is hosted as a cloud-based service. Also, there are cloud-based services available which provide the functionality required by the integration service. In this way, the Mashup integration service can reuse and leverage the existing cloud services to speed up the implementation.

Message	Queue.	The	message	queue	could	be	realized	by	using

Amazon’s Simple Queue Service (SQS). SQS is a web-service which provides a queue for messages and stores them until they can be processed. The Mashup integration services, especially the routing engine, can put messages into the queue and recall them when they are needed.

[bookmark: page201]
Persistent Storage. Amazon Simple Storage Service5 (S3) is also awebservice. The routing engine can use this service to store large files.

Translation Engine. This is primarily focused on translating betweendifferent protocols which the Mashup platforms it connects can understand, e.g. REST or SOAP web services. However, if the need of translation of the objects transferred arises, this could be attached to the translation engine.

Interaction between the Services. The diagram describes the process ofa message being delivered and handled by the Mashup Integration Services Platform. The precondition for this process is that a user already established a route to a recipient.

A FRAMEWORK OF SENSOR—CLOUD INTEGRATION

In the past few years, wireless sensor networks (WSNs) have been gaining significant attention because of their potentials of enabling of novel and attractive solutions in areas such as industrial automation, environmental monitoring, transportation business, health-care etc.

With the faster adoption of micro and nano technologies, everyday things are destined to become digitally empowered and smart in their operations and offerings. Thus the goal is to link smart materials, appliances, devices, federated messaging middleware, enterprise information systems and packages, ubiquitous services, handhelds, and sensors with one another smartly to build and sustain cool, charismatic and catalytic situation-aware applications.

[bookmark: page202]A virtual community consisting of team of researchers have come together to solve a complex problem and they need data storage, compute capability, security; and they need it all provided now. For example, this team is working on an outbreak of a new virus strain moving through a population. This requires more than a Wiki or other social organization tool. They deploy bio-sensors on patient body to monitor patient condition continuously and to use this data for large and multi-scale simulations to track the spread of infection as well as the virus mutation and possible cures. This may require computational resources and a platform for sharing data and results that are not immediately available to the team.

Traditional HPC approach like Sensor-Grid model can be used in this case, but setting up the infrastructure to deploy it so that it can scale out quickly is not easy in this environment. However, the cloud paradigm is an excellent move.

Here, the researchers need to register their interests to get various patients’ state (blood pressure, temperature, pulse rate etc.) from bio-sensors for largescale parallel analysis and to share this information with each other to find useful solution for the problem. So the sensor data needs to be aggregated, processed and disseminated based on subscriptions.

To integrate sensor networks to cloud, the authors have proposed a contentbased pub-sub model. In this framework, like MQTT-S, all of the system complexities reside on the broker’s side but it differs from

MQTT-S in that it uses content-based pubsub broker rather than topic-based which is suitable for the application scenarios considered.

To deliver published sensor data or events to subscribers, an efficient and scalable event matching algorithm is required by the pub-sub broker.

Moreover, several SaaS applications may have an interest in the same sensor data but for different purposes. In this case, the SA nodes would need to manage and maintain communication means with multiple applications in parallel. This might exceed the limited capabilities of the simple and low-cost SA devices. So pub-sub broker is needed and it is located in the cloud side because of its higher performance in terms of bandwidth and capabilities. It has four components describes as follows:

[bookmark: page203][image:]

	
	Social Network
	
	
	
	
	
	

	
	
	of doctors for
	
	
	
	
	
	

	
	
	monitoring
	Environmental
	
	
	Urban Trafic
	
	

	
	
	patient
	
	
	
	
	
	

	
	
	
	data analysis
	
	
	
	
	

	
	
	healthcare for
	
	
	
	prediction
	
	

	
	
	
	and
	
	
	
	
	

	
	
	virus infection
	
	
	
	and
	
	Other data

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	analysis or

	WSN 1
	
	1
	1
	
	
	1
	
	1

	
	
	
	
	
	
	
	
	

	
	Gateway
	
	
	
	
	
	

	
	
	
	
	
	
	System
	
	

	
	
	
	Application Specific 2
	
	
	3
	Provisioning

	
	
	
	
	
	
	
	
	

	
	
	
	Services
	
	
	3
	
	

	
	
	
	
	
	3
	
	
	4

	
	Actuator
	
	2
	
	
	
	
	

	
	
	Gateway
	
	4
	
	Monitoring
	
	4

	
	
	
	
	
	
	
	
	

	Sensor
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

Servers

	WSN 2
	Gateway
	Event
	Registry
	Mediator
	Service

	
	
	Monitoring Analyzer
	
	

	
	
	
	
	

	
	
	
	
	

	
	3
	Processing Dissem-

	
	
	

	
	
	Policy

	
	
	Sensor

	Actuator
	Gateway
	Collaborator

	
	
	

Sensor

Cloud Provider (CLP)

FIGURE 3.10.	The Framework Architecture of Sensor—Cloud

Integration.

Stream monitoring and processing component (SMPC). The sensorstream comes in many different forms. In some cases, it is raw data that must be captured, filtered and analyzed on the fly and in other cases, it is stored or cached. The style of computation required depends on the nature of the streams. So the SMPC component running on the cloud monitors the event streams and invokes correct analysis method. Depending on the data rates and the amount of processing that is required, SMP manages parallel execution framework on cloud.

Registry component (RC). Different SaaS applications register to pub-subbroker for various sensor data required by the community user.

Analyzer component (AC). When sensor data or events come to the pub-

[bookmark: page204]sub broker, analyzer component determines which applications they are belongs to and whether they need periodic or emergency deliver.

Disseminator component (DC). For each SaaS application, it disseminatessensor data or events to subscribed users using the event matching algorithm. It can utilize cloud’s parallel execution framework for fast event delivery. The pub-sub components workflow in the framework is as follows:

Users register their information and subscriptions to various SaaS applications which then transfer all this information to pub/sub broker registry. When sensor data reaches to the system from gateways, event/stream monitoring and processing component (SMPC) in the pub/sub broker determines whether it needs processing or just store for periodic send or for immediate delivery.

Mediator. The (resource) mediator is a policy-driven entity within a VO toensure that the participating entities are able to adapt to changing circumstances and are able to achieve their objectives in a dynamic and uncertain environment.

Policy Repository (PR). The PR virtualizes all of the policies within theVO. It includes the mediator policies, VO creation policies along with any policies for resources delegated to the VO as a result of a collaborating arrangement.

Collaborating Agent (CA). The CA is a policy-driven resource discoverymodule for VO creation and is used as a conduit by the mediator to exchange policy and resource information with other CLPs.

SaaS INTEGRATION APPLIANCES

Appliances are a good fit for high-performance requirements. Clouds too have gone in the same path and today there are cloud appliances (also termed as “cloud in a box”). In this section, we are to see an integration appliance.

Cast Iron Systems . This is quite different from the above-mentionedschemes. Appliances with relevant software etched inside are being established as a high-performance and hardware-centric solution for several

[bookmark: page205]IT needs.

Cast Iron Systems (www.ibm.com) provides pre-configured solutions for each of today’s leading enterprise and On-Demand applications. These solutions, built using the Cast Iron product offerings offer out-of-the-box connectivity to specific applications, and template integration processes (TIPs) for the most common integration scenarios.

2.4 THE ENTERPRISE CLOUD COMPUTING

PARADIGM

Cloud computing is still in its early stages and constantly undergoing changes as new vendors, offers, services appear in the cloud market. Enterprises will place stringent requirements on cloud providers to pave the way for more widespread adoption of cloud computing, leading to what is known as the enterprise cloud paradigm computing. Enterprise cloud computing is the alignment of a cloud computing model with an organization’s business objectives (profit, return on investment, reduction of operations costs) and processes. This chapter explores this paradigm with respect to its motivations, objectives, strategies and methods.

Section 4.2 describes a selection of deployment models and strategies for enterprise cloud computing, while Section 4.3 discusses the issues of moving [traditional] enterprise applications to the cloud. Section 4.4 describes the technical and market evolution for enterprise cloud computing, describing some potential opportunities for multiple stakeholders in the provision of enterprise cloud computing.

[bookmark: page206]
BACKGROUND

According to NIST [1], cloud computing is composed of five essential characteristics: on-demand self-service, broad network access, resource pooling, rapid elasticity, and measured service. The ways in which these characteristics are manifested in an enterprise context vary according to the deployment model employed.

Relevant Deployment Models for Enterprise Cloud Computing

There are some general cloud deployment models that are accepted by the majority of cloud stakeholders today, as suggested by the references [1] and and discussed in the following:

Public clouds are provided by a designated service provider for generalpublic under a utility based pay-per-use consumption model.

Private clouds are built, operated, and managed by an organization for itsinternal use only to support its business operations exclusively.

Virtual private clouds are a derivative of the private cloud deploymentmodel but are further characterized by an isolated and secure segment of resources, created as an overlay on top of public cloud infrastructure using advanced network virtualization capabilities..

Community clouds are shared by several organizations and support aspecific community that has shared concerns (e.g., mission, security requirements, policy, and compliance considerations).

Managed clouds arise when the physical infrastructure is owned by and/orphysically located in the organization’s data centers with an extension of management and security control plane controlled by the managed service provider .

Hybrid clouds are a composition of two or more clouds (private,community, or public) that remain unique entities but are bound together by standardized or proprietary technology that enables data and application portability (e.g., cloud bursting for load-balancingbetween clouds).

Adoption and Consumption Strategies

The selection of strategies for enterprise cloud computing is critical for IT capability as well as for the earnings and costs the organization experiences, motivating efforts toward convergence of business strategies and IT. Some critical questions toward this convergence in the enterprise cloud paradigm are as follows:

[bookmark: page207]
Will an enterprise cloud strategy increase overall business value?

Are the effort and risks associated with transitioning to an enterprise cloud strategy worth it?

Which areas of business and IT capability should be considered for the enterprise cloud?

● Which cloud offerings are relevant for the purposes of an	organization?

How can the process of transitioning to an enterprise cloud strategy be piloted and systematically executed?

These questions are addressed from two strategic perspectives: (1) adoption and (2) consumption. Figure 4.1 illustrates a framework for enterprise cloud adoption strategies, where an organization makes a decision to adopt a cloud computing model based on fundamental drivers for cloud computing— scalability, availability, cost and convenience. The notion of a Cloud Data Center (CDC) is used, where the CDC could be an external, internal or federated provider of infrastructure, platform or software services.

An optimal adoption decision cannot be established for all cases because the types of resources (infrastructure, storage, software) obtained from a CDC depend on the size of the organisation understanding of IT impact on business, predictability of workloads, flexibility of existing IT landscape and available budget/resources for testing and piloting. The strategic decisions using these four basic drivers are described in following, stating objectives, conditions and actions.

[bookmark: page208][image:]

Cloud Data Center(s)

(CDC)

Availability-driven:

Use of load-balanced and localised cloud resources to increase availability and reduce response time

Conveniencedriv en: Use cloudresources so that there is no need to maintain local resources.

Market-driven:

Users and providers of cloud resources make decisions based on the potential saving and profit

Scalability-driven: Use of cloudresources to support additional load or as back-up.

FIGURE 4.1. Enterprise cloud adoption strategies using fundamental cloud	drivers.

5. Scalability-Driven	Strategy.	The	objective	is	to	support	increasing

[bookmark: page209]workloads of the organization without investment and expenses exceeding returns.

Availability-Driven Strategy. Availability has close relations to scalability but is more concerned with the assurance that IT capabilities and functions are accessible, usable and acceptable by the standards of users.

Market-Driven Strategy. This strategy is more attractive and viable for small, agile organizations that do not have (or wish to have) massive investments in their IT infrastructure.

[bookmark: page210][image:]

(1) Software Provision: Cloud provides instances

of software but data is maintained within user’s

(5) Solution Provision: Software and storageare maintained in cloud and the user does not maintain a data center

(2) Storage Provision: Cloud provides data

management and software accesses data

(6) Redundancy Services: Cloud is used as analternative or extension of user’s data center for software and storage

[bookmark: page211]
FIGURE 4.2. Enterprise cloud consumption	strategies.

on their profiles and requests service requirements .

Convenience-Driven Strategy. The objective is to reduce the load and need for dedicated system administrators and to make access to IT capabilities by users easier, regardless of their location and connectivity (e.g. over the Internet).

There are four consumptions strategies identified, where the differences in objectives, conditions and actions reflect the decision of an organization to trade-off hosting costs, controllability and resource elasticity of IT resources for software and data. These are discussed in the following.

Software Provision. This strategy is relevant when the elasticity requirement is high for software and low for data, the controllability concerns are low for software and high for data, and the cost reduction concerns for software are high, while cost reduction is not a priority for data, given the high controllability concerns for data, that is, data are highly sensitive.

Storage Provision. This strategy is relevant when the elasticity requirements is high for data and low for software, while the controllability of software is more critical than for data. This can be the case for data intensive applications, where the results from processing in the application are more critical and sensitive than the data itself.

Solution Provision. This strategy is relevant when the elasticity and cost reduction requirements are high for software and data, but the controllability requirements can be entrusted to the CDC.

Redundancy Services. This strategy can be considered as a hybrid enterprise cloud strategy, where the organization switches between traditional, software, storage or solution management based on changes in its operational conditions and business demands.

Even though an organization may find a strategy that appears to provide it significant benefits, this does not mean that immediate adoption of the strategy is advised or that the returns on investment will be observed immediately.

ISSUES FOR ENTERPRISE APPLICATIONS ON THE	CLOUD

[bookmark: page212]
Enterprise Resource Planning (ERP) is the most comprehensive definition of enterprise application today. For these reasons, ERP solutions have emerged as the core of successful information management and the enterprise backbone of nearly any organization . Organizations that have successfully implemented the ERP systems are reaping the benefits of having integrating working environment, standardized process and operational benefits to the organization .

One of the first issues is that of infrastructure availability. Al-Mashari and Yasser argued that adequate IT infrastructure, hardware and networking are crucial for an ERP system’s success.

One of the ongoing discussions concerning future scenarios considers varying infrastructure requirements and constraints given different workloads and development phases. Recent surveys among companies in North America and Europe with enterprise-wide IT systems showed that nearly all kinds of workloads are seen to be suitable to be transferred to IaaS offerings.

Considering Transactional and Analytical Capabilities

Transactional type of applications or so-called OLTP (On-line Transaction Processing) applications, refer to a class of systems that manage transactionoriented applications, typically using relational databases. These applications rely on strong ACID (atomicity, consistency, isolation,durability) properties and are relatively write/update-intensive. Typical OLTP-type ERP components are sales and distributions (SD), banking and financials, customer relationship management (CRM) and supply chain management (SCM).

One can conclude that analytical applications will benefit more than their transactional counterparts from the opportunities created by cloud computing, especially on compute elasticity and efficiency.

2.4.1	TRANSITION CHALLENGES

The very concept of cloud represents a leap from traditional approach for IT to deliver mission critical services. With any leap comes the gap of risk and challenges to overcome. These challenges can be classified in five different categories, which are the five aspects of the enterprise cloud stages: build, develop, migrate, run, and consume (Figure 4.3).

The requirement for a company-wide cloud approach should then become the number one priority of the CIO, especially when it comes to having a coherent and cost effective development and migration of services on this architecture.

[bookmark: page213][image:]
Develop

Build	Run	Consume

Migrate

FIGURE 4.3. Five stages of the	cloud.

A second challenge is migration of existing or “legacy” applications to “the cloud.” The expected average lifetime of ERP product is B15 years, which means that companies will need to face this aspect sooner than later as they try to evolve toward the new IT paradigm.

The ownership of enterprise data conjugated with the integration with others applications integration in and from outside the cloud is one of the key challenges. Future enterprise application development frameworks will need to enable the separation of data management from ownership. From this, it can be extrapolated that SOA, as a style, underlies the architecture and, moreover, the operation of the enterprise cloud.

One of these has been notoriously hard to upgrade: the human factor; bringing staff up to speed on the requirements of cloud computing with respect to architecture, implementation, and operation has always been a tedious task.

Once the IT organization has either been upgraded to provide cloud or is able to tap into cloud resource, they face the difficulty of maintaining the services in the cloud. The first one will be to maintain interoperability between in-house infrastructure and service and the CDC (Cloud Data Center).

	Before leveraging such
	features, much more basic functionalities are

	problematic: monitoring,
	troubleshooting, and comprehensive
	capacity

	planning are actually missing in most offers. Without such features it
	becomes

very hard to gain visibility into the return on investment and the consumption of cloud services.

Today there are two major cloud pricing models: Allocation based and Usage based . The first one is provided by the poster child of cloud computing, namely, Amazon. The principle relies on allocation of resource for a fixed amount of time. As companies need to evaluate the offers they need to also include the hidden costs such as lost IP, risk, migration, delays and provider overheads. This combination can be compared to trying to choose a new mobile

[bookmark: page214]with carrier plan.The market dynamics will hence evolve alongside the technology for the enterprise cloud computing paradigm.

ENTERPRISE CLOUD TECHNOLOGY AND MARKET	EVOLUTION

This section discusses the potential factors which will influence this evolution of cloud computing and today’s enterprise landscapes to the enterprise computing paradigm, featuring the convergence of business and IT and an open, service oriented marketplace.

Technology Drivers for Enterprise Cloud Computing Evolution

This will put pressure on cloud providers to build their offering on open interoperable standards to be considered as a candidate by enterprises. There have been a number initiatives emerging in this space. Amazon, Google, and Microsoft, who currently do not actively participate in these efforts. True interoperability across

[bookmark: page215]
the board in the near future seems unlikely. However, if achieved, it could lead to facilitation of advanced scenarios and thus drive the mainstream adoption of the enterprise cloud computing paradigm.

Part of preserving investments is maintaining the assurance that cloud resources and services powering the business operations perform according to the business requirements. Underperforming resources or service disruptions lead to business and financial loss, reduced business credibility, reputation, and marginalized user productivity. Another important factor in this regard is lack of insights into the performance and health of the resources and service deployed on the cloud, such that this is another area of technology evolution that will be pushed.

This would prove to be a critical capability empowering third-party organizations to act as independent auditors especially with respect to SLA compliance auditing and for mediating the SLA penalty related issues.

Emerging trend in the cloud application space is the divergence from the traditional RDBMS based data store backend. Cloud computing has given rise to alternative data storage technologies (Amazon Dynamo, Facebook Cassandra, Google BigTable, etc.) based on key-type storage models as compared to the relational model, which has been the mainstream choice for data storage for enterprise applications.

As these technologies evolve into maturity, the PaaS market will consolidate into a smaller number of service providers. Moreover, big traditional software vendors will also join this market which will potentially trigger this consolidation through acquisitions and mergers. These views are along the lines of the research published by Gartner. Gartner predicts that from 2011 to 2015 market competition and maturing developer practises will drive consolidation around a small group of industry-dominant cloud technology providers.

A recent report published by Gartner presents an interesting perspective on cloud evolution. The report argues that as cloud services proliferate, services would become complex to be handled directly by the consumers. To cope with these scenarios, meta-services or cloud brokerage services will emerge. These brokerages will use several types of brokers and platforms to enhance service delivery and, ultimately service value. According to Gartner, before these scenarios can be enabled, there is a need for brokerage business to use these brokers and platforms. According to Gartner, the following types of cloud service brokerages (CSB) are foreseen:

Cloud Service Intermediation. An intermediation broker providers a service that directly enhances a given service delivered one or more service consumers, essentially on top of a given service to enhance a specific capability.

Aggregation. An aggregation brokerage service combines multiple services into one or more new services.

Cloud Service Arbitrage. These services will provide flexibility and opportunistic choices for the service aggregator.

[bookmark: page216]
The above shows that there is potential for various large, medium, and small organizations to become players in the enterprise cloud marketplace. The dynamics of such a marketplace are still to be explored as the enabling technologies and standards continue to mature.

BUSINESS DRIVERS TOWARD A MARKETPLACE FOR

ENTERPRISE CLOUD COMPUTING

In order to create an overview of offerings and consuming players on the market, it is important to understand the forces on the market and motivations of each player.

The Porter model consists of five influencing factors/views (forces) on the market (Figure 4.4). The intensity of rivalry on the market is traditionally influenced by industry-specific characteristics :

●	Rivalry: The amount of companies dealing with cloud and virtualization technology is quite high at the moment; this might be a sign for high
[image:]

New Market Entrants

• Geographical factors

• Entrant strategy

• Routes to market

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	Suppliers
	
	
	
	
	Cloud Market
	
	
	
	Buyers (Consumers)
	

	
	•
	Level of quality
	
	
	
	•
	Cost structure
	
	
	•
	Buyer size
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	• Supplier’s size
	
	
	
	• Product/service ranges
	
	
	• Buyers number
	

	
	•
	Bidding processes/
	
	
	
	•
	Differentiation, strategy
	
	
	•
	Product/service
	

	
	
	capabilities
	
	
	
	•
	Number/size of players
	
	
	•
	Requirements
	

Technology Development

Substitutes

Trends

Legislative effects

FIGURE 4.4. Porter’s five forces market model (adjusted for the cloud market)	.

	[bookmark: page217]BUSINESS DRIVERS TOWARD A MARKETPLACE FOR ENTERPRISE
	113

rivalry. But also the products and offers are quite various, so many niche products tend to become established.

●	Obviously, the cloud-virtualization market is presently booming and will keep growing during the next years. Therefore the fight for customers and struggle for market share will begin once the market becomes saturated and companies start offering comparable products.

The initial costs for huge data centers are enormous. By building up federations of computing and storing utilities, smaller companies can try to make use of this scale effect as well.

Low switching costs or high exit barriers influence rivalry. When a customer can freely switch from one product to another, there is a greater struggle to capture customers. From the opposite point of view high exit barriers discourage customers to buy into a new technology. The trends towards standardization of formats and architectures try to face this problem and tackle it. Most current cloud providers are only paying attention to standards related to the interaction with the end user. However, standards for clouds interoperability are still to be developed .

[bookmark: page218][image:]Market

Regulations	Business Model	Hype

Market

Technology

FIGURE 4.5. Dynamic business models (based on [49] extend by influence factors identified by [50]).

.

THE CLOUD SUPPLY CHAIN

One indicator of what such a business model would look like is in the complexity of deploying, securing, interconnecting and maintaining enterprise landscapes and solutions such as ERP, as discussed in Section 4.3. The concept of a Cloud Supply Chain (C-SC) and hence Cloud Supply Chain Management (C-SCM) appear to be viable future business models for the enterprise cloud computing paradigm. The idea of C-SCM represents the management of a network of interconnected businesses involved in the end-to-end provision of product and service packages required by customers. The established understanding of a supply chain is two or more parties linked by a flow of goods, information, and funds [55], [56] A specific definition for a C-SC is hence: “two or more parties linked by the provision of cloud services, related information and funds.” Figure 4.6 represents a concept for the C-SC, showing the flow of products along different organizations such as hardware suppliers, software component suppliers, data center operators, distributors and the end customer.

Figure	4.6	also	makes	a distinction	between innovative	and	functional

[bookmark: page219]products in the C-SC. Fisher classifies products primarily on the basis of their demand patterns into two categories: primarily functional or primarily innovative [57]. Due to their stability, functional products favor competition, which leads to low profit margins and, as a consequence of their properties, to low inventory costs, low product variety, low stockout costs, and low obsolescence [58], [57]. Innovative products are characterized by additional (other) reasons for a customer in addition to basic needs that lead to purchase, unpredictable demand (that is high uncertainties, difficult to forecast and variable demand), and short product life cycles (typically 3 months to 1 year). Cloud services

Cloud services, information, funds
[image:]

	
	Data center
	

	Fuctional
	operator
	Distributor

	
	
	

	
	
	

End

customer
Product	Cloud supply chain

Innovative

	Hardware
	Component

	supplier
	supplier

Potential Closed Loop Cooperation

FIGURE 4.6. Cloud supply chain	(C-SC).

[bookmark: page220]
should fulfill basic needs of customers and favor competition due to their reproducibility. Table 4.1 presents a comparison of Traditional

TABLE 4.1. Comparison of Traditional and Emerging ICT Supply Chainsa

	
	
	
	
	
	
	Emerging ICT

	
	
	
	
	
	
	

	
	
	
	Traditional Supply
	Chain Concepts
	
	Concepts

	
	
	Efficient SC
	Responsive SC
	
	Cloud SC

	Primary
	goal
	Supply demand at
	Respond quickly
	
	Supply demand at the

	
	
	
	
	
	
	

	
	
	the lowest level of
	to demand
	
	lowest level of costs

	
	
	
	(changes)
	
	and respond quickly

	
	
	cost
	
	
	

	
	
	
	
	
	to demand

	
	
	
	
	
	
	

	Product design
	
	Maximize
	Create modularity
	
	Create modularity to

	strategy
	
	
	performance at the
	to allow
	
	allow individual

	
	
	
	minimum product
	postponement
	
	setting while

	
	
	
	cost
	
	
	maximizing the

	
	
	
	
	of product
	
	performance of

	
	
	
	
	differentiation
	
	services

	Pricing
	strategy
	
	Lower margins
	Higher margins,
	
	Lower margins, as

	
	
	
	
	because price is
	
	high competition and

	
	
	
	because price is a
	not a prime
	
	comparable products

	
	
	
	prime customer
	customer driver
	
	

	
	
	
	driver
	
	
	

	Manufacturing
	Lead time strategy
	Lower costs

	
	
	

	strategy
	
	through high

	
	
	utilization

	
	Supplier strategy
	Minimize

	Inventory
	
	inventory to

	strategy
	
	lower cost

	
	Transportation
	

	
	strategy
	

Reduce but not at the expense of costs

Select based on cost and quality

Greater reliance on low cost modes

[bookmark: page221]Maintain capacity flexibility to meet unexpected demand

Maintain buffer inventory to meet unexpected demand

Aggressively reduce even if the costs are significant

Select based on speed, flexibility, and quantity

Greater reliance on responsive modes

High utilization while flexible reaction on demand

Optimize of buffer for unpredicted demand, and best utilization

Strong service-level agreements (SLA) for ad hoc provision

Select on complex optimum of speed, cost, and flexibility

Implement highly responsive and low cost modes

a Based on references 54 and 57.

[bookmark: page222]
Supply Chain concepts such as the efficient SC and responsive SC and a new concept for emerging ICT as the cloud computing area with cloud services as traded products.
INTRODUCTION TO CLOUD
COMPUTING

CLOUD COMPUTING IN A NUTSHELL

Computing itself, to be considered fully virtualized, must allow computers to be built from distributed components such as processing, storage, data, and software resources.

Technologies such as cluster, grid, and now, cloud computing, have all aimed at allowing access to large amounts of computing power in a fully virtualized manner, by aggregating resources and offering a single system view. Utility computing describes a business model for on-demand delivery of computing power; consumers pay providers based on usage (“payas-you-go”), similar to the way in which we currently obtain services from traditional public utility services such as water, electricity, gas, and telephony.

Cloud computing has been coined as an umbrella term to describe a category of sophisticated on-demand computing services initially offered by commercial providers, such as Amazon, Google, and Microsoft. It denotes a model on which a computing infrastructure is viewed as a “cloud,” from which businesses and individuals access applications from anywhere in the world on demand . The main principle behind this model is offering computing, storage, and software “as a service.”

Many practitioners in the commercial and academic spheres have attempted to define exactly what “cloud computing” is and what unique characteristics it presents. Buyya et al. have defined it as follows: “Cloud is a parallel and distributed computing system consisting of a collection of inter-connected

[bookmark: page223]and virtualised computers that are dynamically provisioned and presented as one or more unified computing resources based on service-level agreements (SLA) established through negotiation between the service provider and consumers.”

Vaquero et al. have stated “clouds are a large pool of easily usable and accessible virtualized resources (such as hardware, development platforms and/or services). These resources can be dynamically reconfigured to adjust to a variable load (scale), allowing also for an optimum resource utilization. This pool of resources is typically exploited by a pay-per-use model in which guarantees are offered by the Infrastructure Provider by means of customized

Service Level Agreements.”

A	recent	McKinsey	and	Co.	report	claims	that	“Clouds	are

hardwarebased services offering compute, network, and storage capacity where: Hardware management is highly abstracted from the buyer, buyers incur infrastructure costs as variable OPEX, and infrastructure capacity is highly elastic.”

A report from the University of California Berkeley	summarized the key

characteristics of cloud computing as: “(1) the illusion of infinite computing resources; (2) the elimination of an up-front commitment by cloud users; and

(3) the ability to pay for use . . . as needed .. .”

The National Institute of Standards and Technology (NIST) characterizes cloud computing as “ ... a pay-per-use model for enabling available, convenient, on-demand network access to a shared pool of configurable computing resources (e.g. networks, servers, storage, applications, services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.”

In a more generic definition, Armbrust et al. define cloud as the “data center hardware and software that provide services.” Similarly, Sotomayor et al. point out that “cloud” is more often used to refer to the IT infrastructure deployed on an Infrastructure as a Service provider data center. While there are countless other definitions, there seems to be common characteristics between the most notable ones listed above, which a cloud should have: (i) pay-per-use (no ongoing commitment, utility prices); (ii) elastic capacity and the illusion of

infinite resources;	(iii) self-service	interface;	and (iv) resources that are

abstracted or	virtualised.

ROOTS OF CLOUD COMPUTING

We can track the roots of clouds computing by observing the advancement of several technologies, especially in hardware (virtualization, multi-core chips), Internet technologies (Web services, service-oriented architectures, Web 2.0), distributed computing (clusters, grids), and systems management (autonomic computing, data center automation). Figure 1.1 shows the convergence of technology fields that significantly advanced and contributed to the advent of cloud computing.

Some of these technologies have been tagged as hype in their early stages of development; however, they later received significant attention from academia and were sanctioned by major industry players. Consequently, a specification and standardization process followed, leading to maturity and

[bookmark: page224]wide adoption. The emergence of cloud computing itself is closely linked to the maturity of such technologies. We present a closer look at the technol ogies that form the base of cloud computing, with the aim of providing a clearer picture of the cloud ecosystem as a whole.

From Mainframes to Clouds

We are currently experiencing a switch in the IT world, from in-house generated computing power into utility-supplied computing resources delivered over the Internet as Web services. This trend is similar to what occurred about a century ago when factories, which used to generate their own electric power, realized that it is was cheaper just plugging their machines into the newly formed electric power grid .

Computing delivered as a utility can be defined as “on demand delivery of infrastructure, applications, and business processes in a security-rich, shared, scalable, and based computer environment over the Internet for a fee” .

[bookmark: page225]

	Distributed Computing

Systems Management

Hardware Virtualization
[image:]

	Utility &
	SOA

	
	Cloud

	
	

	Grid
	Web 2.0

	
	Web Services

	
	

Autonomic Computing

Hardware

	Internet Technologies

FIGURE 1.1. Convergence of various advances leading to the advent of cloud computing.

This model brings benefits to both consumers and providers of IT services. Consumers can attain reduction on IT-related costs by choosing to obtain cheaper services from external providers as opposed to heavily investing on IT infrastructure and personnel hiring. The “on-demand” component of this model allows consumers to adapt their IT usage to rapidly increasing or unpredictable computing needs.

Providers of IT services achieve better operational costs; hardware and software infrastructures are built to provide multiple solutions and serve many users, thus increasing efficiency and ultimately leading to faster return on investment (ROI) as well as lower total cost of ownership (TCO).

The mainframe era collapsed with the advent of fast and inexpensive microprocessors and IT data centers moved to collections of commodity servers.

The advent of increasingly fast fiber-optics networks has relit the fire, and new technologies for enabling sharing of computing power over great distances have appeared.

[bookmark: page226]SOA, Web Services, Web 2.0, and Mashups

Web Service
applications running on different messaging product platforms

enabling information from one application to be made available to others

enabling internal applications to be made available over the Internet
SOA

address requirements of loosely coupled, standards-based, and protocol-independent distributed computing

WS ,HTTP, XML

Common mechanism for delivering service

applications is a collection of services that together perform complex business logic
Building block in IaaS

User authentication, payroll management, calender

Grid Computing

Grid computing enables aggregation of distributed resources and transparently access to them. Most production grids such as TeraGrid and EGEE seek to share compute and storage resources distributed across different administrative domains, with their main focus being speeding up a broad range of scientific applications, such as climate modeling, drug design, and protein analysis.

Globus Toolkit is a middleware that implements several standard Grid services and over the years has aided the deployment of several service-oriented Grid infrastructures and applications. An ecosystem of tools is available to interact with service grids, including grid brokers, which facilitate user interaction with multiple middleware and implement policies to meet QoS needs.

Virtualization technology has been identified as the perfect fit to issues that have caused frustration when using grids, such as hosting many dissimilar software applications on a single physical platform. In this direction, some research projects.

Utility Computing

In utility computing environments, users assign a “utility” value to their jobs, where utility is a fixed or time-varying valuation that captures various QoS constraints (deadline, importance, satisfaction). The valuation is the amount they are willing to pay a service provider to satisfy their demands. The service providers then attempt to maximize their own utility, where said utility may directly correlate with their profit. Providers can choose to prioritize high yield (i.e., profit per unit of resource) user jobs, leading to a scenario where shared systems are viewed as a marketplace, where users compete for resources based on the perceived utility or value of their jobs.

[bookmark: page227]
Hardware Virtualization

The idea of virtualizing a computer system’s resources, including processors, memory, and I/O devices, has been well established for decades, aiming at improving sharing and utilization of computer systems . Hardware virtualization allows running multiple operating systems and software stacks on a single physical platform. As depicted in Figure 1.2, a software layer, the virtual machine monitor (VMM), also called a hypervisor, mediates access to the physical hardware presenting to each guest operating system a virtual machine (VM), which is a set of virtual platform interfaces .

	Virtual Machine 1
	Virtual Machine 2
	Virtual Machine N

	User software
	User software
	App A
	App X

	
	
	
	
	
	

	Data
	Web
	Java
	Ruby on
	App B
	App Y

	
	
	
	
	
	

	
	
	
	Linux
	Guest OS
	

[image:]
Virtual Machine Monitor (Hypervisor)

FIGURE 1.2. A hardware virtualized server hosting three virtual machines, each one running distinct operating system and user level software stack.

[bookmark: page228]
Workload isolation is achieved since all program instructions are fully confined inside a VM, which leads to improvements in security. Better reliability is also achieved because software failures inside one VM do not affect others . Moreover, better performance control is attained since execution of one VM should not affect the performance of another VM .

VMWare ESXi. VMware is a pioneer in the virtualization market. Its ecosystemof tools ranges from server and desktop virtualization to high-level management tools . ESXi is a VMM from VMWare. It is a bare-metal hypervisor, meaning that it installs directly on the physical server, whereas others may require a host operating system.

Xen. The Xen hypervisor started as an open-source project and has served as abase to other virtualization products, both commercial and open-source.In addition to an open-source distribution , Xen currently forms the base of commercial hypervisors of a number of vendors, most notably Citrix XenServer and Oracle VM.

KVM. The kernel-based virtual machine (KVM) is a Linux virtualizationsubsystem. Is has been part of the mainline Linux kernel since version 2.6.20, thus being natively supported by several distributions. In addition, activities such as memory management and scheduling are carried out by existing kernel features, thus making KVM simpler and smaller than hypervisors that take control of the entire machine .

KVM leverages hardware-assisted virtualization, which improves performance and allows it to support unmodified guest operating systems ; currently, it supports several versions of Windows, Linux, and UNIX .

Virtual Appliances and the Open Virtualization	Format

An application combined with the environment needed to run it (operating system, libraries, compilers, databases, application containers, and so forth) is referred to as a “virtual appliance.” Packaging application environments in the shape of virtual appliances eases software customization, configuration, and patching and improves portability. Most commonly, an appliance is shaped as a VM disk image associated with hardware requirements, and it can be readily deployed in a hypervisor.

In a multitude of hypervisors, where each one supports a different VM image format and the formats are incompatible with one another, a great deal of interoperability issues arises. For instance, Amazon has its Amazon machine image (AMI) format, made popular on the Amazon EC2 public cloud. Other formats are used by Citrix XenServer, several Linux distributions that ship with KVM, Microsoft Hyper-V, and VMware ESX.

OVF’s extensibility has encouraged additions relevant to management of

[bookmark: page229]data centers and clouds. Mathews et al. have devised virtual machine contracts (VMC) as an extension to OVF. A VMC aids in communicating and managing the complex expectations that VMs have of their runtime environment and vice versa.

[bookmark: page230]
Autonomic Computing

The increasing complexity of computing systems has motivated research on autonomic computing, which seeks to improve systems by decreasing human involvement in their operation. In other words, systems should manage themselves, with high-level guidance from humans .

In this sense, the concepts of autonomic computing inspire software technologies for data center automation, which may perform tasks such as: management of service levels of running applications; management of data center capacity; proactive disaster recovery; and automation of VM provisioning .

LAYERS AND TYPES OF CLOUDS

Cloud computing services are divided into three classes, according to the abstraction level of the capability provided and the service model of providers, namely: (1) Infrastructure as a Service, (2) Platform as a Service, and (3) Software as a Service . Figure 1.3 depicts the layered organization of the cloud stack from physical infrastructure to applications.

These abstraction levels can also be viewed as a layered architecture where services of a higher layer can be composed from services of the underlying layer.

Infrastructure as a	Service

Offering virtualized resources (computation, storage, and communication) on demand is known as Infrastructure as a Service (IaaS) . A cloud infrastructure

[bookmark: page231]Service

SaaS

PaaS

IaaS

	Main Access &
	Service content

	
	

	Web Browser
	Social networks, Office suites, CRM,

	Cloud
	Cloud Platform

	Development
	Programming languages, Frameworks,

	
	

	
	Mashups editors, Structured data

	Virtual
	

	Infrastructure
	Compute Servers, Data Storage,

	
	17

	
	

FIGURE 1.3. The cloud computing	stack.

enables on-demand provisioning of servers running several choices of operating systems and a customized software stack. Infrastructure services are considered to be the bottom layer of cloud computing systems .

Platform as a Service

In addition to infrastructure-oriented clouds that provide raw computing and storage services, another approach is to offer a higher level of abstraction to make a cloud easily programmable, known as Platform as a Service (PaaS)..

Google AppEngine, an example of Platform as a Service, offers a scalable environment for developing and hosting Web applications, which should be written in specific programming languages such as Python or Java, and use the services’ own proprietary structured object data store.

Software as a Service

Applications reside on the top of the cloud stack. Services provided by this layer can be accessed by end users through Web portals. Therefore, consumers are increasingly shifting from locally installed computer programs to on-line software services that offer the same functionally. Traditional desktop applications such as word processing and spreadsheet can now be accessed as a

[bookmark: page232]service in the Web.

Deployment Models

Although cloud computing has emerged mainly from the appearance of public computing utilities. In this sense, regardless of its service class, a cloud can be classified as public, private, community, or hybrid based on model of deployment as shown in Figure 1.4.
[image:]

	Public/Internet
	Private/Enterprise
	Hybrid/Mixed Clouds

	Clouds
	
	

	
	
	

	3rd party,
	Cloud computing
	Mixed usage of

	multi-tenant Cloud
	model run
	private and public

	
	
	Clouds:

	
	
	

	infrastructure
	within a company’s
	Leasing public

	& services:
	
	

	
	own Data Center/
	

	
	
	cloud services

	
	infrastructure for
	when private cloud

	
	internal and/or
	capacity is

	
	
	

[image:]

FIGURE 1.4. Types of clouds based on deployment	models.

[bookmark: page233]
Armbrust propose definitions for public cloud as a “cloud made available in a pay-as-you-go manner to the general public” and private cloud as “internal data center of a business or other organization, not made available to the general public.”

A community cloud is “shared by several organizations and supports a specific community that has shared concerns (e.g., mission, security requirements, policy, and compliance considerations) .”

A hybrid cloud takes shape when a private cloud is supplemented with computing capacity from public clouds . The approach of temporarily renting capacity to handle spikes in load is known as “cloud-bursting” .

DESIRED FEATURES OF A CLOUD

Certain features of a cloud are essential to enable services that truly represent the cloud computing model and satisfy expectations of consumers, and cloud offerings must be (i) self-service, (ii) per-usage metered and billed, (iii) elastic, and (iv) customizable.

Self-Service

Consumers of cloud computing services expect on-demand, nearly instant access to resources. To support this expectation, clouds must allow self-service access so that customers can request, customize, pay, and use services without intervention of human operators .

Per-Usage Metering and Billing

Cloud computing eliminates up-front commitment by users, allowing them to request and use only the necessary amount. Services must be priced on a shortterm basis (e.g., by the hour), allowing users to release (and not pay for) resources as soon as they are not needed.

Elasticity

Cloud computing gives the illusion of infinite computing resources available on demand . Therefore users expect clouds to rapidly provide resources in any quantity at any time. In particular, it is expected that the additional resources can be (a) provisioned, possibly automatically, when an application load increases and (b) released when load decreases (scale up and down) .

[bookmark: page234]Customization

In a multi-tenant cloud a great disparity between user needs is often the case. Thus, resources rented from the cloud must be highly customizable. In the case of infrastructure services, customization means allowing users to deploy specialized virtual appliances and to be given privileged (root) access to the virtual servers. Other service classes (PaaS and SaaS) offer less flexibility and are not suitable for general-purpose computing , but still are expected to provide a certain level of customization.

CLOUD INFRASTRUCTURE MANAGEMENT

A key challenge IaaS providers face when building a cloud infrastructure is managing physical and virtual resources, namely servers, storage, and networks, in a holistic fashion . The orchestration of resources must be performed in a way to rapidly and dynamically provision resources to applications .

The availability of a remote cloud-like interface and the ability of managing many users and their permissions are the primary features that would distinguish “cloud toolkits” from “VIMs.” However, in this chapter, we place both categories of tools under the same group (of the VIMs) and, when applicable, we highlight the availability of a remote interface as a feature.

Virtually all VIMs we investigated present a set of basic features related to managing the life cycle of VMs, including networking groups of VMs together and setting up virtual disks for VMs. These basic features pretty much define whether a tool can be used in practical cloud deployments or not. On the other hand, only a handful of software present advanced features (e.g., high availability) which allow them to be used in large-scale production clouds.

Features

We now present a list of both basic and advanced features that are usually available in VIMs.

Virtualization Support. The multi-tenancy aspect of clouds requires multiplecustomers with disparate requirements to be served by a single hardware infrastructure.

Self-Service, On-Demand Resource Provisioning. Self-service access toresources has been perceived as one the most attractive features of clouds. This feature enables users to directly obtain services from clouds.

[bookmark: page235]Multiple Backend Hypervisors. Different virtualization models and tools offerdifferent benefits, drawbacks, and limitations. Thus, some VI managers provide a uniform management layer regardless of the virtualization technology used.

Storage Virtualization. Virtualizing storage means abstracting logical storagefrom physical storage. By consolidating all available storage devices in a data center, it allows creating virtual disks independent from device and location.

In the VI management sphere, storage virtualization support is often restricted to commercial products of companies such as VMWare and Citrix. Other products feature ways of pooling and managing storage devices, but administrators are still aware of each individual device.

Interface to Public Clouds. Researchers have perceived that extending thecapacity of a local in-house computing infrastructure by borrowing resources from public clouds is advantageous. In this fashion, institutions can make good use of their available resources and, in case of spikes in demand, extra load can be offloaded to rented resources .

Virtual Networking. Virtual networks allow creating an isolated network ontop of a physical infrastructure independently from physical topology and locations. A virtual LAN (VLAN) allows isolating traffic that shares a switched network, allowing VMs to be grouped into the same broadcast domain.

Dynamic Resource Allocation. Increased awareness of energy consumption indata centers has encouraged the practice of dynamic consolidating VMs in a fewer number of servers. In cloud infrastructures, where applications have variable and dynamic needs, capacity management and demand prediction are especially complicated. This fact triggers the need for dynamic resource allocation aiming at obtaining a timely match of supply and demand.

Virtual Clusters. Several VI managers can holistically manage groups of VMs.This feature is useful for provisioning computing virtual clusters on demand, and interconnected VMs for multi-tier Internet applications.

Reservation and Negotiation Mechanism. When users request computationalresources to available at a specific time, requests are termed advance reservations (AR), in contrast to best-effort requests, when users request resources whenever available .

Additionally, leases may be negotiated and renegotiated, allowing provider

[bookmark: page236]and consumer to modify a lease or present counter proposals until an agreement is reached.

High Availability and Data Recovery. The high availability (HA) feature of VImanagers aims at minimizing application downtime and preventing business disruption.

For mission critical applications, when a failover solution involving restarting VMs does not suffice, additional levels of fault tolerance that rely on redundancy of VMs are implemented.

Data backup in clouds should take into account the high data volume involved in VM management.

[bookmark: page237]
Case Studies

In this section, we describe the main features of the most popular VI managers available. Only the most prominent and distinguishing features of each tool are discussed in detail. A detailed side-by-side feature comparison of VI managers is presented in Table 1.1.

Apache VCL. The Virtual Computing Lab [60, 61] project has been incepted in2004 by researchers at the North Carolina State University as a way to provide customized environments to computer lab users. The software components that support NCSU’s initiative have been released as open-source and incorporated by the Apache Foundation.

AppLogic. AppLogic is a commercial VI manager, the flagship product of3tera Inc. from California, USA. The company has labeled this product as a Grid Operating System.

AppLogic provides a fabric to manage clusters of virtualized servers, focusing on managing multi-tier Web applications. It views an entire application as a collection of components that must be managed as a single entity.

In summary, 3tera AppLogic provides the following features: Linux-based controller; CLI and GUI interfaces; Xen backend; Global Volume Store (GVS) storage virtualization; virtual networks; virtual clusters; dynamic resource allocation; high availability; and data protection.

	[bookmark: page238]
	TABLE 1.1. Feature Comparison of Virtual Infrastructure
	Managers
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	Installation
	Client
	UI,
	
	
	
	
	
	Advance
	
	

	
	
	
	Platform of
	API, Language
	
	
	
	
	
	Reservation of
	

	
	
	
	Controller
	Bindings
	Backend
	Storage
	Interface to
	Virtual
	Dynamic Resource
	Capacity
	High
	Data

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	Hypervisor(s)
	Virtualization
	Public Cloud
	Networks
	Allocation
	
	Availability
	Protection

	License
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Apache
	Apache v2
	Multi-
	Portal,
	
	VMware
	No
	No
	Yes
	No
	Yes
	No
	No

	
	VCL
	
	
	XML-RPC
	ESX, ESXi,
	
	
	
	
	
	
	

	
	
	
	platform
	
	
	
	
	
	
	
	
	
	

	
	
	
	(Apache/
	
	
	Server
	
	
	
	
	
	
	

	
	
	
	PHP)
	
	
	
	
	
	
	
	
	
	

	
	AppLogic
	Proprietary
	Linux
	GUI,
	CLI
	Xen
	Global
	No
	Yes
	Yes
	No
	Yes
	Yes

	
	
	
	
	
	
	
	Volume
	
	
	
	
	
	

	
	
	
	
	
	
	
	Store (GVS)
	
	
	
	
	
	

	
	Citrix Essentials
	Proprietary
	Windows
	GUI, CLI,
	XenServer,
	Citrix
	No
	Yes
	Yes
	No
	Yes
	Yes

	
	
	
	
	
	
	Hyper-V
	Storage
	
	
	
	
	
	

	
	
	
	
	Portal,
	
	
	Link
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	XML-RPC
	
	
	
	
	
	
	
	

	
	Enomaly ECP
	GPL v3
	Linux
	Portal,
	WS
	Xen
	No
	Amazon EC2
	Yes
	No
	No
	No
	No

	
	Eucalyptus
	BSD
	Linux
	EC2 WS, CLI
	Xen, KVM
	No
	EC2
	Yes
	No
	No
	No
	No

	
	Nimbus
	Apache v2
	Linux
	EC2 WS,
	Xen, KVM
	No
	EC2
	Yes
	Via
	Yes
	(via No
	No

	
	
	
	
	
	
	
	
	
	
	
	integration
	with
	

	WSRF, CLI
	
	
	
	
	
	
	
	
	integration with
	OpenNebula)
	

	
	
	
	
	
	
	
	
	
	
	
	
	

OpenNebula

	[bookmark: page239]
	OpenNEbula
	Apache v2
	Linux
	XML-RPC,
	Xen, KVM
	No
	Amazon EC2,
	Yes
	Yes
	Yes
	No
	No

	
	
	
	
	
	
	
	
	Elastic Hosts
	
	
	
	
	

	CLI, Java
	
	
	
	
	
	
	(via Haizea)
	
	
	
	

	
	OpenPEX
	GPL
	v2
	Multiplatform
	Portal, WS
	XenServer
	No
	No
	No
	No
	Yes
	No
	No

	(Java)
	
	
	
	
	
	
	
	
	
	
	
	

	
	oVirt
	GPL
	v2
	Fedora Linux
	Portal
	KVM
	No
	No
	No
	No
	No
	No
	No

	
	Platform
	Proprietary
	Linux
	Portal
	Hyper-V
	No
	EC2, IBM CoD,
	Yes
	Yes
	Yes
	Unclear
	Unclear

	
	ISF
	
	
	
	
	XenServer,
	
	
	
	
	
	
	

	
	
	
	
	
	
	VMWare ESX
	
	HPEnterprise
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	Services
	
	
	
	
	

	
	Platform VMO
	Proprietary
	Linux,
	Portal
	XenServer
	No
	No
	Yes
	Yes
	No
	Yes
	No

	Windows
	
	
	
	
	
	
	
	
	
	
	
	

	
	VMWare
	Proprietary
	Linux,
	CLI, GUI,
	VMware
	VMware
	VMware
	Yes
	VMware
	No
	Yes
	Yes

	
	vSphere
	
	
	
	
	ESX, ESXi
	vStorage
	vCloud partners
	
	DRM
	
	
	

	
	Windows
	
	
	Portal, WS
	
	VMFS
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

[bookmark: page240]
Citrix Essentials. The Citrix Essentials suite is one the most feature completeVI management software available, focusing on management and automation of data centers. It is essentially a hypervisor-agnostic solution, currently supporting Citrix XenServer and Microsoft Hyper-V.

Enomaly ECP. The Enomaly Elastic Computing Platform, in its most completeedition, offers most features a service provider needs to build an IaaS cloud.

In summary, Enomaly ECP provides the following features: Linux-based controller; Web portal and Web services (REST) interfaces; Xen back-end; interface to the Amazon EC2 public cloud; virtual networks; virtual clusters (ElasticValet).

Eucalyptus. The Eucalyptus framework was one of the first open-sourceprojects to focus on building IaaS clouds. It has been developed with the intent of providing an open-source implementation nearly identical in functionality to Amazon Web Services APIs.

Nimbus3. The Nimbus toolkit is built on top of the Globus framework. Nimbusprovides most features in common with other open-source VI managers, such as an EC2-compatible front-end API, support to Xen, and a backend interface to Amazon EC2.

Nimbus’ core was engineered around the Spring framework to be easily extensible, thus allowing several internal components to be replaced and also eases the integration with other systems.

In summary, Nimbus provides the following features: Linux-based controller; EC2-compatible (SOAP) and WSRF interfaces; Xen and KVM backend and a Pilot program to spawn VMs through an LRM; interface to the Amazon EC2 public cloud; virtual networks; one-click virtual clusters.

OpenNebula. OpenNebula is one of the most feature-rich open-source VImanagers. It was initially conceived to manage local virtual infrastructure, but has also included remote interfaces that make it viable to build public clouds. Altogether, four programming APIs are available: XML-RPC and libvirt for local interaction; a subset of EC2 (Query) APIs and the OpenNebula Cloud API (OCA) for public access [7, 65].

(Amazon EC2, ElasticHosts); virtual networks; dynamic resource allocation; advance reservation of capacity.

OpenPEX. OpenPEX (Open Provisioning and EXecution Environment) wasconstructed around the notion of using advance reservations as the primary method for allocating VM instances.

[bookmark: page241]oVirt. oVirt is an open-source VI manager, sponsored by Red Hat’s Emergent

Technology group. It provides most of the basic features of other VI managers,

[bookmark: page242]
including support for managing physical server pools, storage pools, user accounts, and VMs. All features are accessible through a Web interface.

Platform ISF. Infrastructure Sharing Facility (ISF) is the VI manager offeringfrom Platform Computing [68]. The company, mainly through its LSF family of products, has been serving the HPC market for several years.

ISF is built upon Platform’s VM Orchestrator, which, as a standalone product, aims at speeding up delivery of VMs to end users. It also provides high availability by restarting VMs when hosts fail and duplicating the VM that hosts the VMO controller.

VMWare vSphere and vCloud. vSphere is VMware’s suite of tools aimed attransforming IT infrastructures into private clouds. It distinguishes from other VI managers as one of the most feature-rich, due to the company’s several offerings in all levels the architecture.

In the vSphere architecture, servers run on the ESXi platform. A separate server runs vCenter Server, which centralizes control over the entire virtual infrastructure. Through the vSphere Client software, administrators connect to vCenter Server to perform various tasks.

VMware ESX, ESXi backend; VMware vStorage VMFS storage virtualization; interface to external clouds (VMware vCloud partners); virtual networks (VMWare Distributed Switch); dynamic resource allocation (VMware DRM); high availability; data protection (VMWare Consolidated Backup).

INFRASTRUCTURE AS A SERVICE PROVIDERS

Public Infrastructure as a Service providers commonly offer virtual servers containing one or more CPUs, running several choices of operating systems and a customized software stack. In addition, storage space and communication facilities are often provided.

Features

In spite of being based on a common set of features, IaaS offerings can be distinguished by the availability of specialized features that influence the cost—benefit ratio to be experienced by user applications when moved to the cloud. The most relevant features are: (i) geographic distribution of data centers; (ii) variety of user interfaces and APIs to access the system; (iii) specialized components and services that aid particular applications (e.g., loadbalancers, firewalls); (iv) choice of virtualization platform and operating systems; and (v) different billing methods and period (e.g., prepaid vs. post -

[bookmark: page243]paid, hourly vs. monthly).

Geographic Presence. To improve availability and responsiveness, a providerof worldwide services would typically build several data centers distributed around the world. For example, Amazon Web Services presents the concept of

“availability zones” and “regions” for its EC2 service.

User Interfaces and Access to Servers. Ideally, a public IaaS provider mustprovide multiple access means to its cloud, thus catering for various users and their preferences. Different types of user interfaces (UI) provide different levels of abstraction, the most common being graphical user interfaces (GUI), command-line tools (CLI), and Web service (WS) APIs.

GUIs are preferred by end users who need to launch, customize, and monitor a few virtual servers and do not necessary need to repeat the process several times. On the other hand, CLIs offer more flexibility and the possibility of automating repetitive tasks via scripts.

Advance Reservation of Capacity. Advance reservations allow users to requestfor an IaaS provider to reserve resources for a specific time frame in the future, thus ensuring that cloud resources will be available at that time. However, most clouds only support best-effort requests; that is, users requests are server whenever resources are available.

Automatic Scaling and Load Balancing. As mentioned earlier in this chapter,elasticity is a key characteristic of the cloud computing model. Applications often need to scale up and down to meet varying load conditions. Automatic scaling is a highly desirable feature of IaaS clouds.

Service-Level Agreement. Service-level agreements (SLAs) are offered by IaaSproviders to express their commitment to delivery of a certain QoS. To customers it serves as a warranty. An SLA usually include availability and performance guarantees. Additionally, metrics must be agreed upon by all parties as well as penalties for violating these expectations.

Hypervisor and Operating System Choice. Traditionally, IaaS offerings havebeen based on heavily customized open-source Xen deployments. IaaS providers needed expertise in Linux, networking, virtualization, metering, resource management, and many other low-level aspects to successfully deploy and maintain their cloud offerings.

Case Studies

[bookmark: page244]In this section, we describe the main features of the most popular public IaaS clouds. Only the most prominent and distinguishing features of each one are discussed in detail. A detailed side-by-side feature comparison of IaaS offerings is presented in Table 1.2.

Amazon Web Services. Amazon WS (AWS) is one of the major players in thecloud computing market. It pioneered the introduction of IaaS clouds in 2006.

The Elastic Compute Cloud (EC2) offers Xen-based virtual servers (instances) that can be instantiated from Amazon Machine Images (AMIs). Instances are available in a variety of sizes, operating systems, architectures, and price. CPU capacity of instances is measured in Amazon Compute Units and, although fixed for each instance, vary among instance types from 1 (small instance) to 20 (high CPU instance).

In summary, Amazon EC2 provides the following features: multiple data centers available in the United States (East and West) and Europe; CLI, Web services (SOAP and Query), Web-based console user interfaces; access to instance mainly via SSH (Linux) and Remote Desktop (Windows); advanced reservation of capacity (aka reserved instances) that guarantees availability for periods of 1 and 3 years; 99.5% availability SLA; per hour pricing; Linux and Windows operating systems; automatic scaling; load balancing.

[bookmark: page245]TABLE 1.2. Feature Comparison Public Cloud Offerings (Infrastructure as a Service)

Runtime

Server

Resizing/

Vertical

Scaling
	
	
	ClientUI
	Primary
	Advance
	
	Smallest
	
	Guest
	Automated
	
	
	Instance
	Hardware Capacity

	
	
	API Language
	Access to
	Reservation of
	
	Billing
	
	Operating
	Horizontal
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Geographic
	
	Server
	Capacity
	SLA
	
	
	Systems
	Scaling
	Load
	
	Processor
	Memory
	Storage

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Presence
	Bindings
	
	
	
	Unit
	Hypervisor
	
	
	Balancing
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Amazon
	US East,
	CLI, WS,
	SSH (Linux),
	Amazon
	Uptime
	Hour
	Xen
	Linux,
	Available
	Elastic Load
	No
	1—20 EC2
	1.7—15 160—1690 GB

	
	
	
	
	
	99.95%
	
	
	
	
	
	
	
	

	EC2
	Europe
	Portal
	Remote
	reserved
	
	
	
	Windows
	with
	Balancing
	
	compute
	GB
	1 GB—1 TB

	
	
	
	Desktop
	instances
	
	
	
	
	Amazon
	
	
	units
	
	(per EBS

	
	
	
	(Windows)
	(Available in
	
	
	
	
	CloudWatch
	
	
	
	
	volume)

	
	
	
	
	1 or 3 years
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	terms, starting
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	from reservation
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	time)
	
	
	
	
	
	
	
	
	
	

	Flexiscale
	UK
	Web Console
	SSH
	No
	100%
	Hour
	Xen
	Linux,
	No
	Zeus
	Processors,
	1—4 CPUs
	0.5—16 20—270 GB

	
	
	
	
	
	
	
	
	Windows
	
	software
	memory
	
	GB
	

	loadbalancing
	(requires
	
	
	
	
	
	
	

	reboot)
	
	
	
	
	
	
	
	

	GoGrid
	REST, Java,
	PHP, Python, Ruby
	SSH
	No
	No 100%
	HardwareourXen(F5)
	Linux,NoWindows
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	1

	
	
	
	
	
	
	
	—6
	CPUs

	[bookmark: page246]
	0.5—8
	3G0B—480
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	GB
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Joyent
	US
	SSH,
	No
	100%
	Month
	OS Level
	OpenSolaris
	No
	Both
	Automatic
	1/16—8 CPUs 0.25—32 5—100 GB

	Cloud
	(Emeryville,
	
	
	
	
	(Solaris
	
	
	hardware
	CPU bursting
	
	
	GB

	
	
	VirtualMin
	
	
	
	
	
	
	
	
	
	
	
	

	
	CA; San
	(Web-based
	
	
	
	Containers)
	
	
	(F5 networks)
	(up to 8
	
	
	

	
	Diego,
	system
	
	
	
	
	
	
	and software
	CPUs)
	
	
	

	
	
	administration)
	
	
	
	
	
	
	(Zeus)
	
	
	
	
	

	
	CA; Andover,
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	MA; Dallas,
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	TX)
	
	
	
	
	
	
	
	
	
	
	
	
	

	Rackspace
	US
	Portal, REST, SSH
	No
	100%
	Hour
	Xen
	Linux
	No
	No
	Memory, disk Quad-core
	0.25—16 10—620 GB

	Cloud
	(Dallas, TX)
	Python, PHP,
	
	
	
	
	
	
	
	(requires
	CPU
	(CPU
	GB

	Servers
	
	Java, C#/.
	
	
	
	
	
	
	
	reboot)
	
	
	

	
	
	
	
	
	
	
	
	
	
	Automatic
	power
	
	is

	
	
	
	
	
	
	
	
	
	
	CPU bursting
	
	
	

	
	
	NET
	
	
	
	
	
	
	
	
	weighed
	

	
	
	
	
	
	
	
	
	
	
	(up
	to 100%
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	proportionally

	
	
	
	
	
	
	
	
	
	
	of
	available
	

	
	
	
	
	
	
	
	
	
	
	
	
	to
	memory

	
	
	
	
	
	
	
	
	
	
	CPU
	power
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	size)
	
	

	
	
	
	
	
	
	
	
	
	
	of
	physical
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

host)

[bookmark: page247]
Flexiscale. Flexiscale is a UK-based provider offering services similar innature to Amazon Web Services. However, its virtual servers offer some distinct features, most notably: persistent storage by default, fixed IP addresses, dedicated VLAN, a wider range of server sizes, and runtime adjustment of CPU capacity (aka CPU bursting/vertical scaling). Similar to the clouds, this service is also priced by the hour.

Joyent. Joyent’s Public Cloud offers servers based on Solaris containersvirtualization technology. These servers, dubbed accelerators, allow deploying various specialized software-stack based on a customized version of OpenSolaris operating system, which include by default a Web-based configuration tool and several pre-installed software, such as Apache, MySQL, PHP, Ruby on Rails, and Java. Software load balancing is available as an accelerator in addition to hardware load balancers.

In summary, the Joyent public cloud offers the following features: multiple geographic locations in the United States; Web-based user interface; access to virtual server via SSH and Web-based administration tool; 100% availability SLA; per month pricing; OS-level virtualization Solaris containers; OpenSolaris operating systems; automatic scaling (vertical).

GoGrid. GoGrid, like many other IaaS providers, allows its customers toutilize a range of pre-made Windows and Linux images, in a range of fixed instance sizes. GoGrid also offers “value-added” stacks on top for applications such as high-volume Web serving, e-Commerce, and database stores.

Rackspace Cloud Servers. Rackspace Cloud Servers is an IaaS solution thatprovides fixed size instances in the cloud. Cloud Servers offers a range of Linux-based pre-made images. A user can request different-sized images, where the size is measured by requested RAM, not CPU.

PLATFORM AS A SERVICE PROVIDERS

Public Platform as a Service providers commonly offer a development and deployment environment that allow users to create and run their applications with little or no concern to low-level details of the platform. In addition, specific programming languages and frameworks are made available in the platform, as well as other services such as persistent data storage and inmemory caches.

[bookmark: page248]Features

Programming Models, Languages, and Frameworks. Programming modelsmade available by IaaS providers define how users can express their applications using higher levels of abstraction and efficiently run them on the cloud platform. Each model aims at efficiently solving a particular problem. In the cloud computing domain, the most common activities that require specialized models are: processing of large dataset in clusters of computers (MapReduce model), development of request-based Web services and applications;

Persistence Options. A persistence layer is essential to allow applications torecord their state and recover it in case of crashes, as well as to store user data.

Traditionally, Web and enterprise application developers have chosen relational databases as the preferred persistence method. These databases offer fast and reliable structured data storage and transaction processing, but may lack scalability to handle several petabytes of data stored in commodity computers .

Case Studies

In this section, we describe the main features of some Platform as Service (PaaS) offerings. A more detailed side-by-side feature comparison of VI managers is presented in Table 1.3.

Aneka. Aneka is a .NET-based service-oriented resource management anddevelopment platform. Each server in an Aneka deployment (dubbed Aneka cloud node) hosts the Aneka container, which provides the base infrastructure that consists of services for persistence, security (authorization, authentication and auditing), and communication (message handling and dispatching).

Several programming models are supported by such task models to enable execution of legacy HPC applications and MapReduce, which enables a variety of data-mining and search applications.

App Engine. Google App Engine lets you run your Python and Java Webapplications on elastic infrastructure supplied by Google. The App Engine serving architecture is notable in that it allows real-time auto-scaling without virtualization for many common types of Web applications. However, such auto-scaling is dependent on the

[bookmark: page249]TABLE 1.3. Feature Comparison of Platform-as-a-Service Cloud Offerings

	
	
	Programming
	
	
	
	
	
	Backend
	

	
	
	Language,
	Developer
	Programming
	Persistence
	Automatic
	Infrastructure

	
	Target Use
	Frameworks
	Tools
	Models
	Options
	Scaling
	Providers
	

	
	
	
	
	
	
	
	
	

	Aneka
	.Net enterprise
	.NET
	Standalone
	Threads, Task,
	Flat
	files,
	No
	Amazon EC2

	
	applications,
	
	SDK
	MapReduce
	RDBMS, HDFS
	
	
	

	
	HPC
	
	
	
	
	
	
	
	

	AppEngine
	Web
	Python, Java
	Eclipse-based
	Request-based
	BigTable
	
	Yes
	Own
	data

	
	applications
	
	IDE
	Web
	
	
	
	centers
	

	
	
	
	
	programming
	
	
	
	
	

	Force.com
	Enterprise
	Apex
	Eclipse-based
	Workflow,
	Own object
	Unclear
	Own
	data

	
	applications
	
	IDE, Web-
	Excel-like
	database
	
	
	centers
	

	
	(esp. CRM)
	
	based wizard
	formula
	
	
	
	
	

	
	
	
	
	language,
	
	
	
	
	

	
	
	
	
	Request-based
	
	
	
	
	

	
	
	
	
	web
	
	
	
	
	

	
	
	
	
	programming
	
	
	
	
	

	Microsoft
	Enterprise and
	.NET
	Azure tools for
	Unrestricted
	Table/BLOB/
	Yes
	Own
	data

	Windows
	Web
	
	Microsoft
	
	queue
	storage,
	
	centers
	

	Azure
	applications
	
	Visual Studio
	
	SQL services
	
	
	

	Heroku
	Web
	Ruby on Rails
	Command-line
	Requestbased
	PostgreSQL,
	Yes
	Amazon EC2

	
	applications
	
	tools
	web
	Amazon RDS
	
	
	

	
	
	
	
	programming
	
	
	
	
	

	33

	[bookmark: page250]Amazon
	Data processing Hive and Pig,
	Karmasphere
	MapReduce
	Amazon S3
	No
	Amazon EC2

	Elastic
	Cascading,
	Studio
	for
	
	
	
	

	MapReduce
	Java,
	Ruby,
	Hadoop
	
	
	
	
	

	
	Perl, Python,
	(NetBeans-
	
	
	
	

	
	PHP,
	R,
	based)
	
	
	
	
	

	
	C++
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

[bookmark: page251]application developer using a limited subset of the native APIs on each platform, and in some instances you need to use specific Google APIs such as URLFetch, Datastore, and memcache in place of certain native API calls.

Microsoft Azure. Microsoft Azure Cloud Services offers developers a hosted .NET Stack (C#, VB.Net, ASP.NET). In addition, a Java & Ruby SDK for

.NET Services is also available. The Azure system consists of a number of elements.

Force.com. In conjunction with the Salesforce.com service, the Force.comPaaS allows developers to create add-on functionality that integrates into main Salesforce CRM SaaS application.

Heroku. Heroku is a platform for instant deployment of Ruby on Rails Webapplications. In the Heroku system, servers are invisibly managed by the platform and are never exposed to users.

CHALLENGES AND RISKS

Despite the initial success and popularity of the cloud computing paradigm and the extensive availability of providers and tools, a significant number of challenges and risks are inherent to this new model of computing. Providers, developers, and end users must consider these challenges and risks to take good advantage of cloud computing.

Security, Privacy, and Trust

Ambrust et al. cite information security as a main issue: “current cloud offerings are essentially public . . . exposing the system to more attacks.” For this reason there are potentially additional challenges to make cloud computing environments as secure as in-house IT systems. At the same time, existing, wellunderstood technologies can be leveraged, such as data encryption, VLANs, and firewalls.

Data Lock-In and Standardization

A major concern of cloud computing users is about having their data locked-in by a certain provider. Users may want to move data and applications out from a provider that does not meet their requirements. However, in their current form, cloud computing infrastructures and platforms do not employ standard

[bookmark: page252]methods of storing user data and applications. Consequently, they do not interoperate and user data are not portable.

[bookmark: page253]
Availability, Fault-Tolerance, and Disaster Recovery

It is expected that users will have certain expectations about the service level to be provided once their applications are moved to the cloud. These expectations include availability of the service, its overall performance, and what measures are to be taken when something goes wrong in the system or its components. In summary, users seek for a warranty before they can comfortably move their business to the cloud.

Resource Management and	Energy-Efficiency

One important challenge faced by providers of cloud computing services is the efficient management of virtualized resource pools. Physical resources such as CPU cores, disk space, and network bandwidth must be sliced and shared among virtual machines running potentially heterogeneous workloads.

Another challenge concerns the outstanding amount of data to be managed in various VM management activities. Such data amount is a result of particular abilities of virtual machines, including the ability of traveling through space (i.e., migration) and time (i.e., checkpointing and rewinding), operations that may be required in load balancing, backup, and recovery scenarios. In addition, dynamic provisioning of new VMs and replicating existing VMs require efficient mechanisms to make VM block storage devices (e.g., image files) quickly available at selected hosts.

2.2 MIGRATING INTO A CLOUD

The promise of cloud computing has raised the IT expectations of small and medium enterprises beyond measure. Large companies are deeply debating it. Cloud computing is a disruptive model of IT whose innovation is part technology and part business model—in short a “disruptive techno-commercial model” of IT. This tutorial chapter focuses on the key issues and associated dilemmas faced by decision makers, architects, and systems managers in trying to understand and leverage cloud computing for their IT needs. Questions asked and discussed in this chapter include: when and how to migrate one’s application into a cloud; what part or component of the IT application to migrate into a cloud and what not to migrate into a cloud; what kind of customers really benefit from migrating their IT into the cloud; and so on. We describe the key factors underlying each of the above questions and share a Seven-Step Model of Migration into the Cloud.

Several efforts have been made in the recent past to define the term “cloud computing” and many have not been able to provide a comprehensive one This has been more challenging given the scorching pace of the technological advances as well as the newer business model formulations for the cloud services being offered.

[bookmark: page254]

The Promise of the	Cloud

Most users of cloud computing services offered by some of the large-scale data centers are least bothered about the complexities of the underlying systems or their functioning. More so given the heterogeneity of either the systems or the software running on them.

‘Pay per use’ – Lower Cost Barriers
On Demand Resources –Autoscaling
Cloudonomics	• Capex vs OPEX – No capital expenses (CAPEX) and only operational expenses OPEX.

SLA driven operations – Much Lower TCO

Attractive NFR support: Availability, Reliability

‘Infinite’ Elastic availability – Compute/Storage/Bandwidth
Automatic Usage Monitoring and Metering
Technology	• Jobs/ Tasks Virtualized and Transparently ‘Movable’

Integration and interoperability ‘support’ for hybrid ops

Transparently encapsulated & abstracted IT features.

FIGURE 2.1. The promise of the cloud computing services.

.

As shown in Figure 2.1, the promise of the cloud both on the business front (the attractive cloudonomics) and the technology front widely aided the CxOs to spawn out several non-mission critical IT needs from the ambit of their captive traditional data centers to the appropriate cloud service. Invariably, these IT needs had some common features: They were typically Web-oriented; they represented seasonal IT demands; they were amenable to parallel batch processing; they were non-mission critical and therefore did not have high security demands.

The Cloud Service Offerings and Deployment	Models

Cloud computing has been an attractive proposition both for the CFO and the CTO of an enterprise primarily due its ease of usage. This has been achieved by large data center service vendors or now better known as cloud service vendors again primarily due to their scale of operations. Google, Amazon,

[bookmark: page255]
	IaaS
	• Abstract Compute/Storage/Bandwidth Resources
	

	
	• Amazon Web Services[10,9] – EC2, S3, SDB, CDN, CloudWatch

	PaaS
	• Abstracted Programming Platform with encapsulated infrastructure

	
	• Google Apps Engine(Java/Python), Microsoft Azure, Aneka[13]

	SaaS
	• Application with encapsulated infrastructure & platform

	
	• Salesforce.com; Gmail; Yahoo Mail; Facebook; Twitter

	
	Cloud Application Deployment & Consumption Models

	Public Clouds
	Hybrid Clouds
	Private Clouds

FIGURE 2.2. The cloud computing service offering and deployment models.

Microsoft, and a few others have been the key players apart from open source Hadoop built around the Apache ecosystem. As shown in Figure 2.2, the cloud service offerings from these vendors can broadly be classified into three major streams: the Infrastructure as a Service (IaaS), the Platform as a Service (PaaS), and the Software as a Service (SaaS). While IT managers and system administrators preferred IaaS as offered by Amazon for many of their virtualized IT needs, the programmers preferred PaaS offerings like Google AppEngine (Java/Python programming) or Microsoft Azure (.Net programming). Users of large-scale enterprise software invariably found that if they had been using the cloud, it was because their usage of the specific software package was available as a service—it was, in essence, a SaaS offering. Salesforce.com was an exemplary SaaS offering on the Internet.

From a technology viewpoint, as of today, the IaaS type of cloud offerings have been the most successful and widespread in usage. Invariably these reflect the cloud underneath, where storage (most do not know on which system it is) is easily scalable or for that matter where it is stored or located.

Challenges in the Cloud

While the cloud service offerings present a simplistic view of IT in case of IaaS or a simplistic view of programming in case PaaS or a simplistic view of resources usage in case of SaaS, the underlying systems level support challenges are huge and highly complex. These stem from the need to offer a uniformly consistent and robustly simplistic view of computing while the underlying systems are highly failure-prone, heterogeneous, resource hogging, and exhibiting serious security shortcomings. As observed in Figure 2.3, the

[bookmark: page256]promise of the cloud seems very similar to the typical distributed systems properties that most would prefer to have.

[bookmark: page257]
	Distributed System Fallacies
	Challenges in Cloud Technologies

	
	

	Full Network Reliability
	Security

	Zero Network Latency
	Performance Monitoring

	Infinite Bandwidth
	Consistent & Robust Service abstractions

	
	

	Secure Network
	Meta Scheduling

	
	

	No Topology changes
	Energy efficient load balancing

	
	

	
	Scale management

FIGURE 2.3. ‘Under the hood’ challenges of the cloud computing services implementations.

Many of them are listed in Figure 2.3. Prime amongst these are the challenges of security. The Cloud Security Alliance seeks to address many of these issues .

BROAD APPROACHES TO MIGRATING INTO THE	CLOUD

Given that cloud computing is a “techno-business disruptive model” and is on the top of the top 10 strategic technologies to watch for 2010 according to Gartner, migrating into the cloud is poised to become a large-scale effort in leveraging the cloud in several enterprises. “Cloudonomics” deals with the economic rationale for leveraging the cloud and is central to the success of cloud-based enterprise usage.

Why Migrate?

There are economic and business reasons why an enterprise application can be migrated into the cloud, and there are also a number of technological reasons. Many of these efforts come up as initiatives in adoption of cloud technologies in the enterprise, resulting in integration of enterprise applications running off the captive data centers with the new ones that have been developed on the cloud. Adoption of or integration with cloud computing services is a use case of migration.

[bookmark: page258]With due simplification, the migration of an enterprise application is best captured by the following:

	P-P01 P0-P0
	1 P0l

	Cl
	OFC

where P is the application before migration running in captive data center, P0 is the application part after migration either into a (hybrid) cloud, P0l is the partC of application being run in the captive local data center, and P0OFC is the application part optimized for cloud. If an enterprise application cannot be migrated fully, it could result in some parts being run on the captive local data center while the rest are being migrated into the cloud—essentially a case of a hybrid cloud usage. However, when the entire application is migrated onto the cloud, then P0l is null. Indeed, the migration of the enterprise application P can happen at the five levels of application, code, design, architecture, and usage. It can be that the P0C migration happens at any of the five levels without any P0l component. Compound this with the kind of cloud computing service offering being applied—the IaaS model or PaaS or SaaS model—and we have a variety of migration use cases that need to be thought through thoroughly by the migration architects.

Cloudonomics. Invariably, migrating into the cloud is driven by economicreasons of cost cutting in both the IT capital expenses (Capex) as well as operational expenses (Opex). There are both the short-term benefits of opportunistic migration to offset seasonal and highly variable IT loads as well as the long-term benefits to leverage the cloud. For the long-term sustained usage, as of 2009, several impediments and shortcomings of the cloud computing services need to be addressed.

Deciding on the Cloud Migration

In fact, several proof of concepts and prototypes of the enterprise application are experimented on the cloud to take help in making a sound decision on migrating into the cloud. Post migration, the ROI on the migration should be positive for a broad range of pricing variability. Assume that in the M classes of questions, there was a class with a maximum of N questions. We can then model the weightage-based decision making as M 3 N weightage matrix as follows:

	M
	N
	!

	
	
	X

	X
	
	

	Cl#Bi
	
	Aij Xij# Ch

[bookmark: page259]i51	j51

where Cl is the lower weightage threshold and Ch is the higher weightage threshold while Aij is the specific constant assigned for a question and Xij is the fraction between 0 and 1 that represents the degree to which that answer to the question is relevant and applicable.

THE SEVEN-STEP MODEL OF MIGRATION INTO A	CLOUD

Typically migration initiatives into the cloud are implemented in phases or in stages. A structured and process-oriented approach to migration into a cloud has several advantages of capturing within itself the best practices of many migration projects. While migration has been a difficult and vague subject—of not much interest to the academics and left to the industry practitioners—not many efforts across the industry have been put in to consolidate what has been found to be both a top revenue earner and a long standing customer pain. After due study and practice, we share the Seven-Step Model of Migration into the Cloud as part of our efforts in understanding and leveraging the cloud computing service offerings in the enterprise context. In a succinct way, Figure 2.4 captures the essence of the steps in the model of migration into the cloud, while Figure 2.5 captures the iterative process of the seven-step migration into the cloud.

The first step of the iterative process of the seven-step model of migration is basically at the assessment level. Proof of concepts or prototypes for various

	approaches
	to the migration
	along with the leveraging of pricing

	parameters
	enables one to make
	appropriate assessments.

Conduct Cloud Migration Assessments

Isolate the Dependencies

Map the Messaging & Environment

Re-architect & Implement the lost Functionalities

Leverage Cloud Functionalities & Features

Test the Migration

Iterate and Optimize

FIGURE 2.4. The Seven-Step Model of Migration into the Cloud. (Source: Infosys Research.)

[bookmark: page260]
START

Assess

Optimize	Isolate

END

The Iterative Seven Step

Test	Map

	Augment
	Re-

	
	

FIGURE 2.5. The iterative Seven-step Model of Migration into the Cloud. (Source: Infosys Research.)

Having done the augmentation, we validate and test the new form of the enterprise application with an extensive test suite that comprises testing the components of the enterprise application on the cloud as well. These test results could be positive or mixed. In the latter case, we iterate and optimize as appropriate. After several such optimizing iterations, the migration is deemed successful. Our best practices indicate that it is best to iterate through this Seven-Step Model process for optimizing and ensuring that the migration into the cloud is both robust and comprehensive. Figure 2.6 captures the typical components of the best practices accumulated in the practice of the Seven-Step Model of Migration into the Cloud. Though not comprehensive in enumeration, it is representative.

	[bookmark: page261]Assess
	Isolate
	Map
	Re-Architect
	Augment
	Test
	Optimize

	• Cloudonomics
	• Runtime
	• Messages
	• Approximate
	• Exploit
	• Augment Test
	• Optimize–

	• Migration
	Environment
	mapping:
	lost
	additional
	Cases and
	rework and

	Costs
	• Licensing
	marshalling &
	functionality
	cloud features
	Test
	iterate

	• Recurring
	• Libraries
	de-marshalling
	using cloud
	• Seek Low-cost
	Automation
	• Significantly

	Costs
	Dependency
	• Mapping
	runtime
	augmentations
	• Run Proof-of-
	satisfy

	• Database data
	• Applications
	Environments
	support API
	• Autoscaling
	Concepts
	cloudonomics

	segmentation
	Dependency
	• Mapping
	• New
	• Storage
	• Test Migration
	of migration

	• Database
	• Latencies
	libraries &
	Usecases
	• Bandwidth
	strategy
	• Optimize

	Migration
	Bottlenecks
	runtime
	• Analysis
	• Security
	• Test new
	compliance

	• Functionality
	• Performance
	approximations
	• Design
	
	testcases due
	with standards

	migration
	bottlenecks
	
	
	
	to cloud
	and

	• NFR Support
	• Architectural
	
	
	
	augmentation
	governance

	
	Dependencies
	
	
	
	• Test for
	• Deliver best

	
	
	
	
	
	Production
	migration ROI

	
	
	
	
	
	Loads
	• Develop

	
	
	
	
	
	
	roadmap for

	
	
	
	
	
	
	leveraging new

	
	
	
	
	
	
	cloud features

[image:]

FIGURE 2.6. Some details of the iterative Seven-Step Model of Migration into the Cloud.

Compared with the typical approach to migration into the Amazon AWS, our Seven-step model is more generic, versatile, and comprehensive. The typical migration into the Amazon AWS is a phased over several steps. It is about six steps as discussed in several white papers in the Amazon website and is as follows: The first phase is the cloud migration assessment phase wherein dependencies are isolated and strategies worked out to handle these dependencies. The next phase is in trying out proof of concepts to build a reference migration architecture. The third phase is the data migration phase wherein database data segmentation and cleansing is completed. This phase also tries to leverage the various cloud storage options as best suited. The fourth phase comprises the application migration wherein either a “forklift strategy” of migrating the key enterprise application along with its dependencies (other applications) into the cloud is pursued.

Migration Risks and Mitigation

The biggest challenge to any cloud migration project is how effectively the migration risks are identified and mitigated. In the Seven-Step Model of Migration into the Cloud, the process step of testing and validating includes efforts to identify the key migration risks. In the optimization step, we address various approaches to mitigate the identified migration risks.

There are issues of consistent identity management as well. These and several of the issues are discussed in Section 2.1. Issues and challenges listed in Figure 2.3 continue to be the persistent research and engineering challenges in coming up with appropriate cloud computing implementations.

[bookmark: page262]

2.3	ENRICHING	THE	‘INTEGRATION	AS	A

SERVICE’ PARADIGM FOR THE CLOUD ERA

AN INTRODUCTION

The trend-setting cloud paradigm actually represents the cool conglomeration of a number of proven and promising Web and enterprise technologies. Cloud Infrastructure providers are establishing cloud centers to host a variety of ICT services and platforms of worldwide individuals, innovators, and institutions. Cloud service providers (CSPs) are very aggressive in experimenting and embracing the cool cloud ideas and today every business and technical services are being hosted in clouds to be delivered to global customers, clients and consumers over the Internet communication infrastructure. For example, security as a service (SaaS) is a prominent cloud-hosted security service that can be subscribed by a spectrum of users of any connected device and the users just pay for the exact amount or time of usage. In a nutshell, on-premise and local applications are becoming online, remote, hosted, on-demand and offpremise applications.

Business-to-business (B2B). It is logical to take the integration middleware to clouds to simplify and streamline the enterprise-toenterprise (E2E), enterprise-to-cloud (E2C) and cloud-to-cloud (C2C) integration.

THE EVOLUTION OF SaaS

SaaS paradigm is on fast track due to its innate powers and potentials. Executives, entrepreneurs, and end-users are ecstatic about the tactic as

[bookmark: page263]
The Web is the
well as strategic success of the emerging and evolving SaaS paradigm. A number of positive and progressive developments started to grip this model. Newer resources and activities are being consistently readied to be delivered as a service. Experts and evangelists are in unison that cloud is to rock the total IT community as the best possible infrastructural solution for effective service delivery.

IT as a Service (ITaaS) is the most recent and efficient delivery method in the decisive IT landscape. With the meteoric and mesmerizing rise of the service orientation principles, every single IT resource, activity and infrastructure is being viewed and visualized as a service that sets the tone for the grand unfolding of the dreamt service era. Integration as a service (IaaS) is the budding and distinctive capability of clouds in fulfilling the business integration requirements. Increasingly business applications are deployed in clouds to reap the business and technical benefits. On the other hand, there are still innumerable applications and data sources locally stationed and sustained primarily due to the security reason.

B2B systems are capable of driving this new on-demand integration model because they are traditionally employed to automate business processes between manufacturers and their trading partners. That means they provide application-to-application connectivity along with the functionality that is very crucial for linking internal and external software securely.

The use of hub & spoke (H&S) architecture further simplifies the implementation and avoids placing an excessive processing burden on the customer sides. The hub is installed at the SaaS provider’s cloud

center to do the heavy lifting such as reformatting files.

largest digital information	superhighway

The Web is the largest repository of all kinds of resources such as web pages, applications comprising enterprise components, business services, beans, POJOs, blogs, corporate data, etc.

The Web is turning out to be the open, cost-effective and generic business execution platform (E-commerce, business, auction, etc. happen in the web for global users) comprising a wider variety of containers, adaptors, drivers, connectors, etc.

The Web is the global-scale communication infrastructure (VoIP, Video conferencing, IP TV etc,)

The Web is the next-generation discovery, Connectivity, and integration middleware

Thus the unprecedented absorption and adoption of the Internet is the key driver for the continued success of the cloud computing.

[bookmark: page264]THE CHALLENGES OF SaaS PARADIGM

As with any new technology, SaaS and cloud concepts too suffer a number of limitations. These technologies are being diligently examined for specific situations and scenarios. The prickling and tricky issues in different layers and levels are being looked into. The overall views are listed out below. Loss or lack of the following features deters the massive adoption of clouds

Controllability

Visibility & flexibility

Security and Privacy

High Performance and Availability

Integration and Composition

Standards

A number of approaches are being investigated for resolving the identified issues and flaws. Private cloud, hybrid and the latest community cloud are being prescribed as the solution for most of these inefficiencies and deficiencies. As rightly pointed out by someone in his weblogs, still there are miles to go. There are several companies focusing on this issue. Boomi (http://www.dell.com/) is one among them. This company has published several well-written white papers elaborating the issues confronting those enterprises thinking and trying to embrace the third-party public clouds for hosting their services and applications.

Integration Conundrum. While SaaS applications offer outstandingvalue in terms of features and functionalities relative to cost, they have introduced several challenges specific to integration.

APIs are Insufficient. Many SaaS providers have responded to theintegration challenge by developing application programming interfaces (APIs). Unfortunately, accessing and managing data via an API requires a significant amount of coding as well as maintenance due to frequent API modifications and updates.

Data Transmission Security. SaaS providers go to great length toensure that customer data is secure within the hosted environment. However, the need to transfer data from on-premise systems or

[bookmark: page265]applications behind the firewall with SaaS applications.

For any relocated application to provide the promised value for businesses and users, the minimum requirement is the interoperability between SaaS applications and on-premise enterprise packages.

The Impacts of Clouds. On the infrastructural front, in the recent past,the clouds have arrived onto the scene powerfully and have extended the horizon and the boundary of business applications, events and data. Thus there is a clarion call for adaptive integration engines that seamlessly and spontaneously connect enterprise applications with cloud applications. Integration is being stretched further to the level of the expanding Internet and this is really a litmus test for system architects and integrators.

The perpetual integration puzzle has to be solved meticulously for the originally visualised success of SaaS style.

APPROACHING THE SaaS INTEGRATION ENIGMA

Integration as a Service (IaaS) is all about the migration of the functionality of a typical enterprise application integration (EAI) hub / enterprise service bus (ESB) into the cloud for providing for smooth data transport between any enterprise and SaaS applications. Users subscribe to IaaS as they would do for any other SaaS application. Cloud middleware is the next logical evolution of traditional middleware solutions.

Service orchestration and choreography enables process integration. Service interaction through ESB integrates loosely coupled systems whereas CEP connects decoupled systems.

With the unprecedented rise in cloud usage, all these integration software are bound to move to clouds. SQS also doesn’t promise in-order and exactly-once delivery. These simplifications let Amazon make SQS more scalable, but they also mean that developers must use SQS differently from an on-premise message queuing technology.

As per one of the David Linthicum’s white papers, approaching

SaaS-toenterprise integration is really a matter of making informed and intelligent choices.The need for integration between remote cloud platforms with on-premise enterprise platforms.

[bookmark: page266]Why SaaS Integration is hard?. As indicated in the white paper, there isa mid-sized paper company that recently became a Salesforce.com CRM customer. The company currently leverages an on-premise custom system that uses an Oracle database to track inventory and sales. The use of the Salesforce.com system provides the company with a significant value in terms of customer and sales management.

Having understood and defined the “to be” state, data synchronization technology is proposed as the best fit between the source, meaning Salesforce. com, and the target, meaning the existing legacy system that leverages Oracle. First of all, we need to gain the insights about the special traits and tenets of SaaS applications in order to arrive at a suitable integration route. The constraining attributes of SaaS applications are

● Dynamic nature of the SaaS interfaces that constantly	change

Dynamic nature of the metadata native to a SaaS provider such as Salesforce.com

Managing assets that exist outside of the firewall

Massive amounts of information that need to move between SaaS and on-premise systems daily and the need to maintain data quality and integrity.

As SaaS are being deposited in cloud infrastructures vigorously, we need to ponder about the obstructions being imposed by clouds and prescribe proven solutions. If we face difficulty with local integration, then the cloud integration is bound to be more complicated. The most probable reasons are

New integration scenarios

Access to the cloud may be limited

Dynamic resources

Performance

Limited Access. Access to cloud resources (SaaS, PaaS, and theinfrastructures) is more limited than local applications. Accessing local applications is quite simple and faster. Imbedding integration points in local as well as custom applications is easier.

Dynamic Resources. Cloud resources are virtualized and service-oriented. That is, everything is expressed and exposed as a service. Due to the dynamism factor that is sweeping the whole could ecosystem,

[bookmark: page267]application	versioning	and infrastructural	changes	are	liable	for

dynamic changes.

Performance. Clouds support application scalability and resourceelasticity. However the network distances between elements in the cloud are no longer under our control.

NEW INTEGRATION SCENARIOS

Before the cloud model, we had to stitch and tie local systems together. With the shift to a cloud model is on the anvil, we now have to connect local applications to the cloud, and we also have to connect cloud applications to each other, which add new permutations to the complex integration channel matrix.All of this means integration must criss-cross firewalls somewhere.

Cloud Integration Scenarios. We have identified three major integrationscenarios as discussed below.

Within a Public Cloud (figure 3.1). Two different applications arehosted in a cloud. The role of the cloud integration middleware (say cloud-based ESB or internet service bus (ISB)) is to seamlessly enable these applications to talk to each other. The possible sub-scenarios include these applications can be owned
[image:]

	App1
	ISB
	App2

	
	
	

	
	
	

FIGURE 3.1.	Within a Public	Cloud.

[bookmark: page268][image:]

	Cloud 1
	ISB
	Cloud 2

	
	
	

FIGURE 3.2.	Across Homogeneous Clouds.
[image:]

Public Cloud

ISB
[image:]

Private Cloud

FIGURE 3.3.	Across Heterogeneous Clouds.

by two different companies. They may live in a single physical server but run on different virtual machines.

Homogeneous Clouds (figure 3.2). The applications to be integrated areposited in two geographically separated cloud infrastructures. The integration middleware can be in cloud 1 or 2 or in a separate cloud.

There is a need for data and protocol transformation and they get done by the ISB. The approach is more or less compatible to enterprise application integration procedure.

[bookmark: page269]Heterogeneous Clouds (figure 3.3). One application is in public cloudand the other application is private cloud.

[bookmark: page270]
THE INTEGRATION METHODOLOGIES

Excluding the custom integration through hand-coding, there are three types for cloud integration

Traditional Enterprise Integration Tools can be empowered with special connectors to access Cloud-located Applications—This is the most likely approach for IT organizations, which have already invested a lot in integration suite for their application integration needs.

Traditional Enterprise Integration Tools are hosted in the Cloud—This approach is similar to the first option except that the integration software suite is now hosted in any third-party cloud infrastructures so that the enterprise does not worry about procuring and managing the hardware or installing the integration software.

Integration-as-a-Service (IaaS) or On-Demand Integration Offerings— These are SaaS applications that are designed to deliver the integration service securely over the Internet and are able to integrate cloud applications with the on-premise systems, cloud-to-cloud applications.

In a nutshell, the integration requirements can be realised using any one of the following methods and middleware products.

11.Hosted and extended ESB (Internet service bus / cloud integrationbus)

12.Online Message Queues, Brokers and	Hubs

13.Wizard and configuration-based integration platforms (Nicheintegration solutions)

14.Integration Service Portfolio Approach

15.Appliance-based Integration (Standalone or Hosted)

With the emergence of the cloud space, the integration scope grows further and hence people are looking out for robust and resilient solutions and services that would speed up and simplify the whole process of integration.

[bookmark: page271]Characteristics of Integration Solutions and Products. The keyattributes of integration platforms and backbones gleaned and gained from integration projects experience are connectivity, semantic mediation, Data mediation, integrity, security, governance etc

Connectivity refers to the ability of the integration engine to engage with both the source and target systems using available native interfaces.

Semantic Mediation refers to the ability to account for the differences between application semantics between two or more systems.

Data Mediation converts data from a source data format into destination data format.

Data Migration is the process of transferring data between storage types, formats, or systems.

Data Security means the ability to insure that information extracted from the source systems has to securely be placed into target systems.

Data Integrity means data is complete and consistent. Thus, integrity has to be guaranteed when data is getting mapped and maintained during integration operations, such as data synchronization between on-premise and SaaS-based systems.

Governance refers to the processes and technologies that surround a system or systems, which control how those systems are accessed and leveraged.

These are the prominent qualities carefully and critically analyzed for when deciding the cloud / SaaS integration providers.

Data Integration Engineering Lifecycle. As business data are stillstored and sustained in local and on-premise server and storage machines, it is imperative for a lean data integration lifecycle. The pivotal phases, as per Mr. David Linthicum, a world-renowned integration expert, are understanding, definition, design, implementation, and testing.

11.Understanding the existing problem domain means defining themetadata that is native within the source system (say Salesforce.com) and the target system.

12.Definition refers to the process of taking the information culled

[bookmark: page272]during the previous step and defining it at a high level including what the information represents, ownership, and physical attributes.

13.Design the integration solution around the movement of data fromone point to another accounting for the differences in the semantics using the underlying data transformation and mediation layer by mapping one schema from the source to the schema of the target.

14.Implementation refers to actually implementing the dataintegration solution within the selected technology.

15.Testing refers to assuring that the integration is properlydesigned and implemented and that the data synchronizes properly between the involved systems.

SaaS INTEGRATION PRODUCTS AND PLATFORMS

Cloud-centric integration solutions are being developed and demonstrated for showcasing their capabilities for integrating enterprise and cloud applications. The integration puzzle has been the toughest assignment for long due to heterogeneity and multiplicity-induced complexity.

Jitterbit

Force.com is a Platform as a Service (PaaS), enabling developers to create and deliver any kind of on-demand business application.

	[bookmark: page273]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	Google
	Salesforce
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	Microsoft
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	THE CLOUD
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	Zoho
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	Amazon
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	Yahoo
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[image:]

FIGURE 3.4. The Smooth and Spontaneous Cloud Interaction via Open Clouds.

Until now, integrating force.com applications with other on-demand applications and systems within an enterprise has seemed like a daunting and doughty task that required too much time, money, and expertise.

Jitterbit is a fully graphical integration solution that provides users a versatile platform and a suite of productivity tools to reduce the integration efforts sharply. Jitterbit is comprised of two major components:

Jitterbit Integration Environment An intuitive point-and-click graphical UI that enables to quickly configure, test, deploy and manage integration projects on the Jitterbit server.

Jitterbit Integration Server A powerful and scalable run-time engine

that processes all the integration operations, fully configurable and manageable from the Jitterbit application.

Jitterbit is making integration easier, faster, and more affordable than ever before. Using Jitterbit, one can connect force.com with a wide variety

[bookmark: page274]
	
	PROBLEM
	
	SOLUTION

	
	
	Manufacturing
	
	
	Manufacturing
	Consumer

	
	
	
	Consumer
	
	Sales
	

	
	Sales
	
	
	
	
	

	
	
	
	
	
	
	

	R & D
	
	
	Marketing
	R & D
	
	Marketing

	
	
	
	
	
	
	

FIGURE 3.5. Linkage of On-Premise with Online and On-Demand Applications.

of on-premise systems including ERP, databases, flat files and custom applications. The figure 3.5 vividly illustrates how Jitterbit links a number of functional and vertical enterprise systems with on-demand applications

Boomi Software

Boomi AtomSphere is an integration service that is completely on-demand and connects any combination of SaaS, PaaS, cloud, and on-premise applications without the burden of installing and maintaining software packages or appliances. Anyone can securely build, deploy and manage simple to complex integration processes using only a web browser. Whether connecting SaaS applications found in various lines of business or integrating across geographic boundaries,

Bungee Connect

For professional developers, Bungee Connect enables cloud computing by offering an application development and deployment platform that enables highly interactive applications integrating multiple data

[bookmark: page275]sources and facilitating instant deployment.

OpSource Connect

Expands on the OpSource Services Bus (OSB) by providing the infrastructure for two-way web services interactions, allowing customers to consume and publish applications across a common web services infrastructure.

The Platform Architecture. OpSource Connect is made up of keyfeatures including

OpSource Services Bus

OpSource Service Connectors

● OpSource Connect Certified Integrator	Program

OpSource Connect ServiceXchange

OpSource Web Services Enablement Program

The OpSource Services Bus (OSB) is the foundation for OpSource’s turnkey development and delivery environment for SaaS and web companies.

SnapLogic

SnapLogic is a capable, clean, and uncluttered solution for data integration that can be deployed in enterprise as well as in cloud landscapes. The free community edition can be used for the most common point-to-point data integration tasks, giving a huge productivity boost beyond custom code.

Changing data sources. SaaS and on-premise applications, Web APIs, and RSS feeds

Changing deployment options. On-premise, hosted, private and public cloud platforms

Changing delivery needs. Databases, files, and data services

Transformation Engine and Repository. SnapLogic is a single data

[bookmark: page276]integration platform designed to meet data integration needs. The SnapLogic server is built on a core of connectivity and transformation components, which can be used to solve even the most complex data integration scenarios.

The SnapLogic designer provides an initial hint of the web principles at work behind the scenes. The SnapLogic server is based on the web architecture and exposes all its capabilities through web interfaces to outside world.

The Pervasive DataCloud

Platform (figure 3.6) is unique multi-tenant platform. It provides dynamic “compute capacity in the sky” for deploying on-demand integration and other
[image:]

Managem ent
[image:]
	
	Schedule Events
	
	

	
	eCommerce
	
	

	
	
	Users Load Balancer

	
	&
	
	
	

	Resources
	
	
	

	
	Message Queues
	

	Engine
	Engine
	Engine
	Engine
	Engine Queue

	Queue
	Queue
	Queue
	Queue
	Listener

	Listen
	Listen
	Listen
	Listen
	

	er
	er
	er
	er
	

[image:]

Scalable Computing Cluster

[bookmark: page277]
SaaS	SaaS

Applic	Applic

ation	ation

[bookmark: page278]
Customer	Customer

FIGURE	3.6.	Pervasive Integrator	Connects	Different

Resources.

data-centric applications. Pervasive DataCloud is the first multi-tenant platform for delivering the following.

Integration as a Service (IaaS) for both hosted and on-premises applications and data sources

10.Packaged turnkey integration

11.Integration that supports every integration scenario

12.Connectivity to hundreds of different applications and datasources

Pervasive DataCloud hosts Pervasive and its partners’ data-centric applications. Pervasive uses Pervasive DataCloud as a platform for deploying on-demand integration via

The Pervasive DataSynch family of packaged integrations. These are highly affordable, subscription-based, and packaged integration solutions.

Pervasive Data Integrator. This runs on the Cloud or on-premises and is a design-once and deploy anywhere solution to support every integration scenario

Data migration, consolidation and conversion

ETL / Data warehouse

B2B / EDI integration

Application integration (EAI)

SaaS /Cloud integration

SOA / ESB / Web Services

Data Quality/Governance

Hubs

[bookmark: page279]
Pervasive DataCloud provides multi-tenant, multi-application and multicustomer deployment. Pervasive DataCloud is a platform to deploy applications that are

●	Scalable—Its multi-tenant architecture can support multiple users and applications for delivery of diverse data-centric solutions such as data integration. The applications themselves scale to handle fluctuating data volumes.

Flexible—Pervasive DataCloud supports SaaS-to-SaaS, SaaS-to-on premise or on-premise to on-premise integration.

Easy to Access and Configure—Customers can access, configure and run Pervasive DataCloud-based integration solutions via a browser.

Robust—Provides automatic delivery of updates as well as monitoring activity by account, application or user, allowing effortless result tracking.

Secure—Uses the best technologies in the market coupled with the best data centers and hosting services to ensure that the service remains secure and available.

Affordable—The platform enables delivery of packaged solutions in a SaaS-friendly pay-as-you-go model.

Bluewolf

Has announced its expanded “Integration-as-a-Service” solution, the first to offer ongoing support of integration projects guaranteeing successful integration between diverse SaaS solutions, such as salesforce.com, BigMachines, eAutomate, OpenAir and back office systems (e.g. Oracle, SAP, Great Plains, SQL Service and MySQL). Called the Integrator, the solution is the only one to include proactive monitoring and consulting services to ensure integration success. With remote monitoring of integration jobs via a dashboard included as part of the Integrator solution, Bluewolf proactively alerts its customers of any issues with integration and helps to solves them quickly.

Online MQ

[bookmark: page280]Online MQ is an Internet-based queuing system. It is a complete and secure online messaging solution for sending and receiving messages over any network. It is a cloud messaging queuing service.

Ease of Use. It is an easy way for programs that may each be running on different platforms, in different systems and different networks, to communicate with each other without having to write any low-level communication code.

No Maintenance. No need to install any queuing software/server and no need to be concerned with MQ server uptime, upgrades and maintenance.

Load Balancing and High Availability. Load balancing can be achieved on a busy system by arranging for more than one program instance to service a queue. The performance and availability features are being met through clustering. That is, if one system fails, then the second system can take care of users’ requests without any delay.

Easy Integration. Online MQ can be used as a web-service (SOAP) and as a REST service. It is fully JMS-compatible and can hence integrate easily with any Java EE application servers. Online MQ is not limited to any specific platform, programming language or communication protocol.

CloudMQ

This leverages the power of Amazon Cloud to provide enterprise-grade message queuing capabilities on demand. Messaging allows us to reliably break up a single process into several parts which can then be executed asynchronously.

Linxter

Linxter is a cloud messaging framework for connecting all kinds of applications, devices, and systems. Linxter is a behind-the-scenes, messageoriented and cloud-based middleware technology and smoothly automates the complex tasks that developers face when creating communication-based products and services.

Online MQ, CloudMQ and Linxter are all accomplishing message-based application and service integration. As these suites are being hosted in clouds, messaging is being provided as a service to hundreds of distributed and enterprise applications using the much-maligned multi-tenancy property. “Messaging middleware as a service (MMaaS)” is the grand derivative of the SaaS paradigm.

[bookmark: page281]

SaaS INTEGRATION SERVICES

We have seen the state-of-the-art cloud-based data integration platforms for real-time data sharing among enterprise information systems and cloud applications.

There are fresh endeavours in order to achieve service composition in cloud ecosystem. Existing frameworks such as service component architecture (SCA) are being revitalised for making it fit for cloud environments. Composite applications, services, data, views and processes will be become cloud-centric and hosted in order to support spatially separated and heterogeneous systems.

Informatica On-Demand

Informatica offers a set of innovative on-demand data integration solutions called Informatica On-Demand Services. This is a cluster of easy-to-use SaaS offerings, which facilitate integrating data in SaaS applications, seamlessly and securely across the Internet with data in on-premise applications. There are a few key benefits to leveraging this maturing technology.

Rapid development and deployment with zero maintenance of the integration technology.

● Automatically upgraded and continuously enhanced by	vendor.

Proven SaaS integration solutions, such as integration with Salesforce

.com, meaning that the connections and the metadata understanding are provided.

Proven data transfer and translation technology, meaning that core integration services such as connectivity and semantic mediation are built into the technology.

Informatica On-Demand has taken the unique approach of moving its industry leading PowerCenter Data Integration Platform to the hosted model and then configuring it to be a true multi-tenant solution.

[bookmark: page282]Microsoft Internet Service Bus (ISB)

Azure is an upcoming cloud operating system from Microsoft. This makes development, depositing and delivering Web and Windows application on cloud centers easier and cost-effective.

Microsoft .NET Services. is a set of Microsoft-built and hosted cloudinfrastructure services for building Internet-enabled applications and the ISB acts as the cloud middleware providing diverse applications with a common infrastructure to name, discover, expose, secure and orchestrate web services. The following are the three broad areas.

.NET Service Bus. The .NET Service Bus (figure 3.7) provides a hosted,secure, and broadly accessible infrastructure for pervasive communication,
[image:]

Console Application Exposing Web Services
[image:]

	End Users
	End Users

	
	Azure Service Platform

	Google App Engine
	Windows Azure

via Service Bus

FIGURE 3.7.	.NET Service Bus.

[bookmark: page283]
large-scale event distribution, naming, and service publishing. Services can be exposed through the Service Bus Relay, providing connectivity options for service endpoints that would otherwise be difficult or impossible to reach.

.NET Access Control Service. The .NET Access Control Service is ahosted, secure, standards-based infrastructure for multiparty, federated authentication, rules-driven, and claims-based authorization.

.NET Workflow Service. The .NET Workflow Service provide a hostedenvironment for service orchestration based on the familiar Windows Workflow Foundation (WWF) development experience.

The most important part of the Azure is actually the service bus represented as a WCF architecture. The key capabilities of the Service Bus are

A federated namespace model that provides a shared, hierarchical namespace into which services can be mapped.

A service registry service that provides an opt-in model for publishing service endpoints into a lightweight, hierarchical, and RSS-based discovery mechanism.

● A lightweight and scalable publish/subscribe event	bus.

A relay and connectivity service with advanced NAT traversal and pullmode message delivery capabilities acting as a “perimeter network (also known as DMZ, demilitarized zone, and screened subnet) in the sky”

Relay Services. Often when we connect a service, it is located behindthe firewall and behind the load balancer. Its address is dynamic and can be

[bookmark: page284][image:]
Relay Service

Client	Service

FIGURE 3.8.	The .NET Relay Service.

resolved only on local network. When we are having the service call-backs to the client, the connectivity challenges lead to scalability, availability and security issues. The solution to Internet connectivity challenges is instead of connecting client directly to the service we can use a relay service as pictorially represented in the relay service figure 3.8.

BUSINESSES-TO-BUSINESS INTEGRATION (B2Bi) SERVICES

B2Bi has been a mainstream activity for connecting geographically distributed businesses for purposeful and beneficial cooperation. Products vendors have come out with competent B2B hubs and suites for enabling smooth data sharing in standards-compliant manner among the participating enterprises.

Just as these abilities ensure smooth communication between manufacturers and their external suppliers or customers, they also enable reliable interchange between hosted and installed applications.

The IaaS model also leverages the adapter libraries developed by B2Bi vendors to provide rapid integration with various business systems.

[bookmark: page285]Cloudbased Enterprise Mashup Integration Services for B2B Scenarios

. There is a vast need for infrequent, situational and ad-hoc B2Bapplications desired by the mass of business end-users..

Especially in the area of applications to support B2B collaborations, current offerings are characterized by a high richness but low reach, like B2B hubs that focus on many features enabling electronic collaboration, but lack availability for especially small organizations or even individuals.

Enterprise Mashups, a kind of new-generation Web-based applications, seem to adequately fulfill the individual and heterogeneous requirements of end-users and foster End User Development (EUD).

Another challenge in B2B integration is the ownership of and responsibility for processes. In many inter-organizational settings, business processes are only sparsely structured and formalized, rather

	loosely coupled and/or based
	on
	ad-hoc
	cooperation.
	Inter-

	organizational collaborations tend
	to
	involve
	more and
	more

	participants and the growing number of participants
	also draws a huge

amount of differing requirements.

Now, in supporting supplier and partner co-innovation and customer cocreation, the focus is shifting to collaboration which has to embrace the participants, who are influenced yet restricted by multiple domains of control and disparate processes and practices.

Both Electronic data interchange translators (EDI) and Managed file transfer (MFT) have a longer history, while B2B gateways only have emerged during the last decade.

Enterprise Mashup Platforms and Tools.

Mashups are the adept combination of different and distributed resources including content, data or application functionality. Resources represent the core building blocks for mashups. Resources can be accessed through APIs, which encapsulate the resources and describe the interface through which they are made available. Widgets or gadgets primarily put a face on the underlying resources by providing a graphical representation for them and piping the data received from the resources. Piping can include operators like aggregation, merging or filtering. Mashup platform is a Web based tool that allows the creation of Mashups by piping resources into Gadgets and wiring Gadgets together.

The Mashup integration services are being implemented as a prototype in the FAST project. The layers of the prototype are illustrated in figure 3.9 illustrating the architecture, which describes how these services work together. The authors of this framework have given an outlook on the technical realization of the services using cloud

[bookmark: page286]infrastructures and	services.

[bookmark: page287]
COMPANY	A	COMPANY B
[image:]

	HTTP
	HTTP
	HTTP
	HTTP
	HTTP
	HTTP

	R
	R
	R
	R
	R
	R

	
	
	
	
	
	Enterprise Mashup Platform
	
	
	
	
	
	
	
	Enterprise Mashup Platform

	
	
	
	
	
	
	
	(i.e. FAST)
	
	
	
	
	
	
	
	(i.e. SAP Research Rooftop)

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	R
	
	
	
	
	
	
	
	
	
	
	
	R
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	REST
	
	
	
	
	
	
	
	
	
	
	REST
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Mashup
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	Integration Service Logic
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Integration
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Services
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Platform
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	(i.e., Google
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	Identity
	
	
	
	
	
	
	
	
	
	Routing Engine
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	Management
	
	Error Handling
	
	Translation
	
	
	
	Persistent
	
	
	Message
	

	
	
	
	
	
	
	
	
	and Monitoring
	
	
	Engine
	
	
	
	Storage
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	Organization
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Semantic
	
	
	
	
	
	Infrastructure

	
	
	
	
	
	
	R
	
	
	
	
	
	
	
	
	
	
	R
	
	
	R
	
	R
	
	
	
	
	R

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Cloud Based
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[image:][image:][image:][image:][image:][image:][image:][image:]
[bookmark: page288]

	OpenID/Oauth
	MuleonDemand
	MuleonDemand
	Amazon S3
	Amazon SQS

FIGURE	3.9.	Cloudbased Enterprise Mashup Integration Platform

Architecture.

To simplify this, a Gadget could be provided for the end-user. The routing engine is also connected to a message queue via an API. Thus, different message queue engines are attachable. The message queue is responsible for storing and forwarding the messages controlled by the routing engine. Beneath the message queue, a persistent storage, also connected via an API to allow exchangeability, is available to store large data. The error handling and monitoring service allows tracking the message-flow to detect errors and to collect statistical data. The Mashup integration service is hosted as a cloud-based service. Also, there are cloud-based services available which provide the functionality required by the integration service. In this way, the Mashup integration service can reuse and leverage the existing cloud services to speed up the implementation.

Message	Queue.	The	message	queue	could	be	realized	by	using

Amazon’s Simple Queue Service (SQS). SQS is a web-service which provides a queue for messages and stores them until they can be processed. The Mashup integration services, especially the routing engine, can put messages into the queue and recall them when they are needed.

[bookmark: page289]
Persistent Storage. Amazon Simple Storage Service5 (S3) is also awebservice. The routing engine can use this service to store large files.

Translation Engine. This is primarily focused on translating betweendifferent protocols which the Mashup platforms it connects can understand, e.g. REST or SOAP web services. However, if the need of translation of the objects transferred arises, this could be attached to the translation engine.

Interaction between the Services. The diagram describes the process ofa message being delivered and handled by the Mashup Integration Services Platform. The precondition for this process is that a user already established a route to a recipient.

A FRAMEWORK OF SENSOR—CLOUD INTEGRATION

In the past few years, wireless sensor networks (WSNs) have been gaining significant attention because of their potentials of enabling of novel and attractive solutions in areas such as industrial automation, environmental monitoring, transportation business, health-care etc.

With the faster adoption of micro and nano technologies, everyday things are destined to become digitally empowered and smart in their operations and offerings. Thus the goal is to link smart materials, appliances, devices, federated messaging middleware, enterprise information systems and packages, ubiquitous services, handhelds, and sensors with one another smartly to build and sustain cool, charismatic and catalytic situation-aware applications.

[bookmark: page290]A virtual community consisting of team of researchers have come together to solve a complex problem and they need data storage, compute capability, security; and they need it all provided now. For example, this team is working on an outbreak of a new virus strain moving through a population. This requires more than a Wiki or other social organization tool. They deploy bio-sensors on patient body to monitor patient condition continuously and to use this data for large and multi-scale simulations to track the spread of infection as well as the virus mutation and possible cures. This may require computational resources and a platform for sharing data and results that are not immediately available to the team.

Traditional HPC approach like Sensor-Grid model can be used in this case, but setting up the infrastructure to deploy it so that it can scale out quickly is not easy in this environment. However, the cloud paradigm is an excellent move.

Here, the researchers need to register their interests to get various patients’ state (blood pressure, temperature, pulse rate etc.) from bio-sensors for largescale parallel analysis and to share this information with each other to find useful solution for the problem. So the sensor data needs to be aggregated, processed and disseminated based on subscriptions.

To integrate sensor networks to cloud, the authors have proposed a contentbased pub-sub model. In this framework, like MQTT-S, all of the system complexities reside on the broker’s side but it differs from

MQTT-S in that it uses content-based pubsub broker rather than topic-based which is suitable for the application scenarios considered.

To deliver published sensor data or events to subscribers, an efficient and scalable event matching algorithm is required by the pub-sub broker.

Moreover, several SaaS applications may have an interest in the same sensor data but for different purposes. In this case, the SA nodes would need to manage and maintain communication means with multiple applications in parallel. This might exceed the limited capabilities of the simple and low-cost SA devices. So pub-sub broker is needed and it is located in the cloud side because of its higher performance in terms of bandwidth and capabilities. It has four components describes as follows:

[bookmark: page291][image:]

	
	Social Network
	
	
	
	
	
	

	
	
	of doctors for
	
	
	
	
	
	

	
	
	monitoring
	Environmental
	
	
	Urban Trafic
	
	

	
	
	patient
	
	
	
	
	
	

	
	
	
	data analysis
	
	
	
	
	

	
	
	healthcare for
	
	
	
	prediction
	
	

	
	
	
	and
	
	
	
	
	

	
	
	virus infection
	
	
	
	and
	
	Other data

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	analysis or

	WSN 1
	
	1
	1
	
	
	1
	
	1

	
	
	
	
	
	
	
	
	

	
	Gateway
	
	
	
	
	
	

	
	
	
	
	
	
	System
	
	

	
	
	
	Application Specific 2
	
	
	3
	Provisioning

	
	
	
	
	
	
	
	
	

	
	
	
	Services
	
	
	3
	
	

	
	
	
	
	
	3
	
	
	4

	
	Actuator
	
	2
	
	
	
	
	

	
	
	Gateway
	
	4
	
	Monitoring
	
	4

	
	
	
	
	
	
	
	
	

	Sensor
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

Servers

	WSN 2
	Gateway
	Event
	Registry
	Mediator
	Service

	
	
	Monitoring Analyzer
	
	

	
	
	
	
	

	
	
	
	
	

	
	3
	Processing Dissem-

	
	
	

	
	
	Policy

	
	
	Sensor

	Actuator
	Gateway
	Collaborator

	
	
	

Sensor

Cloud Provider (CLP)

FIGURE 3.10.	The Framework Architecture of Sensor—Cloud

Integration.

Stream monitoring and processing component (SMPC). The sensorstream comes in many different forms. In some cases, it is raw data that must be captured, filtered and analyzed on the fly and in other cases, it is stored or cached. The style of computation required depends on the nature of the streams. So the SMPC component running on the cloud monitors the event streams and invokes correct analysis method. Depending on the data rates and the amount of processing that is required, SMP manages parallel execution framework on cloud.

Registry component (RC). Different SaaS applications register to pub-subbroker for various sensor data required by the community user.

Analyzer component (AC). When sensor data or events come to the pub-

[bookmark: page292]sub broker, analyzer component determines which applications they are belongs to and whether they need periodic or emergency deliver.

Disseminator component (DC). For each SaaS application, it disseminatessensor data or events to subscribed users using the event matching algorithm. It can utilize cloud’s parallel execution framework for fast event delivery. The pub-sub components workflow in the framework is as follows:

Users register their information and subscriptions to various SaaS applications which then transfer all this information to pub/sub broker registry. When sensor data reaches to the system from gateways, event/stream monitoring and processing component (SMPC) in the pub/sub broker determines whether it needs processing or just store for periodic send or for immediate delivery.

Mediator. The (resource) mediator is a policy-driven entity within a VO toensure that the participating entities are able to adapt to changing circumstances and are able to achieve their objectives in a dynamic and uncertain environment.

Policy Repository (PR). The PR virtualizes all of the policies within theVO. It includes the mediator policies, VO creation policies along with any policies for resources delegated to the VO as a result of a collaborating arrangement.

Collaborating Agent (CA). The CA is a policy-driven resource discoverymodule for VO creation and is used as a conduit by the mediator to exchange policy and resource information with other CLPs.

SaaS INTEGRATION APPLIANCES

Appliances are a good fit for high-performance requirements. Clouds too have gone in the same path and today there are cloud appliances (also termed as “cloud in a box”). In this section, we are to see an integration appliance.

Cast Iron Systems . This is quite different from the above-mentionedschemes. Appliances with relevant software etched inside are being established as a high-performance and hardware-centric solution for several

[bookmark: page293]IT needs.

Cast Iron Systems (www.ibm.com) provides pre-configured solutions for each of today’s leading enterprise and On-Demand applications. These solutions, built using the Cast Iron product offerings offer out-of-the-box connectivity to specific applications, and template integration processes (TIPs) for the most common integration scenarios.

2.4 THE ENTERPRISE CLOUD COMPUTING

PARADIGM

Cloud computing is still in its early stages and constantly undergoing changes as new vendors, offers, services appear in the cloud market. Enterprises will place stringent requirements on cloud providers to pave the way for more widespread adoption of cloud computing, leading to what is known as the enterprise cloud paradigm computing. Enterprise cloud computing is the alignment of a cloud computing model with an organization’s business objectives (profit, return on investment, reduction of operations costs) and processes. This chapter explores this paradigm with respect to its motivations, objectives, strategies and methods.

Section 4.2 describes a selection of deployment models and strategies for enterprise cloud computing, while Section 4.3 discusses the issues of moving [traditional] enterprise applications to the cloud. Section 4.4 describes the technical and market evolution for enterprise cloud computing, describing some potential opportunities for multiple stakeholders in the provision of enterprise cloud computing.

[bookmark: page294]
BACKGROUND

According to NIST [1], cloud computing is composed of five essential characteristics: on-demand self-service, broad network access, resource pooling, rapid elasticity, and measured service. The ways in which these characteristics are manifested in an enterprise context vary according to the deployment model employed.

Relevant Deployment Models for Enterprise Cloud Computing

There are some general cloud deployment models that are accepted by the majority of cloud stakeholders today, as suggested by the references [1] and and discussed in the following:

Public clouds are provided by a designated service provider for generalpublic under a utility based pay-per-use consumption model.

Private clouds are built, operated, and managed by an organization for itsinternal use only to support its business operations exclusively.

Virtual private clouds are a derivative of the private cloud deploymentmodel but are further characterized by an isolated and secure segment of resources, created as an overlay on top of public cloud infrastructure using advanced network virtualization capabilities..

Community clouds are shared by several organizations and support aspecific community that has shared concerns (e.g., mission, security requirements, policy, and compliance considerations).

Managed clouds arise when the physical infrastructure is owned by and/orphysically located in the organization’s data centers with an extension of management and security control plane controlled by the managed service provider .

Hybrid clouds are a composition of two or more clouds (private,community, or public) that remain unique entities but are bound together by standardized or proprietary technology that enables data and application portability (e.g., cloud bursting for load-balancingbetween clouds).

Adoption and Consumption Strategies

The selection of strategies for enterprise cloud computing is critical for IT capability as well as for the earnings and costs the organization experiences, motivating efforts toward convergence of business strategies and IT. Some critical questions toward this convergence in the enterprise cloud paradigm are as follows:

[bookmark: page295]
Will an enterprise cloud strategy increase overall business value?

Are the effort and risks associated with transitioning to an enterprise cloud strategy worth it?

Which areas of business and IT capability should be considered for the enterprise cloud?

● Which cloud offerings are relevant for the purposes of an	organization?

How can the process of transitioning to an enterprise cloud strategy be piloted and systematically executed?

These questions are addressed from two strategic perspectives: (1) adoption and (2) consumption. Figure 4.1 illustrates a framework for enterprise cloud adoption strategies, where an organization makes a decision to adopt a cloud computing model based on fundamental drivers for cloud computing— scalability, availability, cost and convenience. The notion of a Cloud Data Center (CDC) is used, where the CDC could be an external, internal or federated provider of infrastructure, platform or software services.

An optimal adoption decision cannot be established for all cases because the types of resources (infrastructure, storage, software) obtained from a CDC depend on the size of the organisation understanding of IT impact on business, predictability of workloads, flexibility of existing IT landscape and available budget/resources for testing and piloting. The strategic decisions using these four basic drivers are described in following, stating objectives, conditions and actions.

[bookmark: page296][image:]

Cloud Data Center(s)

(CDC)

Availability-driven:

Use of load-balanced and localised cloud resources to increase availability and reduce response time

Conveniencedriv en: Use cloudresources so that there is no need to maintain local resources.

Market-driven:

Users and providers of cloud resources make decisions based on the potential saving and profit

Scalability-driven: Use of cloudresources to support additional load or as back-up.

FIGURE 4.1. Enterprise cloud adoption strategies using fundamental cloud	drivers.

9. Scalability-Driven	Strategy.	The	objective	is	to	support	increasing

[bookmark: page297]workloads of the organization without investment and expenses exceeding returns.

Availability-Driven Strategy. Availability has close relations to scalability but is more concerned with the assurance that IT capabilities and functions are accessible, usable and acceptable by the standards of users.

Market-Driven Strategy. This strategy is more attractive and viable for small, agile organizations that do not have (or wish to have) massive investments in their IT infrastructure.

[bookmark: page298]

(1) Software Provision: Cloud provides instances

of software but data is maintained within user’s

(7) Solution Provision: Software and storageare maintained in cloud and the user does not maintain a data center

(2) Storage Provision: Cloud provides data

management and software accesses data

(8) Redundancy Services: Cloud is used as analternative or extension of user’s data center for software and storage

[bookmark: page299]
FIGURE 4.2. Enterprise cloud consumption	strategies.

on their profiles and requests service requirements .

12. Convenience-Driven Strategy. The objective is to reduce the load and need for dedicated system administrators and to make access to IT capabilities by users easier, regardless of their location and connectivity (e.g. over the Internet).

There are four consumptions strategies identified, where the differences in objectives, conditions and actions reflect the decision of an organization to trade-off hosting costs, controllability and resource elasticity of IT resources for software and data. These are discussed in the following.

Software Provision. This strategy is relevant when the elasticity requirement is high for software and low for data, the controllability concerns are low for software and high for data, and the cost reduction concerns for software are high, while cost reduction is not a priority for data, given the high controllability concerns for data, that is, data are highly sensitive.

Storage Provision. This strategy is relevant when the elasticity requirements is high for data and low for software, while the controllability of software is more critical than for data. This can be the case for data intensive applications, where the results from processing in the application are more critical and sensitive than the data itself.

11. Solution Provision. This strategy is relevant when the elasticity and cost reduction requirements are high for software and data, but the controllability requirements can be entrusted to the CDC.

12. Redundancy Services. This strategy can be considered as a hybrid enterprise cloud strategy, where the organization switches between traditional, software, storage or solution management based on changes in its operational conditions and business demands.

Even though an organization may find a strategy that appears to provide it significant benefits, this does not mean that immediate adoption of the strategy is advised or that the returns on investment will be observed immediately.

ISSUES FOR ENTERPRISE APPLICATIONS ON THE	CLOUD

[bookmark: page300]
Enterprise Resource Planning (ERP) is the most comprehensive definition of enterprise application today. For these reasons, ERP solutions have emerged as the core of successful information management and the enterprise backbone of nearly any organization . Organizations that have successfully implemented the ERP systems are reaping the benefits of having integrating working environment, standardized process and operational benefits to the organization .

One of the first issues is that of infrastructure availability. Al-Mashari and Yasser argued that adequate IT infrastructure, hardware and networking are crucial for an ERP system’s success.

One of the ongoing discussions concerning future scenarios considers varying infrastructure requirements and constraints given different workloads and development phases. Recent surveys among companies in North America and Europe with enterprise-wide IT systems showed that nearly all kinds of workloads are seen to be suitable to be transferred to IaaS offerings.

Considering Transactional and Analytical Capabilities

Transactional type of applications or so-called OLTP (On-line Transaction Processing) applications, refer to a class of systems that manage transactionoriented applications, typically using relational databases. These applications rely on strong ACID (atomicity, consistency, isolation,durability) properties and are relatively write/update-intensive. Typical OLTP-type ERP components are sales and distributions (SD), banking and financials, customer relationship management (CRM) and supply chain management (SCM).

One can conclude that analytical applications will benefit more than their transactional counterparts from the opportunities created by cloud computing, especially on compute elasticity and efficiency.

2.4.1	TRANSITION CHALLENGES

The very concept of cloud represents a leap from traditional approach for IT to deliver mission critical services. With any leap comes the gap of risk and challenges to overcome. These challenges can be classified in five different categories, which are the five aspects of the enterprise cloud stages: build, develop, migrate, run, and consume (Figure 4.3).

The requirement for a company-wide cloud approach should then become the number one priority of the CIO, especially when it comes to having a coherent and cost effective development and migration of services on this architecture.

[bookmark: page301][image:]
Develop

Build	Run	Consume

Migrate

FIGURE 4.3. Five stages of the	cloud.

A second challenge is migration of existing or “legacy” applications to “the cloud.” The expected average lifetime of ERP product is B15 years, which means that companies will need to face this aspect sooner than later as they try to evolve toward the new IT paradigm.

The ownership of enterprise data conjugated with the integration with others applications integration in and from outside the cloud is one of the key challenges. Future enterprise application development frameworks will need to enable the separation of data management from ownership. From this, it can be extrapolated that SOA, as a style, underlies the architecture and, moreover, the operation of the enterprise cloud.

One of these has been notoriously hard to upgrade: the human factor; bringing staff up to speed on the requirements of cloud computing with respect to architecture, implementation, and operation has always been a tedious task.

Once the IT organization has either been upgraded to provide cloud or is able to tap into cloud resource, they face the difficulty of maintaining the services in the cloud. The first one will be to maintain interoperability between in-house infrastructure and service and the CDC (Cloud Data Center).

	Before leveraging such
	features, much more basic functionalities are

	problematic: monitoring,
	troubleshooting, and comprehensive
	capacity

	planning are actually missing in most offers. Without such features it
	becomes

very hard to gain visibility into the return on investment and the consumption of cloud services.

Today there are two major cloud pricing models: Allocation based and Usage based . The first one is provided by the poster child of cloud computing, namely, Amazon. The principle relies on allocation of resource for a fixed amount of time. As companies need to evaluate the offers they need to also include the hidden costs such as lost IP, risk, migration, delays and provider overheads. This combination can be compared to trying to choose a new mobile

[bookmark: page302]with carrier plan.The market dynamics will hence evolve alongside the technology for the enterprise cloud computing paradigm.

ENTERPRISE CLOUD TECHNOLOGY AND MARKET	EVOLUTION

This section discusses the potential factors which will influence this evolution of cloud computing and today’s enterprise landscapes to the enterprise computing paradigm, featuring the convergence of business and IT and an open, service oriented marketplace.

Technology Drivers for Enterprise Cloud Computing Evolution

This will put pressure on cloud providers to build their offering on open interoperable standards to be considered as a candidate by enterprises. There have been a number initiatives emerging in this space. Amazon, Google, and Microsoft, who currently do not actively participate in these efforts. True interoperability across

[bookmark: page303]
the board in the near future seems unlikely. However, if achieved, it could lead to facilitation of advanced scenarios and thus drive the mainstream adoption of the enterprise cloud computing paradigm.

Part of preserving investments is maintaining the assurance that cloud resources and services powering the business operations perform according to the business requirements. Underperforming resources or service disruptions lead to business and financial loss, reduced business credibility, reputation, and marginalized user productivity. Another important factor in this regard is lack of insights into the performance and health of the resources and service deployed on the cloud, such that this is another area of technology evolution that will be pushed.

This would prove to be a critical capability empowering third-party organizations to act as independent auditors especially with respect to SLA compliance auditing and for mediating the SLA penalty related issues.

Emerging trend in the cloud application space is the divergence from the traditional RDBMS based data store backend. Cloud computing has given rise to alternative data storage technologies (Amazon Dynamo, Facebook Cassandra, Google BigTable, etc.) based on key-type storage models as compared to the relational model, which has been the mainstream choice for data storage for enterprise applications.

As these technologies evolve into maturity, the PaaS market will consolidate into a smaller number of service providers. Moreover, big traditional software vendors will also join this market which will potentially trigger this consolidation through acquisitions and mergers. These views are along the lines of the research published by Gartner. Gartner predicts that from 2011 to 2015 market competition and maturing developer practises will drive consolidation around a small group of industry-dominant cloud technology providers.

A recent report published by Gartner presents an interesting perspective on cloud evolution. The report argues that as cloud services proliferate, services would become complex to be handled directly by the consumers. To cope with these scenarios, meta-services or cloud brokerage services will emerge. These brokerages will use several types of brokers and platforms to enhance service delivery and, ultimately service value. According to Gartner, before these scenarios can be enabled, there is a need for brokerage business to use these brokers and platforms. According to Gartner, the following types of cloud service brokerages (CSB) are foreseen:

1. Cloud Service Intermediation. An intermediation broker providers a service that directly enhances a given service delivered one or more service consumers, essentially on top of a given service to enhance a specific capability.

1. Aggregation. An aggregation brokerage service combines multiple services into one or more new services.

1. Cloud Service Arbitrage. These services will provide flexibility and opportunistic choices for the service aggregator.

[bookmark: page304]
The above shows that there is potential for various large, medium, and small organizations to become players in the enterprise cloud marketplace. The dynamics of such a marketplace are still to be explored as the enabling technologies and standards continue to mature.

BUSINESS DRIVERS TOWARD A MARKETPLACE FOR

ENTERPRISE CLOUD COMPUTING

In order to create an overview of offerings and consuming players on the market, it is important to understand the forces on the market and motivations of each player.

The Porter model consists of five influencing factors/views (forces) on the market (Figure 4.4). The intensity of rivalry on the market is traditionally influenced by industry-specific characteristics :

●	Rivalry: The amount of companies dealing with cloud and virtualization technology is quite high at the moment; this might be a sign for high
[image:]

New Market Entrants

• Geographical factors

• Entrant strategy

• Routes to market

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	Suppliers
	
	
	
	
	Cloud Market
	
	
	
	Buyers (Consumers)
	

	
	•
	Level of quality
	
	
	
	•
	Cost structure
	
	
	•
	Buyer size
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	• Supplier’s size
	
	
	
	• Product/service ranges
	
	
	• Buyers number
	

	
	•
	Bidding processes/
	
	
	
	•
	Differentiation, strategy
	
	
	•
	Product/service
	

	
	
	capabilities
	
	
	
	•
	Number/size of players
	
	
	•
	Requirements
	

Technology Development

1. Substitutes

1. Trends

1. Legislative effects

FIGURE 4.4. Porter’s five forces market model (adjusted for the cloud market)	.

	[bookmark: page305]BUSINESS DRIVERS TOWARD A MARKETPLACE FOR ENTERPRISE
	113

rivalry. But also the products and offers are quite various, so many niche products tend to become established.

●	Obviously, the cloud-virtualization market is presently booming and will keep growing during the next years. Therefore the fight for customers and struggle for market share will begin once the market becomes saturated and companies start offering comparable products.

1. The initial costs for huge data centers are enormous. By building up federations of computing and storing utilities, smaller companies can try to make use of this scale effect as well.

1. Low switching costs or high exit barriers influence rivalry. When a customer can freely switch from one product to another, there is a greater struggle to capture customers. From the opposite point of view high exit barriers discourage customers to buy into a new technology. The trends towards standardization of formats and architectures try to face this problem and tackle it. Most current cloud providers are only paying attention to standards related to the interaction with the end user. However, standards for clouds interoperability are still to be developed .

[bookmark: page306]Market

Regulations	Business Model	Hype

Market

Technology

FIGURE 4.5. Dynamic business models (based on [49] extend by influence factors identified by [50]).

.

THE CLOUD SUPPLY CHAIN

One indicator of what such a business model would look like is in the complexity of deploying, securing, interconnecting and maintaining enterprise landscapes and solutions such as ERP, as discussed in Section 4.3. The concept of a Cloud Supply Chain (C-SC) and hence Cloud Supply Chain Management (C-SCM) appear to be viable future business models for the enterprise cloud computing paradigm. The idea of C-SCM represents the management of a network of interconnected businesses involved in the end-to-end provision of product and service packages required by customers. The established understanding of a supply chain is two or more parties linked by a flow of goods, information, and funds [55], [56] A specific definition for a C-SC is hence: “two or more parties linked by the provision of cloud services, related information and funds.” Figure 4.6 represents a concept for the C-SC, showing the flow of products along different organizations such as hardware suppliers, software component suppliers, data center operators, distributors and the end customer.

Figure	4.6	also	makes	a distinction	between innovative	and	functional

[bookmark: page307]products in the C-SC. Fisher classifies products primarily on the basis of their demand patterns into two categories: primarily functional or primarily innovative [57]. Due to their stability, functional products favor competition, which leads to low profit margins and, as a consequence of their properties, to low inventory costs, low product variety, low stockout costs, and low obsolescence [58], [57]. Innovative products are characterized by additional (other) reasons for a customer in addition to basic needs that lead to purchase, unpredictable demand (that is high uncertainties, difficult to forecast and variable demand), and short product life cycles (typically 3 months to 1 year). Cloud services

Cloud services, information, funds
[image:]

	
	Data center
	

	Fuctional
	operator
	Distributor

	
	
	

	
	
	

End

customer
Product	Cloud supply chain

Innovative

	Hardware
	Component

	supplier
	supplier

Potential Closed Loop Cooperation

FIGURE 4.6. Cloud supply chain	(C-SC).

[bookmark: page308]
should fulfill basic needs of customers and favor competition due to their reproducibility. Table 4.1 presents a comparison of Traditional

TABLE 4.1. Comparison of Traditional and Emerging ICT Supply Chainsa

	
	
	
	
	
	
	Emerging ICT

	
	
	
	
	
	
	

	
	
	
	Traditional Supply
	Chain Concepts
	
	Concepts

	
	
	Efficient SC
	Responsive SC
	
	Cloud SC

	Primary
	goal
	Supply demand at
	Respond quickly
	
	Supply demand at the

	
	
	
	
	
	
	

	
	
	the lowest level of
	to demand
	
	lowest level of costs

	
	
	
	(changes)
	
	and respond quickly

	
	
	cost
	
	
	

	
	
	
	
	
	to demand

	
	
	
	
	
	
	

	Product design
	
	Maximize
	Create modularity
	
	Create modularity to

	strategy
	
	
	performance at the
	to allow
	
	allow individual

	
	
	
	minimum product
	postponement
	
	setting while

	
	
	
	cost
	
	
	maximizing the

	
	
	
	
	of product
	
	performance of

	
	
	
	
	differentiation
	
	services

	Pricing
	strategy
	
	Lower margins
	Higher margins,
	
	Lower margins, as

	
	
	
	
	because price is
	
	high competition and

	
	
	
	because price is a
	not a prime
	
	comparable products

	
	
	
	prime customer
	customer driver
	
	

	
	
	
	driver
	
	
	

	Manufacturing
	Lead time strategy
	Lower costs

	
	
	

	strategy
	
	through high

	
	
	utilization

	
	Supplier strategy
	Minimize

	Inventory
	
	inventory to

	strategy
	
	lower cost

	
	Transportation
	

	
	strategy
	

Reduce but not at the expense of costs

Select based on cost and quality

Greater reliance on low cost modes

[bookmark: page309]Maintain capacity flexibility to meet unexpected demand

Maintain buffer inventory to meet unexpected demand

Aggressively reduce even if the costs are significant

Select based on speed, flexibility, and quantity

Greater reliance on responsive modes

High utilization while flexible reaction on demand

Optimize of buffer for unpredicted demand, and best utilization

Strong service-level agreements (SLA) for ad hoc provision

Select on complex optimum of speed, cost, and flexibility

Implement highly responsive and low cost modes

a Based on references 54 and 57.

[bookmark: page310]
Supply Chain concepts such as the efficient SC and responsive SC and a new concept for emerging ICT as the cloud computing area with cloud services as traded products. UNIT -
3

VIRTUAL MACHINES PROVISIONING
AND MIGRATION SERVICES

Cloud computing is an emerging research infrastructure that builds on the achievements of different research areas, such as service-oriented architecture (SOA), grid computing, and virtualization technology. It offers infrastructure as a service that is based on pay-as-you-use and on-demand computing models to the end users (exactly the same as a public utility service like electricity, water, gas, etc.). This service is referred to as Infrastructure as a Service (IaaS). In this chapter, we shall focus on two core services that enable the users to get the best out of the IaaS model in public and private cloud setups.

To make the concept clearer, consider this analogy for virtual machine provisioning, to know its value: Historically, when there is a need to install a new server for a certain workload to provide a particular service for a client, lots of effort was exerted by the IT administrator, and much time was spent to install and provision a new server, because the administrator has to follow specific checklist and procedures to perform this task on hand. Now, with the emergence of virtualization technology and the cloud computing IaaS model, it is just a matter of minutes to achieve the same task.

Provisioning a new virtual machine is a matter of minutes, saving lots of time and effort. Migrations of a virtual machine is a matter of milliseconds: saving time, effort, making the service alive for customers, and achieving the SLA/ SLO agreements and quality-of-service (QoS) specifications required.

An overview about the chapter’s higlights and sections can be grasped by the mind map shown in Figure 5.1.

BACKGROUND AND RELATED WORK

[bookmark: page311]In this section, we will have a quick look at previous work, give an overview about virtualization technology, public cloud, private cloud, standardization efforts, high availability through the migration, and provisioning of virtual machines, and shed some lights on distributed management’s tools.

Virtualization Technology Overview

Virtualization has revolutionized data center’s technology through a set of techniques and tools that facilitate the providing and management of the dynamic data center’s infrastructure. As shown in

[bookmark: page312][image:]

Amazon and Provisioning Services [image:] Amazon Elastic Compute Cloud
[image:][image:]

	125

Performance and High Availability in Clustered VMs through Live Migration

[image:] Accelerating VMs live migration time
[image:][image:]Cloud-wide VM migration and memory de-duplication

	[bookmark: page313][image:]Infrastructure Enabling Tecnology
	
	
	
	
	
	

	Architecture
	
	
	
	
	
	

	
	Provisioning in the Cloud Context
	Introduction and Inspiration
	
	
	
	

	
	
	
	
	
	
	

	Elastic Load Balancer
	
	
	
	
	
	OCCI and OGF

	
	
	
	Cloud and Virtualization Standardization Efforts
	

	
	
	
	
	OVF

	Auto Scaling
	
	Background and Related work
	Distributed Management of Virtualization
	

	
	
	
	
	
	
	

	CloudWatch
	
	
	
	
	
	

	
	
	
	Virtualization Technology
	
	

	Performance evaluation and workload characterization of virtual workloads
	
	
	
	VM Provisioning Process
	Steps to Provision VM

	High-Performance Data Scaling in Private and public Cloud Environments
	
	VM Provisioning and Manageability
	
	

	
	
	
	
	
	

	VM scheduling alogorithms
	
	VM Provisioning and Migration Services
	
	
	
	

	
	Future Research Directions
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	VM Migration, SLA and On-Demand Computing

	
	
	VM Migration Services
	Migrations
	Live Storage Migration of Virtual Machine

	
	
	
	Techniques
	Live Migration and High availability
	Live Migration Effect on a Running Web Server

	
	
	
	
	
	
	Live Migration Vendor Implementations Examples

	
	
	
	Final Thoughts about the Example
	
	

	
	
	
	VM Lifecycle and VM Monitoring
	
	

FIGURE 3.1. VM provisioning and migration mind	map.

[bookmark: page314][image:]
	Virtual Machine
	Virtual Machine
	Virtual Machine
	Virtual Machine

	Workload 1
	Workload 2
	Workload 3
	Workload n

	Guest OS
	Guest OS
	Guest OS
	Guest OS

Virtualization Layer (VMM or Hypervisor)

Physical Server Layer

FIGURE 5.2. A layered virtualization technology	architecture.

Figure 5.2, the virtualization layer will partition the physical resource of the underlying physical server into multiple virtual machines with different workloads. The fascinating thing about this virtualization layer is that it schedules, allocates the physical resource, and makes each virtual machine think that it totally owns the whole underlying hardware’s physical resource (processor, disks, rams, etc.).

Virtual machine’s technology makes it very flexible and easy to manage resources in cloud computing environments, because they improve the utilization of such resources by multiplexing many virtual machines on one physical host (server consolidation), as shown in Figure 5.1. These machines can be scaled up and down on demand with a high level of resources’ abstraction.

Virtualization enables high, reliable, and agile deployment mechanisms and management of services, providing on-demand cloning and live migration services which improve reliability. Accordingly, having an effective management’s suite for managing virtual machines’ infrastructure is critical for any cloud computing infrastructure as a service (IaaS) vendor.

Public Cloud and Infrastructure Services

Public cloud or external cloud describes cloud computing in a traditional mainstream sense, whereby resources are dynamically provisioned via publicly

[bookmark: page315]accessible Web applications/Web services (SOAP or RESTful interfaces) from an off-site third-party provider, who shares resources and bills on a fine-grained utility computing basis , the user pays only for the capacity of the provisioned resources at a particular time.

[bookmark: page316]
There are many examples for vendors who publicly provide infrastructure as a service. Amazon Elastic Compute Cloud (EC2) is the best known example, but the market now bristles with lots of competition like GoGrid , Joyent Accelerator , Rackspace , AppNexus , FlexiScale , and Manjrasoft

Aneka .

Here, we will briefly cover and describe Amazon EC2 offering. Amazon Elastic Compute Cloud (EC2) is an IaaS service that provides elastic compute capacity in the cloud. These services can be leveraged via Web services (SOAP or REST), a Web-based AWS (Amazon Web Service) management console, or the EC2 command line tools. The Amazon service provides hundreds of pre-made AMIs (Amazon Machine Images) with a variety of operating systems (i.e., Linux, OpenSolaris, or Windows) and pre-loaded software.

It provides you with complete control of your computing resources and lets you run on Amazon’s computing and infrastructure environment easily.

Amazon EC2 reduces the time required for obtaining and booting a new server’s instances to minutes, thereby allowing a quick scalable capacity and resources, up and down, as the computing requirements change. Amazon offers different instances’ size according to (a) the resources’ needs (small, large, and extra large), (b) the high CPU’s needs it provides (medium and extra large high CPU instances), and (c) high-memory instances (extra large, double extra large, and quadruple extra large instance).

Private Cloud and Infrastructure	Services

A private cloud aims at providing public cloud functionality, but on private resources, while maintaining control over an organization’s data and resources to meet security and governance’s requirements in an organization. Private cloud exhibits a highly virtualized cloud data center located inside your organization’s firewall. It may also be a private space dedicated for your company within a cloud vendor’s data center designed to handle the organization’s workloads.

Private clouds exhibit the following characteristics:

1. Allow service provisioning and compute capability for an organization’s users in a self-service manner.

● Automate and provide well-managed virtualized	environments.

1. Optimize computing resources, and servers’ utilization.

1. Support specific workloads.

There are many examples for vendors and frameworks that provide infrastructure as a service in private setups. The best-known examples are Eucalyptus and OpenNebula (which will be covered in more detail later on).

It is also important to highlight a third type of cloud setup named “hybrid

[bookmark: page317]cloud,” in which a combination of private/internal and external cloud resources

[bookmark: page318]
exist together by enabling outsourcing of noncritical services and functions in public cloud and keeping the critical ones internal. Hybrid cloud’s main function is to release resources from a public cloud and to handle sudden demand usage, which is called “cloud bursting.”

Distributed Management of Virtualization

Virtualization’s benefits bring their own challenges and complexities presented in the need for a powerful management capabilities. That is why many commercial, open source products and research projects such as OpenNebula , IBM Virtualization Manager, Joyent, and VMware DRS are being developed to dynamically provision virtual machines, utilizing the physical infrastrcture.

High Availability

High availability is a system design protocol and an associated implementation that ensures a certain absolute degree of operational continuity during a given measurement period. Availability refers to the ability of a user’s community to access the system—whether for submiting new work, updating or altering existing work, or collecting the results of the previous work. If a user cannot access the system, it is said to be unavailable.

Since a virtual environment is the larger part of any organization, management of these virtual resources within this environemnet becomes a critical mission, and the migration services of these resources became a corner stone in achieving high availability for these services hosted by VMs.

Cloud and Virtualization Standardization Efforts

Standardization is important to ensure interoperability between virtualization mangement vendors, the virtual machines produced by each one of them, and cloud computing. Here, we will have look at the prevalent standards that make cloud computing and virtualization possible. In the past few years, virtualization standardization efforts led by the Distributed Management Task

OCCI and OGF

Another standardization effort has been initiated by Open Grid Forum (OGF)

[bookmark: page319]through organizing an official new working group to deliver a standard API for cloud IaaS, the Open Cloud Computing Interface Working Group (OCCIWG). The new API for interfacing “IaaS” cloud computing facilities will allow :

1. Consumers to interact with cloud computing infrastructure on an ad hoc basis.

1. Integrators to offer advanced management services.

● Aggregators to offer a single common interface to multiple	providers.

1. Providers to offer a standard interface that is compatible with the available tools.

[bookmark: page320]
Vendors of grids/clouds to offer standard interfaces for dynamically scalable service’s delivery in their products.

VIRTUAL MACHINES PROVISIONING AND	MANAGEABILITY

In this section, we will have an overview on the typical life cycle of VM and its major possible states of operation, which make the management and automation of VMs in virtual and cloud environments easier than in traditional computing environments.

As shown in Figure 5.3, the cycle starts by a request delivered to the IT department, stating the requirement for creating a new server for a particular service. This request is being processed by the IT administration to start seeing the servers’ resource pool, matching these resources with the requirements, and starting the provision of the needed virtual machine. Once it is provisioned and started, it is ready to provide the required service according to an SLA, or a time period after which the virtual is being released; and free resources, in this case, won’t be needed.

[bookmark: page321]

Release Ms	IT Service Request

• End of service	• Infrastructure

• Compute resources	Requirements Analysis

VMs In Operation	VM Provision

• Serving web requests	• Load OS + Appliances

• Migration services	• Customize and

• Scal on-demand

FIGURE 5.-3. Virtual machine life cycle.

	[bookmark: page322]5.3 VIRTUAL MACHINES PROVISIONING AND MANAGEABILITY
	131

VM Provisioning Process

Provisioning a virtual machine or server can be explained and illustrated as in Figure 5.4:

Steps to Provision VM. Here, we describe the common and normal steps ofprovisioning a virtual server:

ᜀĀᜀĀ Firstly, you need to select a server from a pool of available servers (physical servers with enough capacity) along with the appropriate OS template you need to provision the virtual machine.

ᜀĀᜀĀ Secondly, you need to load the appropriate software (operating system you selected in the previous step, device drivers, middleware, and the needed applications for the service required).

ᜀĀᜀĀ Thirdly, you need to customize and configure the machine (e.g., IP address, Gateway) to configure an associated network and storage resources.

● Finally, the virtual server is ready to start with its newly loaded	software.

Typically, these are the tasks required or being performed by an IT or a data center’s specialist to provision a particular virtual machine.

To summarize, server provisioning is definingserver’sconfiguration based onthe organization requirements, a hardware, and software component (processor, RAM, storage, networking, operating system, applications, etc.). Normally, virtual machines can be provisioned by manually installing an operating system, by using a preconfigured VM template, by cloning an existing VM, or by importing a physical server or a virtual server from another hosting platform. Physical servers can also be virtualized and provisioned using P2V (physical to virtual) tools and techniques (e.g., virt-p2v).

After creating a virtual machine by virtualizing a physical server, or by building a new virtual server in the virtual environment, a template can be created out of it. Most virtualization management vendors (VMware, XenServer, etc.) provide the data center’s administration with the ability to do such tasks in

[bookmark: page323]Servers Pool

Running Provisioned VM

	Load OS and
	Customize and
	Install Patches
	Start the Server

	
	
	
	

Appliances

FIGURE 5.4. Virtual machine provision	process.

[bookmark: page324]5.4	VIRTUAL MACHINE MIGRATION SERVICES 1 3 2 133

an easy way. Provisioning from a template is an invaluable feature, because it reduces the time required to create a new virtual machine.

Administrators can create different templates for different purposes. For example, you can create a Windows 2003 Server template for the finance department, or a Red Hat Linux template for the engineering department. This enables the administrator to quickly provision a correctly configured virtual server on demand.

This ease and flexibility bring with them the problem of virtual machine’s sprawl, where virtual machines are provisioned so rapidly that documenting and managing the virtual machine’s life cycle become a challenge .

VIRTUAL MACHINE MIGRATION SERVICES

Migration service, in the context of virtual machines, is the process of moving a virtual machine from one host server or storage location to another; there are different techniques of VM migration, hot/life migration, cold/regular migration, and live storage migration of a virtual machine [20]. In this process, all key machines’ components, such as CPU, storage disks, networking, and memory, are completely virtualized, thereby facilitating the entire state of a virtual machine to be captured by a set of easily moved data files. We will cover some of the migration’s techniques that most virtualization tools provide as a feature.

Migrations Techniques

Live Migration and High Availability. Live migration(which is also calledhot or real-time migration) can be defined as the movement of a virtual machine from one physical host to another while being powered on. When it is properly carried out, this process takes place without any noticeable effect from the end user’s point of view (a matter of milliseconds). One of the most significant advantages of live migration is the fact that it facilitates proactive maintenance in case of failure, because the potential problem can be resolved before the disruption of service occurs. Live migration can also be used for load balancing in which work is shared among computers in order to optimize the utilization of available CPU resources.

Live Migration Anatomy, Xen Hypervisor Algorithm. In this section wewill explain live migration’s mechanism and how memory and virtual machine states are being transferred, through the network, from one host A to another host B [21]; the Xen hypervisor is an example for this mechanism. The logical steps that are executed when migrating an OS are summarized in Figure 5.5. In this research, the migration process has been viewed as a transactional interaction between the two hosts involved:

[bookmark: page325]5.4	VIRTUAL MACHINE MIGRATION SERVICES 1 3 3 133

Stage 0: Pre-Migration. An active virtual machine exists on the physical host A.

	[bookmark: page326]
	5.4 VIRTUAL MACHINE MIGRATION SERVICES 1 3 4 133

	VM running normally on
	Stage 0: Pre-Migration

	
	Active VM on Host A

	
	Stage 1: Reservation

	Overhead due to copying
	Stage 2: Iterative Pre-copy

	
	Enable shadow paging

	Downtime
	Stage 3: Stop and copy

	
	

	
	Suspend VM on host A

	
	Stage 4: Commitment

	VM running normally on
	Stage 5: Activation

	
	VM starts on Host B

	
	Connects to local devices

FIGURE 5.5. Live migration timeline [21].

Stage 1: Reservation. A request is issued to migrate an OS from host A to host B (a precondition is that the necessary resources exist on B and on a VM container of that size).

Stage 2: Iterative Pre-Copy. During the first iteration, all pages are transferred from A to B. Subsequent iterations copy only those pages dirtied during the previous transfer phase.

Stage 3: Stop-and-Copy. Running OS instance at A is suspended, and its network traffic is redirected to B. As described in reference 21, CPU state and any remaining inconsistent memory pages are then transferred. At the end of this stage, there is a consistent suspended copy of the VM at both A and B. The copy at A is considered primary and is resumed in case of failure.

Stage 4: Commitment. Host B indicates to A that it has successfully received a consistent OS image. Host A acknowledges this message as a commitment of the migration transaction. Host A may now discard the original VM, and host B becomes the primary host.

[bookmark: page327]5.4	VIRTUAL MACHINE MIGRATION SERVICES 1 3 5 133

Stage 5: Activation. The migrated VM on B is now activated. Post-migration code runs to reattach the device’s drivers to the new machine and advertise moved IP addresses.

[bookmark: page328]5.4	VIRTUAL MACHINE MIGRATION SERVICES 1 3 6 133

This approach to failure management ensures that at least one host has a consistent VM image at all times during migration. It depends on the assumption that the original host remains stable until the migration commits and that the VM may be suspended and resumed on that host with no risk of failure. Based on these assumptions, a migration request essentially attempts to move the VM to a new host and on any sort of failure, execution is resumed locally, aborting the migration.

Live Migration Effect on a Running Web Server. Clark et al. [21] didevaluate the above migration on an Apache 1.3 Web server; this served static content at a high rate, as illustrated in Figure 5.6. The throughput is achieved when continuously serving a single 512-kB file to a set of one hundred concurrent clients. The Web server virtual machine has a memory allocation of 800 MB. At the start of the trace, the server achieves a consistent throughput of approximately 870 Mbit/sec. Migration starts 27 sec into the trace, but is initially rate-limited to 100 Mbit/sec (12% CPU), resulting in server’s throughput drop to 765 Mbit/sec. This initial low-rate pass transfers 776 MB and lasts for 62 sec. At this point, the migration’s algorithm, described in Section 5.4.1, increases its rate over several iterations and finally suspends the VM after a further 9.8 sec. The final stop-and-copy phase then transfers the remaining pages, and the Web server resumes at full rate after a 165-msec outage.

This simple example demonstrates that a highly loaded server can be migrated with both controlled impact on live services and a short downtime. However, the working set of the server, in this case, is rather small. So, this should be expected as a relatively easy case of live migration.

Live Migration Vendor Implementations Examples. There are lots ofVM management and provisioning tools that provide the live migration of VM facility, two of which are VMware VMotion and Citrix XenServer

“XenMotion.”

600

400

1000

200

800 (Mbit/sec)hroughput

	[bookmark: page329]
	
	
	
	
	
	
	5.4
	VIRTUAL MACHINE MIGRATION SERVICES 1 3 7 133

	
	
	
	
	
	
	Effect of Migration on Web Server Transmission Rate
	
	
	
	
	
	

	
	
	870 Mbit/sec
	
	
	
	1
	st precopy, 62 secs
	further iterations
	
	
	
	
	
	

	
	
	
	
	
	
	
	765 Mbit/sec
	
	
	9.8 secs
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	0
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	694 Mbit/sec
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	0
	10
	20
	30
	40
	50
	60
	
	
	
	
	
	
	165 ms total downtime
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	512 kb files
	
	
	
	
	
	70
	80
	90
	
	
	100
	110
	120
	130

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Sample over 100 ms
	
	

	
	
	100 concurrent clients
	
	
	
	
	
	
	
	
	
	
	
	
	Sample over 500 ms
	
	

	Elapsed time (secs)
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[image:]

FIGURE 5.6. Results of migrating a running Web server VM	[21].

[bookmark: page330]5.4	VIRTUAL MACHINE MIGRATION SERVICES 1 3 8 133

VMware Vmotion. This allows users to (a) automatically optimize andallocate an entire pool of resources for maximum hardware utilization, flexibility, and availability and (b) perform hardware’s maintenance without scheduled downtime along with migrating virtual machines away from failing or underperforming servers [22].

Citrix XenServer XenMotion. This is a nice feature of the Citrix XenServerproduct, inherited from the Xen live migrate utility, which provides the IT administrator with the facility to move a running VM from one XenServer to another in the same pool without interrupting the service (hypothetically for zero-downtime server maintenance, which actually takes minutes), making it a highly available service. This also can be a good feature to balance the workloads on the virtualized environment [23].

Regular/Cold Migration. Cold migration is the migration of a powered-offvirtual machine. With cold migration, you have the option of moving the associated disks from one data store to another. The virtual machines are not required to be on a shared storage. It’s important to highlight that the two main differences between live migration and cold migration are that live migration needs a shared storage for virtual machines in the server’s pool, but cold migration does not; also, in live migration for a virtual machine between two hosts, there would be certain CPU compatibility checks to be applied; while in cold migration this checks do not apply. The cold migration process is simple to implement (as the case for the VMware product), and it can be summarized as follows [24]:

	●
	The configuration files, including the NVRAM file (BIOS settings), log

	
	files, as well as the disks of the virtual machine, are moved from the source

	
	host to the destination host’s associated storage
	area.

	●
	The virtual machine is registered with the new
	host.

After the migration is completed, the old version of the virtual machine is deleted from the source host.

Live Storage Migration of Virtual Machine. This kind of migrationconstitutes moving the virtual disks or configuration file of a running virtual machine to a new data store without any interruption in the availability of the virtual machine’s service. For more details about how this option is working in a VMware product, see reference 20.

VM Migration, SLA and On-Demand	Computing

As we discussed, virtual machines’ migration plays an important role in data

[bookmark: page331]5.4	VIRTUAL MACHINE MIGRATION SERVICES 1 3 9 133

centers by making it easy to adjust resource’s priorities to match resource’s demand conditions.

[bookmark: page332]5.4	VIRTUAL MACHINE MIGRATION SERVICES 1 4 0 133

This role is completely going in the direction of meeting SLAs; once it has been detected that a particular VM is consuming more than its fair share of resources at the expense of other VMs on the same host, it will be eligible, for this machine, to either be moved to another underutilized host or assign more resources for it, in case that the host machine still has resources; this in turn will highly avoid the violations of the SLA and will also, fulfill the requirements of on-demand computing resources. In order to achieve such goals, there should be an integration between virtualization’s management tools (with its migrations and performance’s monitoring capabilities), and SLA’s management tools to achieve balance in resources by migrating and monitoring the workloads, and accordingly, meeting the SLA.

Migration of Virtual Machines to Alternate Platforms

One of the nicest advantages of having facility in data center’s technologies is to have the ability to migrate virtual machines from one platform to another; there are a number of ways for achieving this, such as depending on the source and target virtualization’s platforms and on the vendor’s tools that manage this facility—for example, the VMware converter that handles migrations between ESX hosts; the VMware server; and the VMware workstation. The VMware converter can also import from other virtualization platforms, such as Microsoft virtual server machines .

VM PROVISIONING AND MIGRATION IN ACTION

Now, it is time to get into business with a real example of how we can manage the life cycle, provision, and migrate a virtual machine by the help of one of the open source frameworks used to manage virtualized infrastructure. Here, we will use ConVirt [25] (open source framework for the management of open source virtualization like Xen [26] and KVM [27], known previously as

XenMan).

Deployment Scenario. ConVirt deployment consists of at least one ConVirtworkstation, where ConVirt is installed and ran, which provides the main console for managing the VM life cycle, managing images, provisioning new VMs, monitoring machine resources, and so on. There are two essential deployment scenarios for ConVirt: A, basic configuration in which the Xen or KVM virtualization platform is on the local machine, where ConVirt is already installed; B, an advanced configuration in which the Xen or KVM is on one or more remote servers. The scenario in use here is the advanced one. In data centers, it is very common to install centralized management software (ConVirt here) on a dedicated machine for use in managing remote servers in the data center. In our example, we will use this dedicated machine where ConVirt is installed and used to manage a pool of remote servers

[bookmark: page333]5.4	VIRTUAL MACHINE MIGRATION SERVICES 1 4 1 133

(two machines). In order to use advanced features of ConVirt (e.g.,	live

[bookmark: page334]5.5	VM PROVISIONING AND MIGRATION IN ACTION 137137

migration), you should set up a shared storage for the server pool in use on which the disks of the provisioned virtual machines are stored. Figure 5.7 illustrates the scenario.

Installation. The installation process involves the	following:

1. Installing ConVirt on at least one computer. See reference 28 for installation details.

1. Preparing each managed server to be managed by ConVirt. See reference 28 for managed servers’ installation details. We have two managing servers with the following Ips (managed server 1, IP:172.16.2.22; and managed server 2, IP:172.16.2.25) as shown in the deployment diagram (Figure 5.7).

1. Starting ConVirt and discovering the managed servers you have prepared.

Notes

Try to follow the installation steps existing in reference 28 according to the distribution of the operating system in use. In our experiment, we use Ubuntu 8.10 in our setup.

Make sure that the managed servers include Xen or KVM hypervisors installed.

Make sure that you can access managed servers from your ConVirt management console through SSH.

Shared

Storage

Management Server 2	iSCSi or NFS

IP:172.16.2.25

[bookmark: page335][image:]5.5	VM PROVISIONING AND MIGRATION IN ACTION 138137

Management Server
Management Console	1

IP:172.16.2.22

FIGURE 5.7. A deployment scenario network	diagram.

[bookmark: page336]5.5	VM PROVISIONING AND MIGRATION IN ACTION 139137

Environment, Software, and Hardware. ConVirt 1.1, Linux Ubuntu 8.10,three machines, Dell core 2 due processor, 4G RAM.

Adding Managed Servers and Provisioning VM. Once the installation isdone and you are ready to manage your virtual infrastructure, then you can start the ConVirt management console (see Figure 5.8):

Select any of servers’ pools existing (QA Lab in our scenario) and on its context menu, select “Add Server.”

● You will be faced with a message asking about the virtualization platform

you want to manage	(Xen or KVM), as shown in Figure 5.9:

● Choose	KVM,	and	then	enter	the	managed	server	information	and

credentials (IP, username, and password) as shown in Figure	5.10.

Once the server is synchronized and authenticated with the manage ment console, it will appear in the left pane/of the ConVirt, as shown in Figure 5.11.

Select this server, and start provisioning your virtual machine as in Figure 5.12:

Fill in the virtual machine’s information (name, storage, OS template, etc.; Figure 5.13); then you will find it created on the managed server tree powered-off.

Note: While provisioning your virtual machine, make sure that you create disks on the shared storage (NFS or iSCSi). You can do so by selecting

[bookmark: page337]5.5	VM PROVISIONING AND MIGRATION IN ACTION 140137
[image:]

FIGURE 5.8. Adding managed server on the data centre’s management	console.

[bookmark: page338]

	Download from Wow! eBook <www.wowebook.com>

5.5	VM PROVISIONING AND MIGRATION IN ACTION 141137
[image:]

FIGURE 5.9. Select virtualization	platform.

[bookmark: page339]5.5	VM PROVISIONING AND MIGRATION IN ACTION 142137
[image:]

FIGURE 5.10. Managed server info and	credentials.

	[bookmark: page340]5.5 VM PROVISIONING AND MIGRATION IN ACTION
	141

[image:]

FIGURE 5.11. Managed server has been	added.

	[bookmark: page341]5.5 VM PROVISIONING AND MIGRATION IN ACTION
	141

[image:]

FIGURE 5.12. Provision a virtual	machine.

	[bookmark: page342]5.5 VM PROVISIONING AND MIGRATION IN ACTION
	141

[image:]

FIGURE 5.13. Configuring virtual machine.

the “provisioning” tab, and changing the VM_DISKS_DIR to point to the location of your shared NFS.

Start your VM (Figures 5.14 and 5.15), and make sure the installation media of the operating system you need is placed in drive, in order to use it

for booting the new VM and proceed in the installation process; then start the installation process as shown in Figure 5.16.

Once the installation finishes, you can access your provisioned virtual machine from the consol icon on the top of your ConVirt management console.

Reaching this step, you have created your first managed server and

provisioned virtual machine. You can repeat the same procedure to add the second managed server in your pool to be ready for the next step of migrating one virtual machine from one server to the other.

VM Life Cycle and VM Monitoring

You can notice through working with ConVirt that you are able to manage the whole life cycle of the virtual machine; start, stop, reboot, migrate, clone, and so

	[bookmark: page343]5.5 VM PROVISIONING AND MIGRATION IN ACTION
	141

on. Also, you noticed how easy it is to monitor the resources of the managed server and to monitor the virtual machine’s guests that help you balance and control the load on these managed servers once needed. In the next section, we are going to discuss how easy it is to migrate a virtual machine from host to host.

	[bookmark: page344]5.5 VM PROVISIONING AND MIGRATION IN ACTION
	143

[image:]

FIGURE 5.14. Provisioned VM ready to be	started.

	[bookmark: page345]5.5 VM PROVISIONING AND MIGRATION IN ACTION
	143

[image:]

FIGURE 5.15. Provisioned VM	started.

	[bookmark: page346]5.5 VM PROVISIONING AND MIGRATION IN ACTION
	143

[image:]

FIGURE 5.16. VM booting from the installation CD to start the installation process.

Live Migration

ConVirt tool allows running virtual machines to be migrated from one server to another [29].This feature makes it possible to organize the virtual machine to physical machine relationship to balance the workload; for example, a VM needing more CPU can be moved to a machine having available CPU cycles, or, in other cases, like taking the host machine for maintenance. For proper VM migration the following points must be considered [29]:

● Shared storage for all Guest OS disks (e.g., NFS, or	iSCSI).

● Identical mount points on all servers	(hosts).

● The kernel and ramdisk when using para-virtualized virtual machines

should, also, be shared. (This is not required, if pygrub is	used.)

Centrally accessible installation media (iso).

It is preferable to use identical machines with the same version of virtualization platform.

Migration needs to be done within the same subnet.

Migration Process in ConVirt

● To start the migration of a virtual machine from one host to the other,

	[bookmark: page347]5.5 VM PROVISIONING AND MIGRATION IN ACTION
	143

	select it and choose a migrating virtual machine, as shown in Figure
	5.17.

You will have a window containing all the managed servers in your data center (as shown in Figure 5.18). Choose one as a destination and start

	[bookmark: page348]5.5 VM PROVISIONING AND MIGRATION IN ACTION
	143

[image:]

FIGURE 5.17. VM migration.
[image:]

FIGURE 5.18. Select the destination managed server candidate for	migration.

	[bookmark: page349]5.5 VM PROVISIONING AND MIGRATION IN ACTION
	143

migration, or drag the VM and drop it on to another managed server to initiate migration.

Once the virtual machine has been successfully placed and migrated to the destination host, you can see it still living and working (as shown in Figure 5.19).

[bookmark: page350]5.6	PROVISIONING IN THE CLOUD CONTEXT 145145
[image:]

FIGURE 5.19. VM started on the destination server after	migration.

Final Thoughts about the Example

This is just a demonstrating example of how to provision and migrate virtual machines; however, there are more tools and vendors that offer virtual infrastructure’s management like Citrix XenServer, VMware vSphere, and so on.

PROVISIONING IN THE CLOUD CONTEXT

In the cloud context, we shall discuss systems that provide the virtual machine provisioning and migration services; Amazon EC2 is a widely known example for vendors that provide public cloud services. Also, Eucalyptus and OpenNebula are two complementary and enabling technologies for open source cloud tools, which play an invaluable role in infrastructure as a service and in building private, public, and hybrid cloud architecture.

Eucalyptus is a system for implementing on-premise private and hybrid clouds using the hardware and software’s infrastructure, which is in place without modification. The current interface to Eucalyptus is compatible with Amazon’s

EC2, S3, and EBS interfaces, but the infrastructure is designed to support

[bookmark: page351]5.6	PROVISIONING IN THE CLOUD CONTEXT 146145

multiple client-side interfaces. Eucalyptus is implemented using commonly available Linux tools and basic Web service’s technologies [30]. Eucalyptus adds capabilities, such as end-user customization, self-service provisioning, and legacy application support to data center’s virtualization’s features, making the

IT customer’s service easier . On the other hand, OpenNebula is a virtual

[bookmark: page352]5.6	PROVISIONING IN THE CLOUD CONTEXT 147145

infrastructure manager that orchestrates storage, network, and virtualization technologies to enable the dynamic placement of multi-tier services on distributed infrastructures, combining both data center’s resources and remote cloud’s resources according to allocation’s policies. OpenNebula provides internal cloud administration and user’s interfaces for the full management of the cloud’s platform.

Amazon Elastic Compute	Cloud

The Amazon EC2 (Elastic Compute Cloud) is a Web service that allows users to provision new machines into Amazon’s virtualized infrastructure in a matter of minutes; using a publicly available API (application programming interface), it reduces the time required to obtain and boot a new server. Users get full root access and can install almost any OS or application in their AMIs (Amazon Machine Images). Web services APIs allow users to reboot their instances remotely, scale capacity quickly, and use on-demand service when needed; by adding tens, or even hundreds, of machines. It is very important to mention that there is no up-front hardware setup and there are no installation costs, because Amazon charges only for the capacity you actually use.

EC2 instance is typically a virtual machine with a certain amount of RAM, CPU, and storage capacity.

Setting up an EC2 instance is quite easy. Once you create your AWS (Amazon Web service) account, you can use the on-line AWS console, or simply download the offline command line’s tools to start provisioning your instances.

Amazon EC2 provides its customers with three flexible purchasing models to make it easy for the cost optimization:

On-Demand instances, which allow you to pay a fixed rate by the hourwith no commitment.

Reserved instances, which allow you to pay a low, one-time fee and in turnreceive a significant discount on the hourly usage charge for that instance. It ensures that any reserved instance you launch is guaranteed to succeed (provided that you have booked them in advance). This means that users of these instances should not be affected by any transient limitations in EC2 capacity.

Spot instances, which enable you to bid whatever price you want forinstance capacity, providing for even greater savings, if your applications have flexible start and end times.

Amazon and Provisioning Services. Amazon provides an excellent set oftools that help in provisioning service; Amazon Auto Scaling [30] is a set of command line tools that allows scaling Amazon EC2 capacity up or down automatically and according to the conditions the end user defines. This feature ensures that the number of Amazon EC2 instances can scale up seamlessly

[bookmark: page353]5.6	PROVISIONING IN THE CLOUD CONTEXT 148145

during demand spikes to maintain performance and can scale down automatically when loads diminish and become less intensive to minimize the costs. Auto Scaling service and CloudWatch [31] (a monitoring service for AWS cloud resources and their utilization) help in exposing functionalities required for provisioning application services on Amazon EC2.

Amazon Elastic Load Balancer [32] is another service that helps in building fault-tolerant applications by automatically provisioning incoming application workload across available Amazon EC2 instances and in multiple availabilityzones.

Infrastructure Enabling Technology

Offering infrastructure as a service requires software and platforms that can manage the Infrastructure that is being shared and dynamically provisioned. For this, there are three noteworthy technologies to be considered: Eucalyptus, OpenNebula, and Aneka.

Eucalyptus

Eucalyptus is an open-source infrastructure for the implementation of cloud computing on computer clusters. It is considered one of the earliest tools developed as a surge computing (in which data center’s private cloud could augment its ability to handle workload’s spikes by a design that allows it to send overflow work to a public cloud) tool. Its name is an acronym for “elastic utility computing architecture for linking your programs to useful systems.”

Here are some of the Eucalyptus features	:

Interface compatibility with EC2, and S3 (both Web service and Query/ REST interfaces).

Simple installation and deployment.

● Support for most Linux distributions (source and binary	packages).

Support for running VMs that run atop the Xen hypervisor or KVM. Support for other kinds of VMs, such as VMware, is targeted for future releases.

Secure internal communication using SOAP with WS security.

Cloud administrator’s tool for system’s management and user’s accounting.

The ability to configure multiple clusters each with private internal network addresses into a single cloud.

Eucalyptus aims at fostering the research in models for service’s provisioning, scheduling, SLA formulation, and hypervisors’ portability.

Eucalyptus Architecture. Eucalyptus architecture, as illustrated in Figure 5.20,

[bookmark: page354]5.6	PROVISIONING IN THE CLOUD CONTEXT 149145

constitutes each high-level system’s component as a stand-alone Web service with the following high-level components .

[bookmark: page355]5.6	PROVISIONING IN THE CLOUD CONTEXT 150145

Client-side Interface (via network)
[image:]

Client-side API Translator

Database

	Cloud Controller
	
	
	Walrus (S3)

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	
	Cluster Controller
	
	Storage Controller
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

Node Controller

FIGURE 5.20. Eucalyptus high-level architecture.

[bookmark: page356]PROVISIONING IN THE CLOUD CONTEXT 151145

Node controller (NC) controls the execution, inspection, and termination

of VM instances on the host where it	runs.

Cluster controller (CC) gathers information about and schedules VM execution on specific node controllers, as well as manages virtual instance network.

Storage controller (SC) is a put/get storage service that implements

Amazon’s S3 interface and provides a way for storing and accessing VM images and user data.

Cloud controller (CLC) is the entry point into the cloud for users and administrators. It queries node managers for information about resources, makes high-level scheduling decisions, and implements them by making requests to cluster controllers.

Walrus (W) is the controller component that manages access to the storage services within Eucalyptus. Requests are communicated to Walrus using the SOAP or REST-based interface.

[bookmark: page357]5.6	PROVISIONING IN THE CLOUD CONTEXT 152145

Its design is an open and elegant one. It can be very beneficial in testing and debugging purposes before deploying it on a real cloud. For more details about Eucalyptus architecture and design, check reference 11.

Ubuntu Enterprise Cloud and Eucalyptus. Ubuntu Enterprise Cloud(UEC) [33] is a new initiative by Ubuntu to make it easier to provision, deploy, configure, and use cloud infrastructures based on Eucalyptus. UEC brings Amazon EC2-like infrastructure’s capabilities inside the firewall.

This is by far the simplest way to install and try Eucalyptus. Just download the Ubuntu server version and install it wherever you want. UEC is also the first open source project that lets you create cloud services in your local environment easily and leverage the power of cloud computing.

VM Dynamic Management Using OpenNebula

OpenNebula is an open and flexible tool that fits into existing data center’s environments to build any type of cloud deployment. OpenNebula can be primarily used as a virtualization tool to manage your virtual infrastructure, which is usually referred to as private cloud. OpenNebula supports a hybrid cloud to combine local infrastructure with public cloud-based infrastructure, enabling highly scalable hosting environments. OpenNebula also supports public clouds by providing cloud’s interfaces to expose its functionality for virtual machine, storage, and network management. OpenNebula is one of the technologies being enhanced in the Reservoir Project [14], European research initiatives in virtualized infrastructures, and cloud computing.

OpenNebula architecture is shown in Figure 5.21, which illustrates the existence of public and private clouds and also the resources being managed by its virtual manager.

OpenNebula is an open-source alternative to these commercial tools for the dynamic management of VMs on distributed resources. This tool is supporting several research lines in advance reservation of capacity, probabilistic admission control, placement optimization, resource models for the efficient management of groups of virtual machines, elasticity support, and so on. These research lines address the requirements from both types of clouds namely, private and public.

OpenNebula and Haizea. Haizea is an open-source virtual machine-basedlease management architecture developed by Sotomayor et al. [34]; it can be used as a scheduling backend for OpenNebula. Haizea uses leases as a fundamental resource provisioning abstraction and implements those leases as virtual machines, taking into account the overhead of using virtual machines when scheduling leases. Haizea also provides advanced functionality such as [35]:

[bookmark: page358]PROVISIONING IN THE CLOUD CONTEXT 153145

Advance reservation of capacity.

Best-effort scheduling with backfilling.

[bookmark: page359]5.7	FUTURE RESEARCH DIRECTIONS 1 5 4 151

Cloud User

Local User and

Scheduler	Cloud Service

Virtual Infrastructure Manager

Virtualization	Storage	Network	Cloud

Public

Local Infrastructure

Interface

FIGURE 5.21. OpenNebula high-level architecture [14].

Resource preemption (using VM suspend/resume/migrate).

Policy engine, allowing developers to write pluggable scheduling policies in Python.

Aneka

Manjrasoft Aneka is a .NET-based platform and framework designed for building and deploying distributed applications on clouds. It provides a set of APIs for transparently exploiting distributed resources and expressing the business logic of applications by using the preferred programming abstractions. Aneka is also a market-oriented cloud platform since it allows users to build and schedule applications, provision resources, and monitor results using pricing, accounting, and QoS/SLA services in private and/or public cloud environments. It allows end users to build an enterprise/private cloud setup by exploiting the power of computing resources in the enterprise data centers, public clouds such as Amazon EC2 , and hybrid clouds by combining enterprise private clouds managed by Aneka with resources from Amazon EC2 or other enterprise clouds built and managed using technologies such as XenServer.

Aneka also provides support for deploying and managing clouds. By using its Management Studio and a set of Web interfaces, it is possible to set up either public or private clouds, monitor their status, update their configuration, and perform the basic management operations.

[bookmark: page360]5.7	FUTURE RESEARCH DIRECTIONS 1 5 5 151

Aneka Architecture. Aneka platform architecture , as illustrated in Figure5.22, consists of a collection of physical and virtualized resources

[bookmark: page361]5.7	FUTURE RESEARCH DIRECTIONS 1 5 6 151

connected through a network. Each of these resources hosts an instance of the Aneka container representing the runtime environment where the distributed applications are executed. The container provides the basic management features of the single node and leverages all the other operations on the services that it is hosting. The services are broken up into fabric, foundation, and execution services. Fabric services directly interact with the node through the platform abstraction layer (PAL) and perform hardware profiling and dynamicresource provisioning. Foundation services identify the core system of theAneka middleware, providing a set of basic features to enable Aneka containers to perform specialized and specific sets of tasks. Execution services directly deal with the scheduling and execution of applications in the cloud.

FUTURE RESEARCH DIRECTIONS

Virtual machine provision and migration services take their place in research to achieve the best out of its objectives, and here is a list of potential areas’ candidates for research:

● Self-adaptive and dynamic data	center.

Data centers exist in the premises of any hosting or ISPs that host different Web sites and applications. These sites are being accessed at different timing pattern (morning hours, afternoon, etc.). Thus, workloads against these sites need to be tracked because they vary dynamically over time. The sizing of host machines (the number of virtual machines that host these applications) represents a challenge, and there is a potential research area over here to study the performance impact and overhead due to this dynamic creation of virtual machines hosted in these self-adaptive data centers, in order to manage Web sites properly.

Study of the performance in this dynamic environment will also tackle the the balance that should be exist between a rapid response time of individual applications, the overall performance of the data, and the high availability of the applications and its services.

Performance evaluation and workload characterization of virtual workloads.

It is very invaluable in any virtualized infrastructure to have a notion about the workload provisioned in each VM, the performance’s impacts due to the hypervisors layer, and the overhead due to consolidated workloads for such

[bookmark: page362]5.7	FUTURE RESEARCH DIRECTIONS 1 5 7 151

systems; but yet, this is not a deterministic process. Single-workload benchmark is useful in quantifying the virtualization overhead within a single VM, but not useful in a whole virtualized environment with multiple isolated VMs with varying workloads on each, leading to the inability of capturing the system’s

[bookmark: page363]5.7	FUTURE RESEARCH DIRECTIONS 1 5 2 153

[bookmark: page364]Foundation Services

Storage	License	Accounting

Membership	ReservationServices

5.7	FUTURE RESEARCH DIRECTIONS 1 5 3 153
Fabric Services

Dynamic Resource Provisioning Services

Hardware Profile Services

Infrastructure

Mono @ Linux

Physical Machines/Virtual Machines

	
	
	Amazon

	Private Cloud
	Microsoft
	Google

	
	
	IBM

	LAN network
	
	Data Center

	
	
	

	Security

	Persistence

FIGURE 5.22. Manjras oft Aneka layered architecture	.

behavior. So, there is a big need for a common workload model and methodology for virtualized systems; thus benchmark’s results can be compared across different platforms. It will help in the dynamic workload’s relocation and migrations’ services.

	● One of the potential areas that
	worth study and investigation is the

	development of fundamental tools
	and techniques that facilitate

	the integration and provisioning
	of
	distributed and hybrid clouds in

[bookmark: page365]5.7	FUTURE RESEARCH DIRECTIONS 1 5 4 153

federated way, which is critical for enabling of composition and deployment of elastic application services [35, 36].

● High-performance data scaling in private and public cloud	environments.

Organizations and enterprises that adopt the cloud computing architectures can face lots of challenges related to (a) the elastic provisioning of compute clouds on their existing data center’s infrastructure and (b) the inability of the data layer to scale at the same rate as the compute layer. So, there is a persisting need for implementing systems that are capable of scaling data with the same pace as scaling the infrastructure, or to integrate current infrastructure elastic provisioning systems with existing systems that are designed to scale out the applications and data layers.

Performance and high availability in clustered VMs through live migration.

Clusters are very common in research centers, enterprises, and accordingly in the cloud. For these clusters to work in a proper way, there are two aspects of great importance, namely, high availability, and high performance service. This can be achieved through clusters of virtual machines in which high available applications can be achieved through the live migration of the virtual machine to different locations in the cluster or in the cloud. So, the need exists to

(a) study the performance, (b) study the performance’s improvement opportunities with regard to the migrations of these virtual machines, and (c) decide to which location the machine should be migrated.

VM scheduling algorithms.

Accelerating VMs live migration time.

● Cloud-wide VM migration and memory	de-duplication.

Normal VM migration is being done within the same physical site location (campus, data center, lab, etc.). However, migrating virtual machines between different locations is an invaluable feature to be added to any virtualization management’s tools. For more details on memory status, storage relocation, and so on; check the patent pending technology about this topic [37]. Considering such setup can enable faster and longer-distance VM migrations, cross-site load balancing, power management, and de-duplicating memory throughout multiple sites. It is a rich area for research.

● Live migration security.

[bookmark: page366]5.7	FUTURE RESEARCH DIRECTIONS 1 5 5 153

Live migration security is a very important area of research, because several security’s vulnerabilities exist; check reference 38 for an empirical exploitation of live migration.

[bookmark: page367]5.7	FUTURE RESEARCH DIRECTIONS 1 5 6 153

● Extend migration algorithm to allow for	priorities.

Cisco initiative UCS (Unified Commuting System) and its role in dynamic just-in-time provisioning of virtual machines and increase of business agility [39].

CONCLUSION

Virtual machines’ provisioning and migration are very critical tasks in today’s virtualized systems, data center’s technology, and accordingly the cloud computing services.

They have a huge impact on the continuity, and availability of business. In a few minutes, you can provision a complete server with all its appliances to perform a particular functionality, or to offer a service. In a few milliseconds, you can migrate a virtual machine hosted on a physical server within a clustered environment to a completely different server for the purpose of maintenance, workloads’ needs, and so on. In this chapter, we covered VM provisioning and migration services techniques, as well as tools and concepts, and also shed some light on potential areas for research.

REFERENCES

D. Chisnall, The Definitive Guide to the Xen Hypervisor, Upper Saddle River, NJ, Prentice Hall, 2008.

M. El-Refaey and M. Rizkaa, Virtual systems workload characterization: An overview, in Proceedings of the 18th IEEE International Workshops on EnablingTechnologies: Infrastructures for Collaborative Enterprises, WETICE 2009 ,Groningen, The Netherlands, 29 June—1 July 2009.

A. T. Velte, T. J. Velte, and R. Elsenpeter, Cloud Computing: A Practical Approach, McGraw-Hill, New York, 2010.

Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2/, March 15, 2010.

Cloud Hosting, Cloud Computing, Hybrid Infrastructure from GoGrid, http:// www.gogrid.com/, March 19, 2010.

JoyentCloud Computing Companies: Domain, Application & Web Hosting Services, http://www.joyent.com/, March 10, 2010.

7.	Rackspace hosting, http://www.rackspace.com/index.php, March 10,	2010.

AppNexus—Home, http://www.appnexus.com/, March 9, 2010.

FlexiScale cloud computing and hosting: instant Windows and Linux cloud servers on demand, http://www.flexiscale.com/, March 12, 2010.

C. Vecchiola, X. Chu, and R. Buyya, Aneka: A Software Platform for .NET-based

[bookmark: page368]5.7	FUTURE RESEARCH DIRECTIONS 1 5 7 153

cloud computing, high speed and large scale scientific computing, in Advances in Parallel Computing, W. Gentzsch, L. Grandinetti, G. Joubert (eds.), ISBN: 978-160750-073-5, IOS Press, Amsterdam, Netherlands, 2009, pp. 267—295.

[bookmark: page369]REFERENCES	155

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, D. Zagorodnov, The Eucalyptus Open-source Cloud-computing System, in

Proceedings of 9th IEEE International Symposium on Cluster Computing and the Grid, Shanghai, China, pp. 124—131.

B. Sotomayor, R. Santiago Montero, I. Martı´ n Llorente, I. Foster, Capacity Leasing in Cloud Systems using the OpenNebula Engine (short paper). Workshopon Cloud Computing and its Applications 2008 (CCA08), October 22—23, 2008,Chicago, Illinois, USA.

P. Gardfja¨ ll, E. Elmroth, L. Johnsson, O. Mulmo, and T. Sandholm, Scalable gridwide capacity allocation with the SweGrid Accounting System (SGAS),

Concurrency and Computation: Practice and Experience, 20(18): 2089—2122,2008.

I. M. LIorente, Innovation for cloud infrastructure management in OpenNebula/ RESERVOIR, ETSI Workshop on Grids, Clouds & Service Infrastructures, Sophia Antipolis, France, December 3, 2009.

B. Rochwerger, J. Caceres, R. S. Montero, D. Breitgand, E. Elmroth, A. Galis, E. Levy, I. M. Llorente, and K. Nagin, Y. Wolfsthal, The RESERVOIR Model and architecture for open federated cloud computing, IBM Systems Journal, Volume 53, Number 4, 2009.

F. Piedad and M. W. Hawkins, High Availability: Design, Techniques, and

Processes, Prentice Hall PTR, Upper Saddle River, NJ,	2000.

DMTF—VMAN, http://www.dmtf.org/standards/mgmt/vman, March 27, 2010.

OGF Open Cloud Computing Interface Working Group, http://www.occi-wg.org/ doku.php, March 27, 2010.

J. Arrasjid, K. Balachandran, D. Conde, G. Lamb, and S. Kaplan, Deploying theVMware Infrastructure, The USENIX Association, August 10, 2008.

Live Storage Migration of virtual machine, http://www.vmware.com/technology/ virtual-storage/live-migration.html, August 19, 2009.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Kimpach, I. Pratt, and W. Warfield, Live migration of virtual machines, in 2nd USENIX Symposium on

Networked Systems, Design and Implementation (NSDI 05), May	2005.

VMware VMotion for Live migration of virtual machines, http://www.vmware

.com/products/vi/vc/vmotion.html, August 19, 2009.

Knowledge Center Home—Citrix Knowledge Center, Article ID: CTX115813 http://support.citrix.com, August 28, 2009.

Cold Migration, http://pubs.vmware.com/vsp40_e/admin/wwhelp/wwhimpl/com-mon/html/wwhelp.htm#href=c_cold_migration.html#1_10_21_7_1&single=true, August 20, 2009.

ConVirture: Enterprise—class management for open source virtualization, http:// www.convirture.com/, August 21, 2009.

S. Crosby, D. E. Williams, and J. Garcia, Virtualization with Xen: IncludingXenEnterprise, XenServer, and XenExpress, Syngress Media Inc., ISBN 1-59749167-5, 2007.

	27.
	I. Habib, Virtualization with KVM, Linux Journal, 2008(166):8, February 2008.

	28.
	Installation—ConVirt,
	http://www.convirture.com/wiki/index.php?title=

[bookmark: page370]Installation, March 27, 2010.

[bookmark: page371]
VM Migration—ConVirt, http://www.convirture.com/wiki/index.php?title=VM_ Migration, March 25, 2010.

Amazon Auto Scaling Service, http://aws.amazon.com/autoscaling/, March 23, 2010.

Amazon CloudWatch Service, http://aws.amazon.com/cloudwatch/, March 23, 2010.

Amazon Load Balancer Service, http://aws.amazon.com/elasticloadbalancing/. March 21, 2010.

S. Wardley, E. Goyer, and N. Barcet, Ubuntu Enterprise Cloud Architecture, http://www.ubuntu.com/cloud/private, March 23, 2010.

B. Sotomayor, K. Keahey, and I. Foster. Combining batch execution and leasing using virtual machines ACM, in Proceedings of the 17th international Symposiumon High Performance Distributed Computing, New York, 2008, pp. 87—96.

I. M. LIorente, The OpenNebula Open Source Toolkit to Build Cloud Infrastructures, Seminars LinuxWorld NL, Utrecht, The Netherlands, November 5th, 2009.

R. Buyya1, R. Ranjan, and R. N. Calheiros, InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services, in Proceedings of the 10th International Conference on Algorithms and Architecturesfor Parallel Processing, ICA3PP 2010, Busan, South Korea, May 21—23, 2010.

K. Lawton, Virtualization 3.0: Cloud-wide VM migration and memory deduplication, http://www.trendcaller.com/2009/03/virtualization-30-vm-memory-wan. html, August 25, 2009.

J. Oberheide, E. Cooke, and F. Jahanian, Empirical exploitation of live virtual

machine migration needs modification, http://www.net-security.org/article.php? id 5 1120, August 29, 2009.

Cisco Unified Computing System, http://www.cisco.com/go/unifiedcomputing, August 30, 2009.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D. Zagorodnov. The Eucalyptus open-source cloud-computing system, in Proceedingsof the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2009), May 18—May 21, 2010, Shanghai, China.

[bookmark: page372]
CHAPTER 6

ON	THE	MANAGEMENT	OF
VIRTUAL MACHINES FOR CLOUD
INFRASTRUCTURES

IGNACIO M. LLORENTE, RUBE´ N S. MONTERO, BORJA SOTOMAYOR, DAVID BREITGAND, ALESSANDRO MARASCHINI, ELIEZER LEVY, and

BENNY ROCHWERGER

In 2006, Amazon started offering virtual machines (VMs) to anyone with a credit card for just $0.10/hour through its Elastic Compute Cloud (EC2) service. Although not the first company to lease VMs, the programmer-friendly EC2 Web services API and their pay-as-you-go pricing popularized the

“Infrastructure as a Service” (IaaS) paradigm, which is now closely related to the notion of a “cloud.” Following the success of Amazon EC2 [1], several other IaaS cloud providers, or public clouds, have emerged—such as ElasticHosts , GoGrid , and FlexiScale —that provide a publicly accessible interface for purchasing and managing computing infrastructure that is instantiated as VMs running on the provider’s data center. There is also a growing ecosystem of technologies and tools to build private clouds—where inhouse resources are virtualized, and internal users can request and manage these resources using interfaces similar or equal to those of public clouds —and hybrid clouds—where an organization’s private cloud can supplement itscapacity using a public cloud.

Thus, within the broader context of cloud computing, this chapter focuses on the subject of IaaS clouds and, more specifically, on the efficient management of virtual machines in this type of cloud. Section 6.1 starts by discussing the characteristics of IaaS clouds and the challenges involved in

[bookmark: page373]managing these clouds. The following sections elaborate on some of these challenges, describing the solutions proposed within the virtual machine management activity of

Cloud Computing: Principles and Paradigms, Edited by Rajkumar Buyya, James Broberg andAndrzej Goscinski Copyright r 2011 John Wiley & Sons, Inc.

157

[bookmark: page374]
RESERVOIR (Resources and Services Virtualization without Barriers), a European Union FP7-funded project. Section 6.2 starts by discussing the problem of managing virtual infrastructures; Section 6.3 presents scheduling techniques that can be used to provide advance reservation of capacity within these infrastructures; Section 6.4 focuses on service-level agreements (or SLAs) in IaaS clouds and discusses capacity management techniques supporting SLA commitments. Finally, the chapter concludes with a discussion of remaining challenges and future work in IaaS clouds.

THE ANATOMY OF CLOUD INFRASTRUCTURES

There are many commercial IaaS cloud providers in the market, such as those cited earlier, and all of them share five characteristics: (i) They provide on-demand provisioning of computational resources; (ii) they use virtualization technologies to lease these resources; (iii) they provide public and simple remote interfaces to manage those resources; (iv) they use a pay-as-you-go cost model, typically charging by the hour; and (v) they operate data centers large enough to provide a seemingly unlimited amount of resources to their clients

(usually touted as “infinite capacity” or “unlimited elasticity”). Private and hybrid clouds share these same characteristics but, instead of selling capacity over publicly accessible interfaces, focus on providing capacity to an organization’s internal users.

Virtualization technologies have been the key enabler of many of these salient characteristics of IaaS clouds by giving providers a more flexible and generic way of managing their resources. Thus, virtual infrastructure (VI)management—the management of virtual machines distributed across a pool ofphysical resources—becomes a key concern when building an IaaS cloud and poses a number of challenges. Like traditional physical resources, virtual

	machines require a fair amount of configuration,
	including preparation of

	the machine’s software environment and network
	configuration. However,

in a virtual infrastructure, this configuration must be done on-the-fly, with as little time between the time the VMs are requested and the time they are available to the user. This is further complicated by the need to configure groups of VMs that will provide a specific service (e.g., an application requiring a Web server and a database server). Additionally, a virtual infrastructure manager must be capable of allocating resources efficiently, taking into account an organization’s goals (such as minimizing power consumption and other operational costs) and reacting to changes in the physical infrastructure.

Virtual infrastructure management in private clouds has to deal with an additional problem: Unlike large IaaS cloud providers, such as Amazon, private clouds typically do not have enough resources to provide the illusion of “infinite capacity.” The immediate provisioning scheme used in public clouds, where resources are provisioned at the moment they are requested, is ineffective in private clouds. Support for additional provisioning schemes, such

	[bookmark: page375]6.1 THE ANATOMY OF CLOUD INFRASTRUCTURES
	159

as best-effort provisioning and advance reservations to guarantee quality of service (QoS) for applications that require resources at specific times (e.g., during known “spikes” in capacity requirements), is required. Thus, efficient resource allocation algorithms and policies and the ability to combine both private and public cloud resources, resulting in a hybrid approach, become even more important.

Several VI management solutions have emerged over time, such as platform ISF and VMware vSphere , along with open-source initiatives such as Enomaly Computing Platform and Ovirt . Many of these tools originated out of the need to manage data centers efficiently using virtual machines, before the Cloud Computing paradigm took off. However, managing virtual infrastructures in a private/hybrid cloud is a different, albeit similar, problem than managing a virtualized data center, and existing tools lack several features that are required for building IaaS clouds. Most notably, they exhibit monolithic and closed structures and can only operate, if at all, with some preconfigured placement policies, which are generally simple (round robin, first fit, etc.) and based only on CPU speed and utilization of a fixed and predetermined number of resources, such as memory and network bandwidth. This precludes extending their resource management strategies with custom policies or integration with other cloud systems, or even adding cloud interfaces.

Thus, there are still several gaps in existing VI solutions. Filling these gaps will require addressing a number of research challenges over the next years, across several areas, such as virtual machine management, resource scheduling, SLAs, federation of resources, and security. In this chapter, we focus on three problems addressed by the Virtual Machine Management Activity of RESERVOIR: distributed management of virtual machines, reservation-based provisioning of virtualized resource, and provisioning to meet SLA commitments.

Distributed Management of Virtual Machines

The first problem is how to manage the virtual infrastructures themselves. Although resource management has been extensively studied, particularly for job management in high-performance computing, managing VMs poses additional problems that do not arise when managing jobs, such as the need to set up custom software environments for VMs, setting up and managing networking for interrelated VMs, and reducing the various overheads involved in using VMs. Thus, VI managers must be able to efficiently orchestrate all these different tasks. The problem of efficiently selecting or scheduling computational resources is well known. However, the state of the art in VM-based resource scheduling follows a static approach, where resources are initially selected using a greedy allocation strategy, with minimal or no support for other placement policies. To efficiently schedule resources, VI managers must be

[bookmark: page376]able to support flexible and complex scheduling policies and must leverage the ability of VMs to

suspend, resume, and migrate.

[bookmark: page377]6.2	DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

This complex task is one of the core problems that the RESERVOIR project tries to solve. In Section 6.2 we describe the problem of how to manage VMs distributed across a pool of physical resources and describe OpenNebula, the virtual infrastructure manager developed by the RESERVOIR project.

Reservation-Based Provisioning of Virtualized Resources

A particularly interesting problem when provisioning virtual infrastructures is how to deal with situations where the demand for resources is known beforehand—for example, when an experiment depending on some complex piece of equipment is going to run from 2 pm to 4 pm, and computational resources must be available at exactly that time to process the data produced by the equipment. Commercial cloud providers, such as Amazon, have enough resources to provide the illusion of infinite capacity, which means that this situation is simply resolved by requesting the resources exactly when needed; if capacity is “infinite,” then there will be resources available at 2 pm.

On the other hand, when dealing with finite capacity, a different approach is needed. However, the intuitively simple solution of reserving the resources beforehand turns out to not be so simple, because it is known to cause resources to be underutilized [10—13], due to the difficulty of scheduling other requests around an inflexible reservation.

As we discuss in Section 6.3, VMs allow us to overcome the utilization problems typically associated with advance reservations and we describe Haizea, a VM-based lease manager supporting advance reservation along with other provisioning models not supported in existing IaaS clouds, such as best-effort provisioning.

Provisioning to Meet SLA Commitments

IaaS clouds can be used to deploy services that will be consumed by users other than the one that deployed the services. For example, a company might depend on an IaaS cloud provider to deploy three-tier applications (Web front-end, application server, and database server) for its customers. In this case, there is a distinction between the cloud consumer (i.e., the service owner; in this case, the company that develops and manages the applications) and the end users of the resources provisioned on the cloud (i.e., the service user; in this case, the users that access the applications). Furthermore, service owners will enter into service-level agreements (SLAs) with their end users, covering guarantees such as the timeliness with which these services will respond.

However, cloud providers are typically not directly exposed to the service semantics or the SLAs that service owners may contract with their end users. The capacity requirements are, thus, less predictable and more elastic. The use of reservations may be insufficient, and capacity planning and optimizations are required instead. The cloud provider’s task is, therefore, to make sure that resource allocation requests are satisfied with specific probability and

[bookmark: page378]6.2	DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

timeliness. These requirements are formalized in infrastructure SLAs between the service owner and cloud provider, separate from the high-level SLAs between the service owner and its end users.

In many cases, either the service owner is not resourceful enough to perform an exact service sizing or service workloads are hard to anticipate in advance. Therefore, to protect high-level SLAs, the cloud provider should cater for elasticity on demand. We argue that scaling and de-scaling of an application is best managed by the application itself. The reason is that in many cases, resources allocation decisions are application-specific and are being driven by the application level metrics. These metrics typically do not have a universal meaning and are not observable using black box monitoring of virtual machines comprising the service.

RESERVOIR proposes a flexible framework where service owners may register service-specific elasticity rules and monitoring probes, and these rules are being executed to match environment conditions. We argue that elasti city of the application should be contracted and formalized as part of capacity availability SLA between the cloud provider and service owner. This poses interesting research issues on the IaaS side, which can be grouped around two main topics:

SLA-oriented capacity planning that guarantees that there is enough capacity to guarantee service elasticity with minimal over-provisioning.

Continuous resource placement and scheduling optimization that lowers operational costs and takes advantage of available capacity transparently to the service while keeping the service SLAs.

We explore these two topics in further detail in Section 6.4, and we describe how the RESERVOIR project addresses the research issues that arise therein.

DISTRIBUTED MANAGEMENT OF VIRTUAL	INFRASTRUCTURES

Managing VMs in a pool of distributed physical resources is a key concern in IaaS clouds, requiring the use of a virtual infrastructure manager. To address some of the shortcomings in existing VI solutions, we have developed the open source OpenNebula1 virtual infrastructure engine. OpenNebula is capable of managing groups of interconnected VMs—with support for the Xen, KVM, and VMWare platforms—within data centers and private clouds that involve a large amount of virtual and physical servers. OpenNebula can also be used to build hybrid clouds by interfacing with remote cloud sites [14]. This section describes how OpenNebula models and manages VMs in a virtual

[bookmark: page379]6.2	DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

infrastructure.

1http://www.opennebula.org

[bookmark: page380]6.2	DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

VM Model and Life Cycle

The primary target of OpenNebula is to manage VMs. Within OpenNebula, a

VM is modeled as having the following	attributes:

● A capacity in terms of memory and	CPU.

A set of NICs attached to one or more virtual networks.

A set of disk images. In general it might be necessary to transfer some of these image files to/from the physical machine the VM will be running in.

A state file (optional) or recovery file that contains the memory image of a running VM plus some hypervisor-specific information.

The life cycle of a VM within OpenNebula follows several	stages:

Resource Selection. Once a VM is requested to OpenNebula, a feasibleplacement plan for the VM must be made. OpenNebula’s default

scheduler provides an implementation of a rank scheduling policy, allowing site administrators to configure the scheduler to prioritize the resources that are more suitable for the VM, using information from the VMs and the physical hosts. As we will describe in Section 6.3, OpenNebula can also use the Haizea lease manager to support more complex scheduling policies.

Resource Preparation. The disk images of the VM are transferred to thetarget physical resource. During the boot process, the VM is contextualized, a process where the disk images are specialized to work in a given environment. For example, if the VM is part of a group of VMs offering a service (a compute cluster, a DB-based application, etc.), contextualization could involve setting up the network and the machine hostname, or registering the new VM with a service (e.g., the head node in a compute cluster). Different techniques are available to contextualize a worker node, including use of an automatic installation system (for instance, Puppet or Quattor), a context server (see reference 15), or access to a disk image with the context data for the worker node (OVF recommendation).

● VM Creation.The VM is booted by the resource	hypervisor.

VM Migration. The VM potentially gets migrated to a more suitableresource (e.g., tooptimize the power consumption of the physical resources).

VM Termination. When the VM is going to shut down, OpenNebula cantransfer back its disk images to a known location. This way, changes in the

VM can be kept for a future	use.

VM Management

[bookmark: page381]6.2	DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

OpenNebula manages a VMs life cycle by orchestrating three different management areas: virtualization by interfacing with a physical resource’s

[bookmark: page382]6.2	DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

hypervisor, such as Xen, KVM, or VMWare, to control (e.g., boot, stop, or shutdown) the VM; image management by transferring the VM images from an image repository to the selected resource and by creating on-the-fly temporary images; and networking by creating local area networks (LAN) to interconnect the VMs and tracking the MAC addresses leased in each network.

Virtualization. OpenNebula manages VMs by interfacing with the physicalresource virtualization technology (e.g., Xen or KVM) using a set of pluggable drivers that decouple the managing process from the underlying technology. Thus, whenever the core needs to manage a VM, it uses high-level commands such as “start VM,” “stop VM,” and so on, which are translated by the drivers into commands that the virtual machine manager can understand. By decoupling the OpenNebula core from the virtualization technologies through the use of a driver-based architecture, adding support for additional virtual machine managers only requires writing a driver for it.

Image Management. VMs are supported by a set of virtual disks orimages,which contains the OS and any other additional software needed by the VM. OpenNebula assumes that there is an image repository that can be any storage medium or service, local or remote, that holds the base image of the VMs.

There are a number of different possible configurations depending on the user’s needs. For example, users may want all their images placed on a separate repository with only HTTP access. Alternatively, images can be shared through NFS between all the hosts. OpenNebula aims to be flexible enough to support as many different image management configurations as possible.

OpenNebula uses the following concepts for its image management model (Figure 6.1):

Image Repositories refer to any storage medium, local or remote, that holdthe base images of the VMs. An image repository can be a dedicated file server or a remote URL from an appliance provider, but they need to be accessible from the OpenNebula front-end.

Virtual Machine Directory is a directory on the cluster node where a VM isrunning. This directory holds all deployment files for the hypervisor to boot the machine, checkpoints, and images being used or saved—all of them specific to that VM. This directory should be shared for most hypervisors to be able to perform live migrations. Any given VM image goes through the following steps along its life cycle:

Preparation implies all the necessary changes to be made to themachine’s image so it is prepared to offer the service to which it is intended. OpenNebula assumes that the images that conform to a particular VM are prepared and placed in the accessible image repository.

[bookmark: page383]

	Download from Wow! eBook <www.wowebook.com>

6.2	DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES
[image:]

FRONT-END

Image

$ONE_LOCATION/var

Shared FS

VM_DIR	VM_DIR	VM_DIR

FIGURE 6.1. Image management in OpenNebula.

Cloning the image means taking the image from the repository and placing it in the VM’s directory in the physical node where it is going to be run before the VM is actually booted. If a VM image is to be cloned, the original image is not going to be used, and thus a copy will be used. There is a qualifier (clone) for the images that can mark them as targeting for cloning or not.

Save/remove. If the save qualifier is disabled, once the VM has been shut down, the images and all the changes thereof are going to be disposed of. However, if the save qualifier is activated, the image will be saved for later use.

Networking. In general, services deployed on a cloud, from a computingcluster to the classical three-tier business application, require several interrelated VMs, with a virtual application network (VAN) being the primary link between them. OpenNebula dynamically creates these VANs and

	tracks
	the MAC addresses leased in the network to the service VMs. Note that

	here
	we refer to layer 2 LANs; other TCP/IP services such as DNS, NIS, or

	NFS
	are the responsibility of the service (i.e., the service VMs have to be

configured to provide such services).

The physical hosts that will co-form the fabric of our virtual infrastructures

[bookmark: page384]6.2	DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

will need to have some constraints in order to effectively deliver virtual networks to our virtual machines. Therefore, from the point of view of networking, we can define our physical cluster as a set of hosts with one or more network interfaces, each of them connected to a different physical network.

[bookmark: page385]6.2	DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

Physical Network

Virtual LAN–Red	Switch	Virtual LAN–Blue

(Ranged)	(Ranged)

Host	A	Host B

Bridge	02:01:0A:00:02:01	Bridge

02:01:0A:00:01:01	10.0.2.1/24

10.0.1.1/24	02:01:0A:00:02:02

10.0.2.2/24

	
	
	
	02:01:0A:00:01:03

	Bridge
	02:01:93:60:51:f1
	Bridge
	10.0.1.3/24

	
	
	
	

	
	
	
	

	
	147.96.81.241/24
	
	

[image:]

Virtual LAN–Public

(Fixed)

Internet

FIGURE 6.2.	Networkig model for	OpenNebula.

We can see in Figure 6.2 two physical hosts with two network interfaces each; thus there are two different physical networks. There is one physical network that connects the two hosts using a switch, and there is another one that gives the hosts access to the public Internet. This is one possible configuration for the physical cluster, and it is the one we recommend since it can be used to make both private and public VANs for the virtual machines. Moving up to the virtualization layer, we can distinguish three different VANs. One is mapped on top of the public Internet network, and we can see a couple of virtual machines taking advantage of it. Therefore, these two VMs will have

[bookmark: page386]6.2	DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

access to the Internet. The other two are mapped on top of the private physical network: the Red and Blue VANs. Virtual machines connected to the same private VAN will be able to communicate with each other, otherwise they will be isolated and won’t be able to communicate.

Further Reading on OpenNebula

There are a number of scholarly publications that describe the design and architecture of OpenNebula in more detail, including papers showing performance results obtained when using OpenNebula to deploy and manage the back-end nodes of a Sun Grid Engine compute cluster [14] and of a NGINX Web server [16] on both local resources and an external cloud. The OpenNebula virtual infrastructure engine is also available for download at http:// www.opennebula.org/, which provides abundant documentation not just on how to install and use OpenNebula, but also on its internal architecture.

[bookmark: page387]6.2	DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

SCHEDULING	TECHNIQUES	FOR	ADVANCE

RESERVATION OF CAPACITY

While a VI manager like OpenNebula can handle all the minutiae of managing VMs in a pool of physical resources, scheduling these VMs efficiently is a different and complex matter. Commercial cloud providers, such as Amazon, rely on an immediate provisioning model where VMs are provisioned right away, since their data centers’ capacity is assumed to be infinite. Thus, there is no need for other provisioning models, such as best-effort provisioning where requests have to be queued and prioritized or advance provisioning where resources are pre-reserved so they will be guaranteed to be available at a given time period; queuing and reservations are unnecessary when resources are always available to satisfy incoming requests.

However, when managing a private cloud with limited resources, an immediate provisioning model is insufficient. In this section we describe a lease-based resource provisioning model used by the Haizea2 lease manager, which can be used as a scheduling back-end by OpenNebula to support provisioning models not supported in other VI management solutions. We focus, in particular, on advance reservation of capacity in IaaS clouds as a way to guarantee availability of resources at a time specified by the user.

Existing Approaches to Capacity Reservation

Efficient reservation of resources in resource management systems has been studied considerably, particularly in the context of job scheduling. In fact, most modern job schedulers support advance reservation of resources, but their implementation falls short in several aspects. First of all, they are constrained by the job abstraction; when a user makes an advance reservation in a jobbased system, the user does not have direct and unfettered access to the resources, the way a cloud users can access the VMs they requested, but, rather, is only allowed to submit jobs to them. For example, PBS Pro creates a new queue that will be bound to the reserved resources, guaranteeing that jobs submitted to that queue will be executed on them (assuming they have permission to do so). Maui and Moab, on the other hand, simply allow users to specify that a submitted job should use the reserved resources (if the submitting user has permission to do so). There are no mechanisms to directly login to the reserved resources, other than through an interactive job, which does not provide unfettered access to the resources.

Additionally, it is well known that advance reservations lead to utilization problems [10—13], caused by the need to vacate resources before a reservation can begin. Unlike future reservations made by backfilling algorithms, where the start of the reservation is determined on a best-effort basis, advance

[bookmark: page388]6.2	DISTRIBUTED MANAGEMENT OF VIRTUAL INFRASTRUCTURES

2http://haizea.cs.uchicago.edu/

[bookmark: page389]6.3	SCHEDULING TECHNIQUES FOR ADVANCE RESERVATION OF CAPACITY 167167

reservations introduce roadblocks in the resource schedule. Thus, traditional job schedulers are unable to efficiently schedule workloads combining both best-effort jobs and advance reservations.

However, advance reservations can be supported more efficiently by using a scheduler capable of preempting running jobs at the start of the reservation and resuming them at the end of the reservation. Preemption can also be used to run large parallel jobs (which tend to have long queue times) earlier, and it is specially relevant in the context of urgent computing, where resources have to be provisioned on very short notice and the likelihood of having jobs already assigned to resources is higher. While preemption can be accomplished trivially by canceling a running job, the least disruptive form of preemption is checkpointing, where the preempted job’s entire state is saved to disk, allowingit to resume its work from the last checkpoint. Additionally, some schedulers also support job migration, allowing checkpointed jobs to restart on other available resources, instead of having to wait until the preempting job or reservation has completed.

However, although many modern schedulers support at least checkpointingbased preemption, this requires the job’s executable itself to be checkpointable. An application can be made checkpointable by explicitly adding that functionality to an application (application-level and library-level checkpointing) or transparently by using OS-level checkpointing, where the operating system (such as Cray, IRIX, and patched versions of Linux using BLCR [17]) checkpoints a process, without rewriting the program or relinking it with checkpointing libraries. However, this requires a checkpointing-capable OS to be available.

Thus, a job scheduler capable of checkpointing-based preemption and migration could be used to checkpoint jobs before the start of an advance reservation, minimizing their impact on the schedule. However, the applicationand library-level checkpointing approaches burden the user with having to modify their applications to make them checkpointable, imposing a restriction on the software environment. OS-level checkpointing, on the other hand, is a more appealing option, but still imposes certain software restrictions on resource consumers. Systems like Cray and IRIX still require applications to be compiled for their respective architectures, which would only allow a small fraction of existing applications to be supported within leases, or would require existing applications to be ported to these architectures. This is an excessive restriction on users, given the large number of clusters and applications that depend on the x86 architecture. Although the BLCR project does provide a checkpointing x86 Linux kernel, this kernel still has several limitations, such as not being able to properly checkpoint network traffic and not being able to checkpoint MPI applications unless they are linked with BLCR-aware MPI

	libraries.
	
	

	An alternative approach to supporting
	advance
	reservations was proposed

	by Nurmi et al. [18], which introduced
	“virtual
	advance reservations for

queues”	(VARQ).	This	approach overlays	advance reservations over

[bookmark: page390]6.3	SCHEDULING TECHNIQUES FOR ADVANCE RESERVATION OF CAPACITY 168167

traditional job schedulers by first predicting the time a job would spend waiting in a scheduler’s queue and then submitting a job (representing the advance reservation) at a time such that, based on the wait time prediction, the probability that it will be running at the start of the reservation is maximized. Since no actual reservations can be done, VARQ jobs can run on traditional job schedulers, which will not distinguish between the regular best-effort jobs and the VARQ jobs. Although this is an interesting approach that can be realistically implemented in practice (since it does not require modifications to existing scheduler), it still depends on the job abstraction.

Hovestadt et al. [19, 20] proposed a planning-based (as opposed to queuingbased) approach to job scheduling, where job requests are immediately planned by making a reservation (now or in the future), instead of waiting in a queue. Thus, advance reservations are implicitly supported by a planning-based system. Additionally, each time a new request is received, the entire schedule is reevaluated to optimize resource usage. For example, a request for an advance reservation can be accepted without using preemption, since the jobs that were originally assigned to those resources can be assigned to different resources (assuming the jobs were not already running).

Reservations with VMs

As we described earlier, virtualization technologies are a key enabler of many features found in IaaS clouds. Virtual machines are also an appealing vehicle for implementing efficient reservation of resources due to their ability to be suspended, potentially migrated, and resumed without modifying any of the applications running inside the VM. However, virtual machines also raise additional challenges related to the overhead of using VMs:

Preparation Overhead. When using VMs to implement reservations, a VMdisk image must be either prepared on-the-fly or transferred to the physical node where it is needed. Since a VM disk image can have a size in the order of gigabytes, this preparation overhead can significantly delay the starting time of leases. This delay may, in some cases, be unacceptable for advance reservations that must start at a specific time. Runtime Overhead. Once a VM is running, scheduling primitives such as checkpointing and resuming can incur in significant overhead since a

VM’s entire memory space must be saved to disk, and then read from disk. Migration involves transferring this saved memory along with the VM disk image. Similar to deployment overhead, this overhead can result in noticeable delays.

The Haizea project (http://haizea.cs.uchicago.edu/) was created to develop a scheduler that can efficiently support advance reservations efficiently by using

[bookmark: page391]6.3	SCHEDULING TECHNIQUES FOR ADVANCE RESERVATION OF CAPACITY 169167

the suspend/resume/migrate capability of VMs, but minimizing the overhead of

[bookmark: page392]6.3	SCHEDULING TECHNIQUES FOR ADVANCE RESERVATION OF CAPACITY 170167

using VMs. The fundamental resource provisioning abstraction in Haizea is the lease, with three types of lease currently supported:

Advanced reservation leases, where the resources must be available at aspecific time.

Best-effort leases, where resources are provisioned as soon as possible andrequests are placed on a queue if necessary.

Immediate leases, where resources are provisioned when requested or notat all.

The Haizea lease manager can be used as a scheduling back-end for the OpenNebula virtual infrastructure engine, allowing it to support these three types of leases. The remainder of this section describes Haizea’s leasing model and the algorithms Haizea uses to schedule these leases.

Leasing Model

We define a lease as “a negotiated and renegotiable agreement between a resource provider and a resource consumer, where the former agrees to make a set of resources available to the latter, based on a set of lease terms presented by the resource consumer.” The terms must encompass the following: the hardware resources required by the resource consumer, such as CPUs, memory,and network bandwidth; a software environment required on the leased resources; and an availability period during which a user requests that the hardware and software resources be available. Since previous work and other authors already explore lease terms for hardware resources and software environments [21, 22], our focus has been on the availability dimension of a lease and, in particular, on how to efficiently support advance reservations.

Thus, we consider the following availability terms:

Start time may be unspecified (a best-effort lease) or specified (an advancereservation lease). In the latter case, the user may specify either a specific start time or a time period during which the lease start may occur.

Maximum duration refers to the total maximum amount of time that theleased resources will be available.

Leases can be preemptable. A preemptable lease can be safely paused

without disrupting the computation that takes place inside	the lease.

Haizea’s resource model considers that it manages W physical nodes capable of running virtual machines. Each node i has CPUs, megabytes (MB) of memory, and MB of local disk storage. We assume that all disk images required

[bookmark: page393]6.3	SCHEDULING TECHNIQUES FOR ADVANCE RESERVATION OF CAPACITY 171167

to run virtual machines are available in a repository from which they can be transferred to nodes as needed and that all are connected at a bandwidth of B MB/sec by a switched network.

	[bookmark: page394]6.3 SCHEDULING TECHNIQUES FOR ADVANCE RESERVATION OF CAPACITY
	171

A lease is implemented as a set of N VMs, each allocated resources described by a tuple (p, m, d, b), where p is number of CPUs, m is memory in MB, d is disk space in MB, and b is network bandwidth in MB/sec. A disk image I with a size of size(I) MB must be transferred from the repository to a node before the VM can start. When transferring a disk image to multiple nodes, we use multicasting and model the transfer time as size(I)/B. If a lease is preempted, it is suspended by suspending its VMs, which may then be either resumed on the same node or migrated to another node and resumed there. Suspending a VM results in a memory state image file (of size m that can be saved to either a local

filesystem or a global filesystem (fA {local , global}). Resumption requires reading that image back into memory and then discarding the file. Suspension

of a single VM is done at a rate of s megabytes of VM memory per second, and we define r similarly for VM resumption.

Lease Scheduling

Haizea is designed to process lease requests and determine how those requests can be mapped to virtual machines, leveraging their suspend/resume/migrate capability, in such a way that the leases’ requirements are satisfied. The scheduling component of Haizea uses classical backfilling algorithms [23], extended to allow best-effort leases to be preempted if resources have to be freed up for advance reservation requests. Additionally, to address the preparation and runtime overheads mentioned earlier, the scheduler allocates resources explicitly for the overhead activities (such as transferring disk images or suspending VMs) instead of assuming they should be deducted from the lease’s allocation. Besides guaranteeing that certain operations complete on time (e.g., an image transfer before the start of a lease), the scheduler also attempts to minimize this overhead whenever possible, most notably by reusing disk image transfers and caching disk images on the physical nodes.

Best-effort leases are scheduled using a queue. When a best-effort lease is requested, the lease request is placed at the end of the queue, which is periodically evaluated using a backfilling algorithm—both aggressive and conservative backfilling strategies [23, 24] are supported—to determine if any leases can be scheduled. The scheduler does this by first checking the earliest possible starting time for the lease on each physical node, which will depend on the required disk images. For example, if some physical nodes have cached the required disk image, it will be possible to start the lease earlier on those nodes. Once these earliest starting times have been determined, the scheduler chooses the nodes that allow the lease to start soonest.

The use of VM suspension/resumption allows the best-effort leases to be scheduled even if there are not enough resources available for their full requested duration. If there is a “blocking” lease in the future, such as an advance reservation lease that would prevent the best-effort lease to run to completion before the blocking lease starts, the best-effort lease can still be scheduled; the VMs in the best-effort lease will simply be suspended before a

	[bookmark: page395]6.3 SCHEDULING TECHNIQUES FOR ADVANCE RESERVATION OF CAPACITY
	171

blocking lease. The remainder of a suspended lease is placed in the queue, according to its submission time, and is scheduled like a regular best-effort lease (except a resumption operation, and potentially a migration operation, will have to be scheduled too).

Advance reservations, on the other hand, do not go through a queue, since they must start at either the requested time or not at all. Thus, scheduling this type of lease is relatively simple, because it mostly involves checking if there are enough resources available during the requested interval. However, the scheduler must also check if any associated overheads can be scheduled in such a way that the lease can still start on time. For preparation overhead, the scheduler determines if the required images can be transferred on time. These transfers are scheduled using an earliest deadline first (EDF) algorithm, where the deadline for the image transfer is the start time of the advance reservation lease. Since the start time of an advance reservation lease may occur long after the lease request, we modify the basic EDF algorithm so that transfers take place as close as possible to the deadline, preventing images from unnecessarily consuming disk space before the lease starts. For runtime overhead, the scheduler will attempt to schedule the lease without having to preempt other leases; if preemption is unavoidable, the necessary suspension operations are scheduled if they can be performed on time.

For both types of leases, Haizea supports pluggable policies, allowing system administrators to write their own scheduling policies without having to modify

Haizea’s source code. Currently, three policies are pluggable in Haizea: determining whether a lease is accepted or not, the selection of physical nodes, and determining whether a lease can preempt another lease.

Our main results so far [25, 26] have shown that, when using workloads that combine best-effort and advance reservation lease requests, a VM-based approach with suspend/resume/migrate can overcome the utilization pro blems typically associated with the use of advance reservations. Even in the presence of the runtime overhead resulting from using VMs, a VM-based approach results in consistently better total execution time than a sched uler that does not support task preemption, along with only slightly worse performance than a scheduler that does support task preemption. Measuring the wait time and slowdown of best-effort leases shows that, although the average values of these metrics increase when using VMs, this effect is due to short leases not being preferentially selected by Haizea’s backfilling algorithm, instead of allowing

	best-effort leases to run as long as possible before
	a preempting AR lease

	(and being suspended right before the start of the
	AR). In effect, a VM-based

approach does not favor leases of a particular length over others, unlike systems that rely more heavily on backfilling. Our results have also shown that, although supporting the deployment of multiple software environments, in the form of multiple VM images, requires the transfer of potentially large disk image files, this deployment overhead can be minimized through the use of image transfer scheduling and caching strategies.

[bookmark: page396]6.4	CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS 172173

Further Reading on Lease-Based Resource Management

There are several scholarly publications [25—28] available for download at the Haizea Web site (http://haizea.cs.uchicago.edu/) describing Haizea’s design and algorithms in greater detail and showing performance results obtained when using Haizea’s lease-based model.

CAPACITY MANAGEMENT TO MEET SLA	COMMITMENTS

As was discussed in the previous section, when temporal behavior of services with respect to resource demands is highly predictable (e.g., thanks to wellknown business cycle of a service, or predictable job lengths in computational service), capacity can be efficiently scheduled using reservations. In this section we focus on less predictable elastic workloads. For these workloads, exact scheduling of capacity may not be possible. Rather than that, capacity planning and optimizations are required.

IaaS providers perform two complementary management tasks: (1) capacity planning to make sure that SLA obligations are met as contracted with the service providers and (2) continuous optimization of resource utilization given specific workload to make the most efficient use of the existing capacity. It is worthy to emphasize the rationale behind these two management processes.

The first task pertains to the long-term capacity management aimed at costefficient provisioning in accordance with contracted SLAs. To protect SLAs with end users, elastic services scale up and down dynamically. This requires an IaaS provider to guarantee elasticity for the service within some contracted capacity ranges. Thus, the IaaS provider should plan capacity of the cloud in such a way that when services change resource demands in response to environment conditions, the resources will be indeed provided with the contracted probability. At the same time, the IaaS cloud provider strives to minimally over-provision capacity, thus minimizing the operational costs. We observe that these goals can be harmonized thanks to statistical multiplexing of elastic capacity demands. The key questions will be (a) in what form to provide capacity guarantees (i.e., infrastructure SLAs) and (b) how to control the risks inherent to over-subscribing. We treat these problems in Sections 6.4.1 and 6.4.2, respectively.

The second task pertains to shortand medium-term optimization of resource allocation under the current workload. This optimization may be guided by different management policies that support high-level business goals of an IaaS provider. We discuss policy-driven continuous resource optimization in Section 6.4.3.

From an architectural viewpoint, we argue in favor of a resource management framework that separates between these two activities and allows combination of solutions to each process, which are best adapted to the needs of a specific IaaS provider.

[bookmark: page397]6.4	CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS 173173

Infrastructure SLAs

IaaS can be regarded as a giant virtual hardware store, where computational resources such as virtual machines (VM), virtual application networks (VAN) and virtual disks (VD) can be ordered on demand in the matter of minutes or even seconds. Virtualization technology is sufficiently versatile to provide virtual resources on a almost continuous granularity scale. Chandra et al. [29] quantitatively study advantages of fine-grain resource allocation in a shared hosting platform. As this research suggests, fine-grain temporal and spatial resource allocation may lead to substantial improvements in capacity utilization.

These advantages come at a cost of increased management, accounting, and billing overhead. For this reason, in practice, resources are typically provided on a more coarse discrete scale. For example, Amazon EC2 [1] offers small, large, and extra large general-purpose VM instances and high-CPU mediumand extra large instances. It is possible that more instance types (e.g., I/O high, memory high, storage high, etc.) will be added in the future should a demand for them arise. Other IaaS providers—for example, GoGrid and FlexiScale — follow similar strategy.

With some caution it may be predicted that this approach, as being considerably more simple management-wise, will remain prevalent in short to medium term in the IaaS cloud offerings.

Thus, to deploy a service on a cloud, service provider orders suitable virtual hardware and installs its application software on it. From the IaaS provider, a given service configuration is a virtual resource array of black box resources, which correspond to the number of instances of resource type. For example, a typical three-tier application may contain 10 general-purpose small instances to run Web front-ends, three large instances to run an application server cluster with load balancing and redundancy, and two large instances to run a replicated database.

In an IaaS model it is expected from the service provider that it sizes capacity demands for its service. If resource demands are provided correctly and are indeed satisfied upon request, then desired user experience of the service will be guaranteed. A risk mitigation mechanism to protect user experience in the IaaS model is offered by infrastructure SLAs (i.e., the SLAs formalizing capacity availability) signed between service provider and IaaS provider.

The is no universal approach to infrastructure SLAs. As the IaaS field matures and more experience is being gained, some methodologies may become more popular than others. Also some methods may be more suitable for specific workloads than other. There are three main approaches as follows.

●	No SLAs. This approach is based on two premises: (a) Cloud always has spare capacity to provide on demand, and (b) services are not QoSsensitive and can withstand moderate performance degradation. This methodology is best suited for the best effort workloads.

[bookmark: page398]CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS 174173

Probabilistic SLAs. These SLAs allow us to trade capacity availability for cost of consumption. Probabilistic SLAs specify clauses that determine availability percentile for contracted resources computed over the SLAevaluation period. The lower the availability percentile, the cheaper the cost of resource consumption. This is justified by the fact that an IaaS provider has less stringent commitments and can over-subscribe capacity to maximize yield without exposing itself to excessive risk. This type of SLA is suitable for small and medium businesses and for many enterprise grade applications.

Deterministic SLAs. These are, in fact, probabilistic SLAs where resource availability percentile is 100%. These SLAs are most stringent and difficult to guarantee. From the provider’s point of view, they do not admit capacity multiplexing. Therefore this is the most costly option for service providers, which may be applied for critical services.

We envision coexistence of all three methodologies above, where each SLA type is most applicable to specific workload type. We will focus on probabilistic SLAs, however, because they represent the more interesting and flexible option and lay the foundation for the rest of discussion on statistical multiplexing of capacity in Section 6.4.2. But before we can proceed, we need to define one more concept, elasticity rules.

Elasticity rules are scaling and de-scaling policies that guide transition of the service from one configuration to another to match changes in the environment. The main motivation for defining these policies stems from the pay-asyou-go billing model of IaaS clouds. The service owner is interested in paying only for what is really required to satisfy workload demands minimizing the over-provisioning overhead.

There are three types of elasticity	rules:

Time-driven: These rules change the virtual resources array in response to a timer event. These rules are useful for predictable workloads—for example, for services with well-known business cycles.

OS Level Metrics-Driven: These rules react on predicates defined in terms of the OS parameters observable in the black box mode (see Amazon Auto-scaling Service). These auto-scaling policies are useful for transparently scaling and de-scaling services. The problem is, however, that in many cases this mechanism is not precise enough.

Application Metrics-Driven. This is a unique RESERVOIR offering that allows an application to supply application-specific policies that will be transparently executed by IaaS middleware in reacting on the monitoring information supplied by the service-specific monitoring probes running inside VMs.

For a single service, elasticity rules of all three types can be defined, resulting in a complex dynamic behavior of a service during runtime. To protect

[bookmark: page399]6.4	CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS 175173

elasticity rules of a service while increasing the multiplexing gain, RESERVOIR proposes using probabilistic infrastructure availability SLAs.

Assuming that a business day is divided into a number of usage windows, the generic template for probabilistic infrastructure SLAs is as follows.
For each Wi, and each resource type rj from the virtual resource array,
min	max

capacity range C 5 (r j	, rj) is available for the service with probability	pi.

Probabilistically guaranteeing capacity ranges allows service providers to define its needs flexibly. For example, for business critical usage window, availability percentile may be higher than for the regular or off-peak hours.

Similarly, capacity ranges may vary in size. From the provider’s point of view, defining capacity requirements this way allows yield maximization through over-subscribing. This creates a win—win situation for both service provider and IaaS provider.

Policy-Driven Probabilistic Admission Control

Benefits of statistical multiplexing are well known. This is an extensively studied field, especially in computer networking [30—32]. In the context of CPU and bandwidth allocation in shared hosting platforms, the problem was recently studied by Urgaonkar et al. [33]. In this work the resources were treated as contiguous, allowing infinitesimal capacity allocation. We generalize this approach by means of treating each (number of instances of resource i in

	the virtual resources array) as a random variable. The
	virtual resources
	array

	is, therefore, a vector of random variables. Since
	we assume that
	each

	capacity range for each resource type is finite, we may compute both
	the

average resource consumption rate and variance in resource consumption for each service in terms of the capacity units corresponding to each resource type.

Inspired by the approach of Guerin et al. [30], we propose a simple management lever termed acceptable risk level (ARL) to control over-subscribing of capacity. We define ARL as the probability of having insufficient capacity to satisfy some capacity allocation requests on demand. The ARL value can be derived from a business policy of the IaaS provider— that is, more aggressive versus more conservative over-subscription.

In general, the optimal ARL value can be obtained by calculating the residual benefit resulting from specific SLA violations. A more conservative, suboptimal ARL value is simply the complement of the most stringent capacity range availability percentile across the SLA portfolio.

An infrastructure SLA commitment for the new application service should be made if and only if the potential effect does not cause the residual benefit to fall below some predefined level, being controlled by the site’s business policy.

This decision process is referred to as BSM-aligned admission control.3

[bookmark: page400]6.4	CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS 176173

3We will refer to it simply as admission control wherever no ambiguity	arises.

[bookmark: page401]6.4	CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS 177173

Once a service application passes admission control successfully, optimal placement should be found for the virtual resources comprising the service. We treat this issue in Section 6.4.3.

The admission control algorithm calculates equivalent capacity required to satisfy the resource demands of the service applications for the given ARL. The equivalent capacity is then matched against the actual available capacity to verify whether it is safe to admit a new service.

In a federated environment (like that provided by RESERVOIR) there is potentially an infinite pool of resources. However, these resources should fit placement constraints that are posed by the service applications and should be reserved using inter-cloud framework agreements. Thus, the BSM-aligned admission control helps the capacity planning process to dimension capacity requests from the partner clouds and fulfill physical capacity requests at the local cloud.

The capacity demands of the deployed application services are being continuously monitored. For each application service, the mean capacity demand (in capacity units) and the standard deviation of the capacity demand are being calculated.

When a new service with unknown history arrives in the system, its mean capacity demand and standard deviation are conservatively estimated from the service elasticity rules and historic data known for other services. Then, an equivalent capacity is approximated using Eq. (6.1). The equivalent capacity is the physical capacity needed to host the new service and all previously deployed services without increasing the probability of congestion (acceptable risk level), ε.

Equivalent capacity is expressed in the form of resource array, where each element represents the number of instances of a resource of a specific type.4 To verify that physical capacity is sufficient to support the needed equivalent capacity, one may use either the efficient and scalable exact solution (via branch and bound algorithms) to the multiple knapsack problem [48] or the efficient bin-packing approximation algorithm such as First-Fit-Descending, which guarantees approximation ratio within 22% of the optimal algorithm. Using multiple knapsacks is more appropriate when capacity augmentation is not an option. Assuming that value of the resources is proportional to their size, solving the multiple knapsack problem provides a good estimation of value resulting from packing the virtual resources on the given capacity. If capacity can be augmented—for example, more physical capacity can be obtained from a partner cloud provider or procured locally—then solving the bin packing problem is more appropriate since all items (i.e., resources comprising the service) are always packed.

4When calculating equivalent capacity, we do not know which service will use specific resource instances, but we know that it is sufficient, say, to be able to allocate up to 100 small VM instances and 50 large instances to guarantee all resource requests resulting from the elasticity rules application, so that congestion in resource allocation will not happen with probability larger than ε.

[bookmark: page402]6.4	CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS 178173

Note that this is different from computing the actual placement of services since at the admission control stage we have “abstract” equivalent capacity. Matching equivalent capacity against physical capacity, as above, guarantees that feasible placement for actual services can be found with probability 1 2ε. If the local and remote physical capacity that can be used by this site in a guaranteed manner is sufficient to support the equivalent capacity calculated, the new service is accepted. Otherwise, a number of possibilities exist, depend-

	ing on the management
	policy:
	
	

	● The service
	is rejected.
	
	

	● The total capacity of the site is increased locally and/or remotely (through

	
	federation) by the amount needed to satisfy the equivalent capacity

	
	constraint and the service is admitted.
	

	● The acceptable risk level is increased, and the service is accepted.
	

	Beq¼ m þα·σ
	
	
	ð6:1Þ
	

	n
	
	
	
	
	

	
	
	
	m ¼
	X
	ð6:2Þ

	
	
	
	
	mi
	

	i
	
	
	
	
	

	sﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃﬃ
	
	
	
	

	n
	X
	
	
	
	

	σ ¼
	σ2
	
	
	
	

	i
	
	
	
	ð6:3Þ
	

	
	pﬃ ﬃ
	—1
	pﬃﬃﬃ
	ð6:4Þ

	
	α ¼2·
	
	2εÞ =—2ln—ε ln2π —lnð—2 ln—ε ln2πÞ
	

	
	
	erfc ð
	
	

Our approach initially overestimates the average capacity demand for the new service. With the passage of time, however, as capacity usage statistics are being collected for the newly admitted application service, the mean and

[bookmark: page403]6.4	CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS 179173

standard deviation for the capacity demands (per resource type) are adjusted for this service. This allows us to reduce the conservativeness when the next service arrives.

Service providers may impose various placement restrictions on VMs comprising the service. For example, it may be required that VMs do not share the same physical host (anti-affinity). As another example, consider heterogeneous physical infrastructure and placement constraints arising from technological incompatibilities.

From the admission control algorithm’s vantage point, the problem is that during admission control it may not know which deployment restrictions

[bookmark: page404]6.4	CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS 180173

should be taken into account since which restrictions will be of relevance depends on the dynamic behavior of the services.

Thus, our proposed solution is best suited for services whose elements admit full sharing of the infrastructure. Generalizing this approach to handle various types of deployment restrictions is in the focus of our current research efforts. In general, to guarantee that a feasible placement for virtual resources will be found with controllable probability in the presence of placement restrictions, resource augmentation is required. The resource augmentation may be quite significant (see references 34 and 35). It is, therefore, prudent on the side of the IaaS provider to segregate workloads that admit full sharing of the infrastructure from those who do not and offer service provider-controlled deployment

restrictions as a premium service to recover capacity augmentation costs.

Policy-Driven Placement Optimization

The purpose of statistical admission control is to guarantee that there is enough capacity to find a feasible placement with given probability. Policy-driven placement optimization complements capacity planning and management by improving a given mapping of physical to virtual resources (e.g., VMs).

In the presence of deployment restrictions, efficient capacity planning with guaranteed minimal over-provisioning is still an open research problem. Partially the difficulties lie in hardness of solving multiple knapsacks or its more general version, the generalized assignment problem. Both problems are NP-hard in the strong sense (see discussion in Section 6.4.5). In the RESERVOIR model, where resource augmentation is possible through cloud partnership, solutions that may require doubling of existing local capacity in the worst case [34] are applicable. An interesting line of research is to approximate capacity augmentation introduced by specific constraints, such as bin—item and item—item. Based on required augmentation, an IaaS provider may either accept or reject the service.

As shown in reference 36, in the presence of placement constraints of type bin—item, Bi-criteria Multiple Knapsack with Assignment Restrictions (BMKAR) that maximizes the total profit of placed items (subject to a lower bound) and minimizes the total number of containers (i.e., minimizes utilized capacity) does not admit a polynomial algorithm that satisfies the lower bound exactly unless P5NP. Two approximation algorithms with performance ratios (running in pseudo-polynomial time) and (running in polynomial time) were presented. These results are best known today for BMKAR, and the bounds are tight.

In our current prototypical placement solution, we formulated the problem as an Integer Linear Programming problem and used branch-and-bound solver (COIN-CBC [37]) to solve the problem exactly. This serves us as a performance baseline for future research. As was shown by Pisinger [38], in the absence of constraints, very large problem instances can be solved exactly in a very efficient manner using a branch-and-bound algorithm. Obviously, as the scale

[bookmark: page405]6.4	CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS 181173

of the problem (in terms of constraints) increases, ILP becomes infeasible. This leads us to focus on developing novel heuristic algorithms extending the state of art, which is discussed in Section 6.4.5.

A number of important aspects should be taken into account in efficient placement optimization.

Penalization for Nonplacement. In BMKAR, as in all classical knapsackproblems, no-placement of an item results in 0 profit for that item. In the VM placement with SLA protection problem, nonplacement of an item or a group of items may result in SLA violation and, thus, payment of penalty. The management policy to minimize nonplacements is factored into constraints and an objective function.

Selection Constraints. Selection constraints imply that only when a group ofVMs (items) collectively forming a service is placed, this meta-item yields profit. Partial placement may even lead to a penalty, since the SLA of a service may be violated. Thus, partial placement should be prevented. In our formulation, this is factored into constraints.

Repeated Solution. Since the placement problem is solved continuously, it isimportant to minimize the cost of replacement. In particular, we need to minimize the cost of reassignments of VMs to hosts, because this entails VM migrations. We factor the penalty member on migration in our objective function.

Considering ICT-Level Management Policies. There are three policiesthat we currently consider: power conservation (by minimizing the number of physical hosts used for placement), load balancing (by spreading load across available physical machines), and migration minimization (by introducing a penalty factor for machines migration). We discuss policies below. In general, RESERVOIR provides an open-ended engine that allows to incorporate different policies. Depending on the policy chosen, the optimization problem is cast into a specific form. Currently, we support two placement policies: “load balancing” and “power conservation,” with number of migrations minimized in both cases. The first policy is attained through solving GAP with conflicts, and the second one is implemented via bin packing with conflicts.

Inspired by results by Santos et al. [39], who cast infrastructure-level management policies as soft constraints, we factor the load balancing policy into our model using the soft constraints approach.

Whereas the hard constraints take the form of

f ð~xÞ # b	ð6:5Þ

where ~xis the vector of decision variables, with the soft constraints approach, a constraint violation variable v is introduced into the hard constraint as shown inEq. (6.6) and a penalty term P·v is introduced into the objective function to

	[bookmark: page406]6.4 CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS
	181

prevent trivial solutions, because soft constraints are always possible to satisfy. If the penalty is a sufficiently large number, the search for an optimal solution will try to minimize it.

f ð~xÞ # b þυ	ð6:6Þ

We exploit the idea that reducing the available capacity at each physical host will force the search for an optimal solution to spread the VEEs over a larger number of knapsacks, thus causing the load to be spread more evenly across the site.

To address power conservation objective as a management policy, we formulate our problem as bin-packing with conflicts.

Since the optimization policy for VEE placement is being continuously solved, it is critical to minimize VEE migrations in order to maintain costeffectiveness. To model this, we define a migration penalty term MP as shown in Eq. (6.7).

	mn
	X X
	
	

	
	
	
	ð6:7Þ

	MP ¼
	migrðjÞ·absðxt—1— xtÞ
	

	i¼1
	j¼1 i; j
	i; j
	

Since abs(·), which is a nonlinear, is part of MP, we cannot incorporate MP into the objective function as is. To circumvent this problem, we linearize MP by introducing additional variables, which is a widely used linearization technique.

Management Policies and Management Goals. Policy-based managementis an overused term. Therefore, it is, beneficial to define and differentiate our approach to policy-driven admission control and placement optimization in the more precise terms.

Policy-driven	management	is	a	management	approach	based	on

“if(condition)—then(action)” rules defined to deal with the situations that are likely to arise [40]. These policies serve as a basic building blocks for autonomic computing.

The overall optimality criteria of placement, however, are controlled by the management policies, which are defined at a higher level of abstraction than “if

(condition)—then(action)” rules. To avoid ambiguity, we term these policies management goals. Management goals, such as “conserve power,” “preferlocalresources over remote resources,” “balance workload,” “minimize VM

	[bookmark: page407]6.4 CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS
	181

migrations,” “minimize SLA noncompliance,” and so forth, have complex logical structures. They cannot be trivially expressed by “if(condition)— then(action)” rules even though it is possible to create the elementary rules that will strive to satisfy global management preferences in a reactive or proactive manner.

Regarding the management activity involved in VM placement optimization, a two-phase approach can be used. In the first phase, a feasible

	[bookmark: page408]6.4 CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS
	181

placement—that is, a placement that satisfies the hard constraints imposed by the service manifest—can be obtained without concerns for optimality and, thus, with low effort. In the second phase, either a timer-based or a thresholdbased management policy can invoke a site-wide optimization procedure that aligns capacity allocation with the management goals (e.g., with the goal of using minimal capacity, can be triggered).

Management policies and management goals may be defined at different levels of the management architecture—that is, at the different levels of abstraction. At the topmost level, there are business management goals and policies. We briefly discuss them in the next subsection. In the intermediate level there are service-induced goals and policies. Finally, at the infrastructure management level there are ICT management preferences and policies that are our primary focus in this activity. We discuss them in Section 6.4.4.

Business-Level Goals and Policies. Since business goals are defined atsuch a high level of abstraction, a semantic gap exists between them and the ICT level management goals and policies. Bridging this gap is notoriously difficult. In this work we aim at narrowing this gap and aligning between the high-level business management goals and ICT-level management policies by introducing the notion of acceptable risk level (ARL) of capacity allocation congestion.

Intuitively, we are interested in minimizing the costs of capacity overprovisioning while controlling the risk associated with capacity over-booking. From minimizing the cost of capacity over-provisioning, we are interested in maximizing yield of the existing capacity. However, at some point, the conflicts (congestions) in capacity allocation may cause excessive SLA penalties that

would offset the advantages of yield	maximization.

Accounting for benefits from complying with SLAs and for costs of compliance and noncompliance due to congestions, we can compute residualbenefit for the site. The target value of residual benefit can be controlled by ahigh-level business policy. To satisfy this business policy, we need to calculate an appropriate congestion probability, ARL. ARL, in turn, would help us calculate equivalent capacity for the site to take advantage of statistical multiplexing in a safe manner.

To allow calculation of residual benefit, capacity allocation behavior under congestion should deterministic. In particular, a policy under congestion may be a Max—Min Fair Share allocation [41] or higher-priority-first (HPF) capacity allocation [39], where services with lower SLA classes are satisfied only after all services with higher SLA classes are satisfied.

For the sake of discussion, let us assume that the HPF capacity allocation policy is used.5 We use historical data of the capacity demand (in capacity

5Whether a certain specific policy is being used is of minor importance. It is important, however, that the policy would be deterministic.

	[bookmark: page409]6.4 CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS
	183

units corresponding to different resource types as explained in Section 6.4.2) per service—specifically, the α-percentile of historic capacity demand per application (where α equals the percentile of compliance required in the service SLA). This is used to compute the expected capacity allocation per service under capacity allocation congestion. Thus, we obtain the set of application services, whose SLAs may be violated.6 Using penalty values defined for each affected SLA,
	we obtain the residual benefit that would remain after penalties
	are enforced.

	Using the management policy that put a lower bound on the
	expected residual

benefit, we compute acceptable risk value, ε, that satisfies this bound.

Infrastructure-Level Management Goals and Policies

In general, infrastructure-level management policies are derived from the business-level management goals. For example, consider our sample business level management goal to “reduce energy expenses by 30% in the next quarter.” This broadly defined goal may imply, among other means for achieving it, that we systematically improve consolidation of VMs on physical hosts by putting excessive capacity into a low-power consumption mode. Thus, a site-wide ICT power conservation-level management policy may be formulated as: “minimize number of physical machines while protecting capacity availability SLAs of the application services.”

As another example, consider the business-level management goal: “Improve customer satisfaction by achieving more aggressive performance SLOs.” One possible policy toward satisfying this business-level goal may be formulated as:

“Balance load within the site in order to achieve specific average load per physical host.” Another infrastructure-level management policy to imp rove performance is: “Minimize the number of VM migrations.” The rationale for this policy is that performance degradation necessarily occurs during VM migration.

State of the Art

Our approach to capacity management described in Section 6.4.2 is based on the premise that service providers perform sizing of their services. A detailed discussion of the sizing methodologies is out of our scope, and we will only briefly mention results in this area. Capacity planning for Web services was studied by Menasce´ and Almeida [42]. Doyle et al. [43] considered the problem of how to map requirements of a known media service workload into the corresponding system resource requirements and to accurately size the required system. Based on the past workload history, the capacity planner finds the 95th

	[bookmark: page410]6.4 CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS
	183

6This is a conservative estimate.

	[bookmark: page411]6.4 CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS
	183

percentile of the service demand (for various resources and on different usage windows) and asks for the corresponding configuration. Urgaonkar et al. [44] studied model-based sizing of three-tier commercial services. Recently, Chen et al. [45] sudied the similar problem and provided novel performance models for multi-tier services.

Doyle et al. [43] presented new models for automating resource provisioning for resources that may interact in complex ways. The premise of the model - based resource provisioning is that internal models capturing service workload and behavior can enable prediction of effects on service performance of the changes to the service workload and resource allotments. For example, the model can answer questions like: “How much memory is needed to reduce this service’s storage access rate by 20%?” The paper introduces simple performance models for Web services and proposes a model-based resource allocator that utilizes them and allocates appropriate resource slices to achieve needed performance versus capacity utilization. A slice may be mapped to a virtual machine or another resource container providing performance isolation.

In cases when exact model-driven service sizing is not available, learning desirable resource allocation from dynamic service behavior may be possible using black box monitoring of the service network activity as was recently shown by Ben-Yehuda et al. [46] for multi-tier services.

Benefits of capacity multiplexing (under the assumption of known resource demands) in shared hosting platforms were quantitatively studied by Chandra et al. [29].

An approach to capacity over-subscribing that is conceptually similar to ours was recently studied by Urgaonkar et al. [33]. In this work, provisioning CPU and network resources with probabilitistic guarantees on a shared hosting platform were considered. The main difference between our methodology and that of Urgaonkar et al. is that we allocate capacity in integral discrete quanta that encapsulate CPU, memory, network bandwidth, and storage rather than allowing independent infinitesimally small resources allocation along each of this capacity dimensions.

An advance of virtualization technologies and increased awareness about management and power costs of running under-utilized servers have spurred interest in consolidating existing applications on a fewer number of servers in the data center. In most practical settings today a static approach to consolidation, where consolidation is performed as a point-in-time optimization activity, is used [47, 48]. With the static approach, the cost of VM migration are usually not accounted for and relatively time-consuming computations are tolerated. Gupta et al. [48] demonstrated that static consolidation problem can be modeled as a variant of the bin packing problem where items to be packed are the servers being consolidated and bins are the target servers. The sizes of the servers/items being packed are resource utilizations that are obtained from the performance trace data. The authors present a two-stage heuristic algorithm for handling the “bin—item” assignment constraints that

	[bookmark: page412]6.4 CAPACITY MANAGEMENT TO MEET SLA COMMITMENTS
	183

inherently restrict any server consolidation problem. The model is able to solve extremely large instances of the problem in a reasonable amount of time.

Autonomic and dynamic optimization of virtual machines placement in a data center received considerable attention (mainly in the research community) recently [49—59].

Bobroff et al. [54] introduce empiric dynamic server migration and consolidation algorithm based on predicting capacity demand of virtual servers using time series analysis.

Mehta and Neogi [49] presented a virtualized servers consolidation planning tool, Recon, that analyzes historical data collected from an existing environment and computes the potential benefits of server consolidation especially in the dynamic setting.

Gmach et al. [50] considered virtualized servers consolidation of multiple servers and their workloads subject to specific quality of service requirements that need to be supported.

Wood et al. [52] presented Sandpiper, a system that automates the task of monitoring and detecting hotspots, determining a new mapping of physical to virtual resources, and initiating the necessary migrations to protect performance.

Singh et al. [53] presented a promising approach to the design of an agile data center with integrated server and storage virtualization technologies.

Verma et al. [51] studied the design, implementation, and evaluation of a power-aware application placement controller in the context of an environment with heterogeneous virtualized server clusters.

Tang et al. [58] presented a performance model-driven approach to application placement that can be extended to VM placement.

Wang et al. [55] defined a nonlinear constrained optimization model for dynamic resource provisioning and presented a novel analytic solution.

Choi et al. [60] proposed machine learning framework that autonomously finds and adjusts utilization thresholds at runtime for different computing requirements.

Kelly [59] studied the problem of allocating discrete resources according to utility functions reported by potential recipients with application to resource

	allocation in a Utility Data Center
	(UDC).

	Knapsack-related optimization
	has been relentlessly studied over the last

30 years. The scientific literature on the subject is, therefore, abundant. For excellent treatment of the knapsack problems, we recommend references 61 and 62. The Simple Multiple Knapsack Problem (MKP) is NP-hard in the strong sense. Its generalization, called Generalized Assignment Problem (GAP), is APX-hard [63]. GAP (and therefore MKP) admits two approximations using a greedy algorithm [64]. A Fully Polynomial Time Approximation Scheme (FPTAS) for this problem is unlikely unless P5NP [65]. For some time it was not known whether simple MKP admits the Polynomial Time Approximation Scheme (PTAS). Chekuri and Khanna [63] presented a PTAS for MKP in 2000. Shachnai and Tamir showed that the Class-Constrained Multiple Knapsack also admits PTAS.

	[bookmark: page413]6.5 CONCLUSIONS AND FUTURE WORK
	185

Running time of PTASs dramatically increases as ε decreases.7 Therefore heuristic algorithms optimized for specific private cases and scalable exeat solutions are important.

Pisinger [38] presented a scalable exact branch-and-bound algorithm for solving multiple knapsack problems with hundreds of thousands of items and high ratios of items to bins. This algorithm improves the branch-and-bound algorithm by Martello and Toth [61].

Dawande et al. [34] studied single-criterion and bi-criteria multiple knapsack problems with assignment restrictions. For the bi-criteria problem of minimizing utilized capacity subject to a minimum requirement on assigned weight, they give a (1/3, 2)-approximation algorithm, where the first value refers to profit and the second one refers to capacity augmentation.

Gupta et al. [66] presented a two-stage consolidation heuristic for servers consolidation that handles item—bin and item—item conflicts. No bounds on this heuristic were shown, however.

Epstein and Levin [35] studied the bin packing problem with item—item conflicts. For bipartite graphs they present a 2.5 approximation algorithm for perfect graphs (of conflicts) and a 1.75 approximation algorithm for bipartite graphs.

Additional annotated bibliography and surveys on the knapsack-related problems can be found in references 67 and 68. For survey of the recent results in multi-criteria combinatorial optimization, see reference 69.

An important question for studying scalability of the optimization algorithms is how to produce meaningful benchmarks for the tests. Pisinger [70] studied relative hardness characterization of the knapsack problems. This study may serve as a basis for generating synthetic benchmarks to be used in validating knapsack related solutions.

Business-driven resource provisioning was studied by Marques et al. in [71]. This work proposes a business-oriented approach to designing IT infrastructure in an e-commerce context subject to load surges.

Santos et al. [39] demonstrated that management policies can be effectively and elegantly cast as soft constraints into optimization problem.

From analyzing the state of the art in provisioning and placement optimization, we observe that the mainstream approach is detection andremediation. In a nutshell, the SLA compliance of the services is beingmonitored and when noncompliance or a dangerous trend that may lead to noncompliance is detected, corrective actions (e.g., VEE migrations) are attempted.

CONCLUSIONS AND FUTURE WORK

Virtualization is one of the cornerstones of Infrastructure-as-a-Service cloud computing and, although virtual machines provide numerous benefits,

[bookmark: page414]7Here ε stands for the approximation parameter and should not be confused with the acceptable risk level of Section 6.4.2, which was also denoted ε.

[bookmark: page415]REFERENCES 186187

managing them efficiently in a cloud also poses a number of challenges. This chapter has described some of these challenges, along with the ongoing work within the RESERVOIR project to address them. In particular, we have focused on the problems of distributed management of virtual infrastructures, advance reservation of capacity in virtual infrastructures, and meeting SLA commitments.

Managing virtual machines distributed across a pool of physical resources, or virtual infrastructure management, is not a new problem. VM-based data center management tools have been available long before the emergence of cloud computing. However, these tools specialized in long-running VMs and exhibited monolithic architectures that were hard to extend, or were limited by design to use one particular hypervisor. Cloud infrastructures need to support pay-as-you-go and on-demand models where VMs have to be provisioned immediately and fully configured for the user, which requires coordinating storage, network, and virtualization technologies. To this end, we have developed OpenNebula, a virtual infrastructure manager designed with the requirements of cloud infrastructures in mind. OpenNebula is an actively developed open source project, and future work will focus on managing groups of VMs arranged in a service-like structure (e.g., a compute cluster), disk image provision strategies to reduce image cloning times, and improving support for external providers to enable a hybrid cloud model.

We have also developed Haizea, a resource lease manager that can act as a scheduling back-end for OpenNebula, supporting other provisioning models other than the prevalent immediate provisioning models in existing cloud providers. In particular, Haizea adds support for best-effort provisioning and advance reservations, both of which become necessary when managing a finite number of resources. Future work will focus on researching policies for lease admission and lease preemption, particularly those based on economic models, and will also focus on researching adaptive scheduling strategies for advance reservations.

We developed an algorithmic approach to resource over-subscription with probabilistically guaranteed risk of violating SLAs. Our future work in this area will focus on (1) validation of this approach with synthetic and real data through simulating a large-scale IaaS cloud environment, (2) complementing admission control and capacity planning with heuristics for workload throttling, particularly those that take advantage of opportunistic placement in a federated environment, to handle the cases when stochastic properties of the underlying system change abruptly and dramatically, and (3) policies to control cost-effectiveness of resource allocation.

ACKNOWLEDGMENTS

Our work is supported by the European Union through the research grant RESERVOIR Grant Number 215605.

[bookmark: page416]REFERENCES 187187

REFERENCES

Inc. Amazon. Amazon elastic compute cloud (Amazon ec2). http://aws.amazon. com/ec2/.

ElasticHosts Ltd. Elastichosts. http://www.elastichosts.com/.

ServePath LLC. Gogrid. http://www.gogrid.com/.

xcalibre communications ltd., Flexiscale. http://www.flexiscale.com/.

B. Rochwerger, J. Caceres, R. S. Montero, D. Breitgand, E. Elmroth, A. Galis, E.

Levy, I. M. Llorente, K. Nagin, and Y. Wolfsthal, The RESERVOIR model and architecture for open federated cloud computing, IBM Systems Journal, 53 (4):4:1—4:11, 2009.

Platform Computing Corporation. Platform http://www.platform.com/Products/ platform-isf.

VMware Inc., Vmware DRS, http://www.vmware.com/products/vi/vc/drs.html.

Enomaly, Inc. Elastic computing platform. http://www.enomaly.com/.

Red Hat. ovirt. http://ovirt.org/.

I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy, A distributed resource management architecture that supports advance reservations and coallocation, in Proceedings of the International Workshop on Quality of Service, 1999.

W. Smith, I. Foster, and V. Taylor, Scheduling with advanced reservations, in

Proceedings of the 14th International Symposium on Parallel and Distributed Processing, IEEE Computer Society, 2000, p. 127.

Q. Snell, M. J. Clement, D. B. Jackson, and C. Gregory, The performance impact of advance reservation meta-scheduling, in Proceedings of the Workshop on JobScheduling Strategies for Parallel Processing, Springer-Verlag, London, 2000, pp.137—153.

M. W. Margo, K. Yoshimoto, P. Kovatch, and P. Andrews, Impact of reservations on production job scheduling, in Proceedings of the 13th Workshop on JobScheduling Strategies for Parallel Processing, 116—131, 2007.

I. M. Llorente, R. Moreno-Vozmediano, and R. S. Montero, Cloud computing for on-demand grid resource provisioning, in Advances in Parallel Computing, IOS Press, volume 18, pp. 177—191, 2009.

15. T. Freeman and K. Keahey, Contextualization: Providing one-click virtual clusters, in Proceedings of the IEEE Fourth International Conference on eScience, 301—308, December 2008.

R. Moreno, R. S. Montero, and I. M. Llorente, Elastic management of clusterbased services in the cloud, in Proceedings of the First Workshop on Automated Controlfor Datacenters and Clouds (ACDC 2009), 19—24, June 2009.

P. H. Hargrove and J. C. Duell, Berkeley Lab checkpoint/restart (blcr) for linux clusters, Journal of Physics: Conference Series, 46:494—499, 2006.

D. C. Nurmi, R. Wolski, and J. Brevik, Varq: Virtual advance reservations for queues, in Proceedings of the 17th International Symposium on High PerformanceDistributed Computing, ACM, New York, 2008, pp. 75—86.

M. Hovestadt, O. Kao, A. Keller, and A. Streit, Scheduling in hpc resource management systems: Queuing vs. planning, Lecture Notes in Computer Science2862, Springer, Berlin, 2003, pp. 1—20.

[bookmark: page417]REFERENCES 188187

F. Heine, M. Hovestadt, O. Kao, and A. Streit, On the impact of reservations from the grid on planning-based resource management, in Proceedings of the 5thInternational Conference on Computational Science (ICCS 2005), Volume 3516 of Lecture Notes in Computer Science (LNCS,) Springer, Berlin, 2005, pp. 155—162.

T. Freeman, K. Keahey, I. T. Foster, A. Rana, B. Sotomayor, and F. Wuerthwein, Division of labor: Tools for growing and scaling grids, in Proceedings of theInternational Conference on Service Oriented Computing, 40—51, 2006.

K. Keahey and T. Freeman, Contextualization: Providing one-click virtual clusters, in Proceedings of the IEEE Fourth International Conference on eScience, 2008.

Ahuva W. Mu’alem and Dror G. Feitelson, Utilization, predictability, workloads,

and user runtime estimates in scheduling the IBM SP2 with backfilling, IEEETransactions on Parallel and Distributed Systems,12(6):529—543, 2001.

D. A. Lifka, The ANL/IBM SP scheduling system, in Proceedings of the Workshopon Job Scheduling Strategies for Parallel Processing, Springer-Verlag, London,1995, pp. 295—303.

B. Sotomayor, K. Keahey, and I. Foster, Combining batch execution and leasing using virtual machines, in Proceedings of the 17th International Symposium on HighPerformance Distributed Computing, ACM, New York, 2008, pp. 87—96.

B. Sotomayor, R. S. Montero, I. M. Llorente, and Ian Foster, Resource leasing and the art of suspending virtual machines, in Proceedings of the 11th IEEEInternational Conference on High Performance Computing and Communications (HPCC-09), 59—68, June 2009.

27. B. Sotomayor, A resource management model for VM-based virtual workspaces. Master’s thesis, University of Chicago, February 2007.

B. Sotomayor, K. Keahey, I. Foster, and T. Freeman, Enabling cost-effective resource leases with virtual machines, in Hot Topics session in ACM/IEEEInternational Symposium on High Performance Distributed Computing 2007 (HPDC 2007), 2007.

A. Chandra, P. Goyal, and P. Shenoy, Quantifying the benefits of resource multiplexing in on-demand data centers, in Proceedings of the First ACMWorkshop on Algorithms and Architectures for Self-Managing Systems (Self-Manage 2003), January 2003.

R. Guerin, H. Ahmadi, and M. Nagshineh, Equivalent Capacity and its application to bandwidth allocation in high speed networks, IEEE Journal on Selected Areas inCommunication,9(7):968—981, 1991.

Zhi-Li Zhang, J. Kurose, J. D. Salehi, and D. Towsley, Smoothing, statistical

multiplexing, and call admission control for stored video, IEEE Selected Areas inCommunications,15(6):1148—1166, 1997.

E. W. Knightly and N. B. Shroff, Admission control for statistical qos: Theory and practice. IEEE Network, 13(2):20—29, 1999.

B. Urgaonkar, B. Urgaonkar, P. Shenoy, P. Shenoy, and T. Roscoe, Resource overbooking and application profiling in shared hosting platforms, in Proceedingsof the 5th Symposium on Operating Systems Design and Implementation (OSDI’02),2002, pp. 239—254.

M. Dawande, J. Kalagnanam, P. Keskinocak, R. Ravi, and F. S. Salman, Approximation algorithms for the Multiple Knapsack Problem with assignment

[bookmark: page418]REFERENCES 189187

restrictions, Journal of Combinatorial Optimization, 4:171—186, 2000. http://www. research.ibm.com/pdos/doc/papers/mkar.ps.

L. Epstein and A. Levin, On bin packing with conflicts, SIAM Journal onOptimization,19(3):1270—1298, 2008.

M. Dawande and J. Kalagnanam, The Multiple Knapsack Problem with Color Constraints, Technical Report, IBM T. J. Watson Research, 1998.

J. Forrest and R. Lougee-Heimer, Cbc user guide. http://www.coinor.org/Cbc/ index.html, 2005.

D. Pisinger, An exact algorithm for large multiple knapsack problems, EuropeanJournal of Operational Research,114:528—541, 1999.

C. A. Santos, A. Sahai, X. Zhu, D. Beyer, V. Machiraju, and S. Singhal, Policybased resource assignment in utility computing Environments, in

Proceedings of The 15th IFIP/IEEE Distributed Systems: Operations and Management, Davis, CA, November 2004.

40. D. Verma, Simplifying network administration using policy-based management, IEEE Network,16(2):20—26, Jul 2002.

S. Keshav, An Engineering Approach to Computing Networking. Addison-Wesley Professional Series, Addison-Wesley, Reading, MA, 1997.

Daniel A. Menasce´ and Virgilio A. F. Almeida, Capacity Planning for Web

Performance: metrics, models, and methods. Prentice-Hall,	1998.

R. P. Doyle, J. S. Chase, O. M. Asad, W. Jin, and A. M. Vahdat., Model-based resource provisioning in a Web service utility, in Proceedings of the USENIX

Symposium on Internet Technologies and Systems (USITS), p. 5,	2003.

B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi, An analytical model for multi-tier internet services and its applications, in Proceedings of the2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems, ACM, New York, 2005, pp. 291—302.

Y. Chen, S. Iyer, D. Milojicic, and A. Sahai, A systematic and practical ap proach to generating policies from service level objectives, in Proceedings of the 11thIFIP/IEEE International Symposium on Integrated Network Management, 89—96,2009.

M. Ben-Yehuda, D. Breitgand, M. Factor, H. Kolodner, and V. Kravtsov, NAP: A building block for remediating performance bottlenecks via black box network analysis, in Proceedings of the 6th International Conference on Autonomic

Computing and Communications (ICAC’09), Barcelona, Spain, 179—188, June2009.

T. Yuyitung and A. Hillier, Virtualization analysis for VMware, Technical Report, CiRBA, 2007.

R. Gupta, S. K. Bose, S. Sundarrajan, M. Chebiyam, and A. Chakrabarti, A two stage heuristic algorithm for solving the server consolidation problem with item—item and bin—item incompatibility constraints, in Proceedings of the IEEE

International Conference on Services Computing (SCC’08), Vol. 2, Honolulu, HI,July 2008, pp. 39—46.

S. Mehta and A. Neogi, Recon: A tool to recommend dynamic server consolidation in multi-cluster data centers, Proceedings of the IEEE NetworkOperations and Management Symposium (NOMS 2008), Salvador, Bahia, Brasil,

[bookmark: page419]REFERENCES 190187

April 2008, pp. 363—370.

[bookmark: page420]REFERENCES	191

D. Gmach, J. Rolia, L. Cherkasova, G. Belrose, T. Turicchi, and A. Kemper, An integrated approach to resource pool management: Policies, efficiency and quality metrics, in Proceedings of the 38th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN’2008), 2008.

A. Verma, P. Ahuja, and A. Neogi, pmapper: Power and migration cost aware application placement in virtualized systems, in Proceedings of the 9th ACM/IFIP/USENIX International Conference on Middleware, 2008, Springer-Verlag, NewYork, pp. 243—264.

T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Black-box and gray-box strategies for virtual machine migration, in Proceedings of the USENIX Symposiumon Networked System Design and Implementation (NSDI’07), Cambridge, MA,April 2007.

A. Singh, M. Korupolu, and D. Mohapatra, Server-storage virtualization: Integration and load balancing in data centers, in Proceedings of the 7th

International Symposium on Software Composition (SC 2008), Budapest,Hungary, Article No. 53, March 2008.

N. Bobroff, A. Kochut, and K. Beaty, Dynamic placement of virtual machines for managing SLA violations, in Proceedings of the 10th IFIP/IEEE International

Symposium on Integrated Network Management, IM ’07, pp. 119—128, 2007. BestPaper award, IM’07.

X. Wang, Z. Du, Y. Chen, S. Li, D. Lan, G. Wang, and Y. Chen, An autonomic

provisioning framework for outsourcing data center based on virtual appliances, Cluster Computing,11(3):229—245, 2008.

C. Hyser, B. McKee, R. Gardner, and J. Watson. Autonomic Virtual Machine Placement in the Data Center, Technical Report, HP Laboratories, February 2008.

L. Grit, D. Irwin, A. Yumerefendi, and J. Chase, Virtual machine hosting for networked clusters: Building the foundations for “autonomic” orchestration, in

Proceedings of the 2nd International Workshop on Virtualization Technology in Distributed Computing, Washington, DC, IEEE Computer Society, 2006, p. 7.

C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, A scalable applica tion placement controller for enterprise data centers, in Proceedings of the 16thInternational World Wide Web Conference (WWW07), Bannf, Canada, 331—340,May 2007.

T. Kelly, Utility-directed allocation, in Proceedings of the First Workshop onAlgorithms and Architectures for Self-Managing Systems, 2003.

H. W. Choi, H. Kwak, A. Sohn, and K. Chung. Autonomous learning for efficient resource utilization of dynamic VM migration, in Proceedings of the 22nd AnnualInternational Conference on Supercomputing, New York, ACM, 2008, pp. 185—194.

S. Martello and P. Toth, Knapsack Problems, Algorithms and ComputerImplementations, John Wiley & Sons, New York, 1990.

H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems, Springer, Berlin, 2004.

C. Chekuri and S. Khanna, A PTAS for the multiple knapsack problem, in

Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, 2000, pp. 213—222.

[bookmark: page421]REFERENCES	191

D. B. Shmoys and E. Tardos, An approximation algorithm for the generalized assignment problem, Mathematical Programming, 62:461—474, 1993.

M. R. Garey and David S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness, W. H. Freeman, New York,	1979.

R. Gupta, S. K. Bose, S. Sundarrajan, M. Chebiyam, and A. Chakrabarti, A two stage heuristic algorithm for solving the server consolidation problem with item— item and bin—item incompatibility constraints, in Proceedings of the 2008 IEEEInternational Conference on Services Computing, Washington, DC, IEEEComputer Society, 2008, pp. 39—46.

E. Yu-Hsien Lin, A Bibliographical Survey On Some Well-Known Non-Standard Knapsack Problems, 1998.

A. Fre` ville, The multidimensional 0—1 knapsack problem: An overview. EuropeanJournal of Operational Research,155(1):1—21, 2004.

M. Ehrgott and X. Gandibleux, A survey and annotated bibliography of multiobjective combinatorial optimization, OR Spectrum, 22(4):425—460, 2000.

D. Pisinger, Where are the hard knapsack problems? Computers & OperationsResearch,32(9):2271—2284, 2005.

	71. J. Marques, F. Sauve, and
	A.
	Moura, Business-oriented
	capacity
	planning of

	IT infrastructure to handle
	load
	surges, in Proceedings
	of The
	10th IEEE/

IFIP Network Operations and Management Symposium (NOMS06), Vancouver,Canada, April 2006.

X. Zhu, D. Young, B. J. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee, C. Hyser, D. Gmach, R. Gardner, T. Christian, and L. Cherkasova, 1000 Islands: Integrated capacity and workload management for the next generation data center, in Proceedings of The 5th IEEE International Autonomic Computing Conference

(ICAC’08), Chicago. IL, June 2008, pp. 172—181.

[bookmark: page422]REFERENCES	191

[bookmark: page423]

	Download from Wow! eBook <www.wowebook.com>

CHAPTER 7

ENHANCING	CLOUD	COMPUTING
ENVIRONMENTS USING A CLUSTER
AS A SERVICE

MICHAEL BROCK and ANDRZEJ GOSCINSKI

INTRODUCTION

The emergence of cloud computing has caused a significant change in how IT infrastructures are provided to research and business organizations. Instead of paying for expensive hardware and incur excessive maintenance costs, it is now possible to rent the IT infrastructure of other organizations for a minimal fee. While the existence of cloud computing is new, the elements used to create clouds have been around for some time. Cloud computing systems have been made possible through the use of large-scale clusters, service-oriented archi-

tecture (SOA), Web services, and	virtualization.

While the idea of offering resources via Web services is commonplace in cloud computing, little attention has been paid to the clients themselves — specifically, human operators. Despite that clouds host a variety of resources which in turn are accessible to a variety of clients, support for human users is minimal.

Proposed in this chapter is the Cluster as a Service (CaaS), a Web service for exposing via WSDL and for discovering and using clusters to run jobs.1 Because the WSDL document is the most commonly exploited object of a Web service, the inclusion of state and other information in the WSDL document makes the

[bookmark: page424]

1Jobs contain programs, data and management scripts. A process is a program that is in execution. When clients use a cluster, they submit jobs and when the jobs which are run by clusters creating one or more processes.

Cloud Computing: Principles and Paradigms, Edited by Rajkumar Buyya, James Broberg andAndrzej Goscinski Copyright r 2011 John Wiley & Sons, Inc.

193

[bookmark: page425]
internal activity of the Web services publishable. This chapter offers a cloud higher layer abstraction and support for users. From the virtualization point of view the CaaS is an interface for clusters that makes their discovery, selection, and use easier.

The rest of this chapter is structured as follows. Section 7.2 discusses three well-known clouds. Section 7.3 gives a brief explanation of the dynamic attribute and Web service-based Resources Via Web Services (RVWS) framework [1, 2], which forms a basis of the CaaS. Section 7.4 presents the logical design of our CaaS solution. Section 7.5 presents a proof of concept where a cluster is published, found, and used. Section 7.6 provides a conclusion.

RELATED WORK

In this section, four major clouds are examined to learn what is offered to clients in terms of higher layer abstraction and support for users—in particular, service and resource publication, discovery, selection, and use. While the focus of this chapter is to simplify the exposure of clusters as Web services, it is important to learn what problems exist when attempting to expose any form of resource via a Web service.

Depending on what services and resources are offered, clouds belong to one of three basic cloud categories: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). IaaS clouds make basic computational resources (e.g., storage, servers) available as services over the Internet. PaaS clouds offer easy development and deployment for environments scalable applications. SaaS clouds allow complete end user applications to be deployed, managed, and delivered as a service usually through a browser over the Internet. SaaS clouds only support provider’s applications on their infrastructure.

The well-known four clouds—EC2 , Azure , AppEngine , and Salesforce [16]—represent these three basic cloud categories well.

Amazon Elastic Compute Cloud (EC2)

An IaaS cloud, EC2 offers “elastic” access to hardware resources that EC2 clients use to create virtual servers. Inside the virtual servers, clients either host the applications they wish to run or host services of their own to access over the Internet. As demand for the services inside the virtual machine rises, it is possible to create a duplicate (instance) of the virtual machine and distribute the load across the instances.

The first problem with EC2 is its low level of abstraction. Tutorials [6—8]

[bookmark: page426]show that when using EC2, clients have to create a virtual machine, install software into it, upload the virtual machine to EC2, and then use a command line tool to start it. Even though EC2 has a set of pre-built virtual machines that

[bookmark: page427]7.2	RELATED WORK	195

EC2 clients can use , it still falls on the clients to ensure that their own software is installed and then configured correctly.

It was only recently that Amazon announced new scalability features, specifically Auto-Scaling and Elastic Load Balancing . Before the announcement of these services, it fell to EC2 clients to either modify their services running on EC2 or install additional management software into their EC2 virtual servers. While the offering of Auto-Scaling and Elastic Load Balancing reduces the modification needed for services hosted on EC2, both services are difficult to use and require client involvement [11, 12]. In both cases, it is required of the EC2 client to have a reserve of virtual servers and then configure Auto-Scaling and Elastic Load Balancing to make use of the virtual servers based on demand.

Finally, EC2 does not provide any means for publishing services by other providers, nor does it provide the discovery and selection of services within EC2. An analysis of EC2 documentation shows that network multicasting (a vital element to discovery) is not allowed, thus making discovery and selection of services within EC2 difficult. After services are hosted inside the virtual machines on EC2, clients are required to manually publish their services to a discovery service external to EC2.

Google App Engine

Google App Engine is a PaaS cloud that provides a complete Web service environment: All required hardware, operating systems, and software are provided to clients. Thus, clients only have to focus on the installation or creation of their own services, while App Engine runs the services on Google’s servers.

However, App Engine is very restricted in what language can be used to build services. At the time of writing, App Engine only supports the Java and Python programming languages. If one is not familiar with any of the supported programming languages, the App Engine client has to learn the language before building his or her own services. Furthermore, existing applications cannot simply be placed on App Engine: Only services written completely in Java and Python are supported.

Finally, App Engine does not contain any support to publish services created by other service providers, nor does it provide discovery and selection services. After creating and hosting their services, clients have to publish their services to discovery services external to App Engine. At the time of writing, an examination of the App Engine code pages [24] also found no matches when the keyword “discovery” was used as a search string.

Microsoft Windows Azure

Another PaaS cloud, Microsoft’s Azure allows clients to build services using developer libraries which make use of communication, computational, and storage services in Azure and then simply upload the completed services.

[bookmark: page428]7.3	RVWS DESIGN 1 9 6 197

To ease service-based development, Azure also provides a discovery service within the cloud itself. Called the .NET Service Bus [14], services hosted in Azure are published once and are locatable even if they are frequently moved. When a service is created/started, it publishes itself to the Bus using a URI [15] and then awaits requests from clients.

While it is interesting that the service can move and still be accessible as long as the client uses the URI, how the client gets the URI is not addressed. Furthermore, it appears that no other information such as state or quality of service (QoS) can be published to the Bus, only the URI.

Salesforce

Salesforce [16] is a SaaS cloud that offers customer relations management (CRM) software as a service. Instead of maintaining hardware and software licenses, clients use the software hosted on Salesforce servers for a minimal fee. Clients of Salesforce use the software as though it is their own one and do not have to worry about software maintenance costs. This includes the provision of hardware, the installation, and all required software and the routine updates. However, Salesforce is only applicable for clients who need existing software. Salesforce only offers CRM software and does not allow the hosting of custom services. So while it is the cloud with the greatest ease of use, Salesforce

has the least flexibility.

Cloud Summary

While there is much promise with the four major clouds presented in this chapter, all have a problem when it comes to publishing a discovering required services and resources. Put simply, discovery is close to nonexistent and some clouds require significant involvement from their clients.

Of all the clouds examined, only Azure offers a discovery service. However, the discovery service in Azure only addresses static attributes. The .NET Service Bus only allows for the publication of unique identifiers.

Furthermore, current cloud providers assume that human users of clouds are experienced programmers. There is no consideration for clients that are specialists in other fields such as business analysis and engineering. Hence, when interface tools are provided, they are primitive and only usable by computing experts. Ease of use needs to be available to both experienced and novice computing users.

What is needed is an approach to provide higher layer abstraction and support for users through the provision of simple publication, discovery, selection, and use of resources. In this chapter, the resource focused on is a cluster. Clients should be able to easily place required files and executables on the cluster and get the results back without knowing any cluster specifics. We propose to exploit Web services to provide a higher level of abstraction and offer these services.

[bookmark: page429]7.3	RVWS DESIGN 1 9 7 197

RVWS DESIGN

While Web services have simplified resource access and management, it is not possible to know if the resource(s) behind the Web service is (are) ready for requests. Clients need to exchange numerous messages with required Web services to learn the current activity of resources and thus face significant overhead loss if most of the Web services prove ineffective. Furthermore, even in ideal circumstances where all resources behind Web services are the best choice, clients still have to locate the services themselves. Finally, the Web services have to be stateful so that they are able to best reflect the current state of their resources.

This was the motivation for creating the RVWS framework. The novelty of RVWS is that it combines dynamic attributes, stateful Web services (aware of their past activity), stateful and dynamic WSDL documents [1], and brokering [17] into a single, effective, service-based framework. Regardless of clients accessing services directly or discovering them via a broker, clients of RVWS-based distributed systems spend less time learning of services.

Dynamic Attribute Exposure

There are two categories of dynamic attributes addressed in the RVWS framework: state and characteristic. State attributes cover the current activity of the service and its resources, thus indicating readiness. For example, a Web service that exposes a cluster (itself a complex resource) would most likely have a dynamic state attribute that indicates how many nodes in the cluster are busy and how many are idle.

Characteristic attributes cover the operational features of the service, the resources behind it, the quality of service (QoS), price and provider information. Again with the cluster Web service example, a possible characteristic is an array of support software within the cluster. This is important information as cluster clients need to know what software libraries exist on the cluster.

Figure 7.1 shows the steps on how to make Web services stateful and how the dynamic attributes of resources are presented to clients via the WSDL document.

To keep the stateful Web service current, a Connector is used to detect changes in resources and then inform the Web service. The Connector has three logical modules: Detection, Decision, and Notification. The Detection module routinely queries the resource for attribute information (1—2). Any changes in the attributes are passed to the Decision module (3) that decides if the attribute change is large enough to warrant a notification. This prevents excessive communication with the Web service. Updated attributes are passed on to the Notification module (4), which informs the stateful Web service (5) that updates its internal state. When clients requests the stateful WSDL document (6), the Web service returns the WSDL document with the values of all attributes (7) at the request time.

[bookmark: page430]7.3	RVWS DESIGN 1 9 8 197

	Detection
	Decision
	.Notific

	
	
	

[image:]

	
	
	Connector

	Resource
	1.
	

	
	
	

	State Attrib.
	3.
	4.

	Characteristic Attrib.
	2.
	

	
	
	

	
	6.
	
	
	Web Service
	
	

	
	
	
	
	
	
	
	5.

	Client
	
	
	
	
	State Attrib.
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	7.
	
	
	
	
	
	

	
	
	
	
	
	Characteristic Attrib.
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

FIGURE 7.1. Exposing resource attributes.

Stateful WSDL Document Creation

When exposing the dynamic attributes of resources, the RVWS framework allows Web services to expose the dynamic attributes through the WSDL documents of Web services. The Web Service Description Language (WSDL) [18] governs a schema that describes a Web service and a document written in the schema. In this chapter, the term WSDL refers to the stateless WSDL document. Stateful WSDL document refers to the WSDL document created by RVWS Web services.

All information of service resources is kept in a new WSDL section called Resources. Figure 7.2 shows the structure of the Resources section with the rest of the WSDL document. For each resource behind the Web service, a ResourceInfo section exists.

[bookmark: page431]7.3	RVWS DESIGN 1 9 9 197

Each ResourceInfo section has a resource-id attribute and two child sections: state and characteristic. All resources behind the Web service have unique identifiers. When the Connector learns of the resource for the first time, it publishes the resource to the Web service.

Both the state and characteristics elements contain several description elements, each with a name attribute and (if the provider wishes) one or more attributes of the service. Attributes in RVWS use the {name: op value} notations. An example attribute is {cost: ,5 $5}.

The state of a resource could be very complex and cannot be described in just one attribute. For example, variations in each node in the cluster all contribute significantly to the state of the cluster. Thus the state in RVWS is described via a collection of attributes, all making up the whole state.

The characteristics section describes near-static attributes of resources such as their limitations and data parameters. For example, the type of CPU on a node in a cluster is described in this section.

[bookmark: page432]7.3	RVWS DESIGN 2 0 0 197

<definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<resources>

<resource-info identifier="resourceID">

<state>

<description name="" attribute1="value1" …

attributen="valuen">

…Other description Elements…

</description>

…Other description Elements…

</state>

<characteristics>

<description name="" />

…Other description Elements…

</characteristics>

</resource-info>

…Other resource-info elements

</resources>

<types>...</types>

message name="MethodSoapIn">...</message><message name="MethodSoapOut">...</message>

<portType name="CounterServiceSoap">...</portType>

<binding name="CounterServiceSoap" type="tns:CounterServiceSoap">...</wsdl:binding>

<wsdl:service name="CounterService">...</wsdl:service></wsdl:definitions>

FIGURE 7.2. New WSDL section.

[bookmark: page433]7.3	RVWS DESIGN 2 0 1 197

Publication in RVWS

While the stateful WSDL document eliminates the overhead incurred from manually learning the attributes of the service and its resource(s), the issues behind discovering services are still unresolved.

To help ease the publication and discovery of required services with stateful WSDL documents, a Dynamic Broker was proposed (Figure 7.3) [17]. The goal of the Dynamic Broker is to provide an effective publication and discovery service based on service, resource, and provider dynamic attributes.

When publishing to the Broker (1), the provider sends attributes of the Web service to the Dynamic Broker. The dynamic attributes indicate the functionality, cost, QoS, and any other attributes the provider wishes to have published about the service. Furthermore, the provider is able to publish

information about itself, such as the provider’s contact details and reputation.

After publication (1), the Broker gets the stateful WSDL document from the Web service (2). After getting the stateful WSDL document, the Dynamic

	Broker extracts
	all resource
	dynamic
	attributes
	from the stateful
	WSDL

	documents and
	stores the
	resource
	attributes
	in the resources
	store.

[bookmark: page434][image:]

	Provider
	
	1.

	
	
	

	Web Service
	
	

	State Attrib.
	2.
	Publication

	
	
	

	Characteristic Attrib.
	3.
	Notication

	
	
	

FIGURE 7.3. Publication.

	7.3 RVWS DESIGN
	201

Distributed

Providers

Services

Resources

The Dynamic Broker then stores the (stateless) WSDL document and service attributes from (1) in the service store. Finally, all attributes about the provider are placed in the providers store.

As the Web service changes, it is able to send a notification to the Broker (3) which then updates the relevant attribute in the relevant store. Had all information about each service been kept in a single stateful WSDL document, the dynamic broker would have spent a lot of time load, thereby editing and saving huge XML documents to the database.

Automatic Discovery and Selection

The automatic service discovery that takes into consideration dynamic attributes in their WSDL documents allows service (e.g., a cluster) discovery.

When discovering services, the client submits to the Dynamic Broker three groups of requirements (1 in Figure 7.4): service, resource, and provider. The Dynamic Broker compares each requirement group on the related data store (2). Then, after getting matches, the Broker applies filtering (3). As the client using the Broker could vary from human operators to other software units, the resulting matches have to be filtered to suit the client. Finally, the filtered results are returned to the client (4).

The automatic service selection that takes into consideration dynamic attributes in their WSDL documents allows for both a single service (e.g., a cluster) selection and an orchestration of services to satisfy workflow requirements (Figure 7.5).

The SLA (service-level agreement) reached by the client and cloud service provider specifies attributes of services that form the client’s request or

	[bookmark: page435]7.3 RVWS DESIGN
	201

workflow. This is followed by the process of services’ selection using Brokers.

Thus, selection is carried out automatically and transparently. In a system comprising many clouds, the set of attributes is partitioned over many distributed service databases, for autonomy, scalability, and performance.

	[bookmark: page436]7.3 RVWS DESIGN
	201

The automatic selection of services is performed to optimize a function reflecting client requirements. Time-critical and high-throughput tasks benefit by executing a computing intensive application on multiple clusters exposed as services of one or many clouds.
[image:]

	Client
	Dynamic

	
	

	4.
	1.

	
	Providers

	Dynamic Broker
	

	Matching
	2.

	
	Services

	3.
	

	
	Resources

	Filtering
	

FIGURE 7.4. Matching parameters to attributes.

	[bookmark: page437]7.3 RVWS DESIGN
	201

	Client
	Negotiation
	Cloud

	
	
	

	Selection
	
	SLA

	Composition
	

	
	Workflow
	= <Si1, Si2, Si3 ... Sin>

[image:]

Public Cloud

	Broker
	
	Broker
	
	
	Service

	
	
	
	
	
	

	
	
	
	
	
	

[image:]

	Public Cloud
	Public Cloud
	Service

	
	
	

	
	
	

FIGURE 7.5. Dynamic discovery and	selection.

	[bookmark: page438]7.3 RVWS DESIGN
	201

The dynamic attribute information only relates to clients that are aware of them. Human clients know what the attributes are, owning to the section being clearly named. Software-client-designed pre-RVWS ignore the additional information as they follow the WSDL schema that we have not changed.

CLUSTER AS A SERVICE: THE LOGICAL	DESIGN

Simplification of the use of clusters could only be achieved through higher layer abstraction that is proposed here to be implemented using the service-based Cluster as a Service (CaaS) Technology. The purpose of the CaaS Technology is to ease the publication, discovery, selection, and use of existing computational clusters.

CaaS Overview

The exposure of a cluster via a Web service is intricate and comprises several services running on top of a physical cluster. Figure 7.6 shows the complete CaaS technology.

A typical cluster is comprised of three elements: nodes, data storage, and middleware. The middleware virtualizes the cluster into a single system image; thus resources such as the CPU can be used without knowing the organization of the cluster. Of interest to this chapter are the components that manage the allocation of jobs to nodes (scheduler) and that monitor the activity of the cluster (monitor). As time progresses, the amount of free memory, disk space, and CPU usage of each cluster node changes. Information about how quickly the scheduler can take a job and start it on the cluster also is vital in choosing a cluster.

To make information about the cluster publishable, a Publisher Web service and Connector were created using the RVWS framework. The purpose of the publisher Web service was to expose the dynamic attributes of the cluster via the stateful WSDL document. Furthermore, the Publisher service is published to the Dynamic Broker so clients can easily discover the cluster.

To find clusters, the CaaS Service makes use of the Dynamic Broker. While the Broker is detailed in returning dynamic attributes of matching services, the results from the Dynamic Broker are too detailed for the CaaS Service. Thus another role of the CaaS Service is to “summarize” the result data so that they convey fewer details.

Ordinarily, clients could find required clusters but they still had to manually transfer their files, invoke the scheduler, and get the results back. All three tasks require knowledge of the cluster and are conducted using complex tools. The role of the CaaS Service is to (i) provide easy and intuitive file transfer tools so

	[bookmark: page439]7.3 RVWS DESIGN
	201

clients can upload jobs and download results and (ii) offer an easy to use interface for clients to monitor their jobs. The CaaS Service does this by

	[bookmark: page440]7.4 CLUSTER AS A SERVICE: THE LOGICAL DESIGN
	203

Clients	Software Service	Human Operator

CaaS Service	Dynamic Broker
[image:]

Publisher Service

Connector

Scheduler	Monitoring

Cluster Middleware

Data Storage

Node 1 [image:][image:][image:][image:] Node n

Cluster Nodes

Example Cluster

FIGURE 7.6. Complete CaaS system.

allowing clients to upload files as they would any Web page while carrying out the required data transfer to the cluster transparently.

Because clients to the cluster cannot know how the data storage is managed, the CaaS Service offers a simple transfer interface to clients while addressing the transfer specifics. Finally, the CaaS Service communicates with the cluster’s scheduler, thus freeing the client from needing to know how the scheduler is invoked when submitting and monitoring jobs.

Cluster Stateful WSDL Document

As stated in Section 7.4.1, the purpose of the Publisher Web service is to expose the dynamic attributes of a cluster via a stateful WSDL document. Figure 7.7 shows the resources section to be added to the WSDL of the Publisher Web service.

[bookmark: page441]Inside the state and characteristic elements, an XML element for each cluster node was created. The advantage of the XML structuring of our cluster

[bookmark: page442]
<definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<resources>

<resource-info resource-identifier="resourceId">

<state element-identifier="elementId">

<cluster-state element-identifier="cluster-state-root">

<cluster-node-name free-disk="" free-memory="" native-os-name="" native-os-version="" processes-count=""

processes-running="" cpu-usage-percent="" element-identifier="stateElementId"

memory-free-percent="" />

…Other Cluster Node State Elements…

</cluster-state>

</state>

<characteristics element-identifier="characteristicElementId">

<cluster-characteristics node-count=""

element-identifier="cluster-characteristics-root">

<cluster-node-name core-count="" core-speed="" core-speed-unit="" hardware-architecture="" total-disk="" total-memory="" total-disk-unit="" total-memory-unit=""

element-identifier="characteristicElementId" />

…Other Cluster Node Characteristic Elements…

</cluster-characteristics>

</characteristics>

</resource-info>

</resources>

<types>...

<message name="MethodSoapIn">...

<message name="MethodSoapOut">...

[bookmark: page443]<portType name="CounterServiceSoap">...

<binding name="CounterServiceSoap" …>...

<wsdl:service name="CounterService">...

</wsdl:definitions>

FIGURE 7.7. Cluster WSDL.

attributes means that comparing client requirements to resource attributes only requires using XPath queries.

For the CaaS Service to properly support the role of cluster discovery, detailed information about clusters and their nodes needs to be published to the WSDL of the cluster and subsequently to the Broker (Table 7.1).

CaaS Service Design

The CaaS service can be described as having four main tasks: cluster discovery and selection, result organization, job management, and file management. Based on these tasks, the CaaS Service has been designed using

[bookmark: page444]TABLE 7.1. Cluster Attributes

	
	Type
	Attribute Name
	Attribute Description
	Source

	
	
	
	
	

	
	Characteristics
	core-count
	Number of cores on a cluster
	Cluster node

	
	
	
	node
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	core-speed
	Speed of each core
	
	
	

	
	
	
	
	

	
	
	core-speed-unit
	Unit for the core speed (e.g.,
	

	
	
	
	gigahertz)
	
	
	
	

	
	
	
	
	

	
	
	hardwarear
	Hardware architecture of each
	

	
	
	chitecture
	cluster node (e.g., 32-bit
	Intel)
	

	
	
	
	
	
	
	
	

	
	
	total-disk
	Total
	amount
	of
	physical
	

	
	
	
	storage space
	
	
	
	

	
	
	
	
	
	
	

	
	
	total-disk-unit
	Storage
	amount unit
	(e.g.,
	

	
	
	
	gigabytes)
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	total-memory
	Total
	amount
	of
	physical
	

	
	
	
	memory
	
	
	
	

	
	
	
	
	

	
	
	total-memory-unit
	Memory amount measurement
	

	
	
	
	(e.g., gigabytes)
	
	
	
	

	
	
	
	
	

	
	
	software-name
	Name of an installed piece of
	

	
	
	
	software.
	
	
	
	

	
	
	
	
	

	
	
	software-version
	Version of a installed piece of
	

	
	
	
	software
	
	
	
	

	
	
	
	
	

	
	
	softwarearc
	Architecture of a installed piece
	

	
	
	hitecture
	of software
	
	
	
	

	
	
	
	
	

	
	
	node-count
	Total number of nodes in the
	Generated

	
	
	
	cluster.
	Node
	count
	differs
	

	
	
	
	from core-count as each node
	

	
	
	
	in a cluster can have many
	

	
	
	
	cores.
	
	
	
	
	

	
	
	
	
	
	

	
	State
	free-disk
	Amount of free disk
	space
	Cluster node

	
	
	
	
	

	
	
	free-memory
	Amount of free memory
	

	
	
	
	
	

	
	
	os-name
	Name of the installed operating
	

	
	
	
	system
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	os-version
	Version
	of
	the
	running
	

	
	
	
	operating system
	
	
	

	
	
	
	
	
	
	

	
	
	processes-count
	Number of processes
	
	
	

	
	
	
	
	
	

	
	
	processes-running
	Number of processes
	running
	

	
	
	
	
	

	
	
	cpu-usage-percent
	Overall percent of CPU used.
	Generated

	
	
	
	As this metric is for the node
	

	
	
	
	itself,
	this value
	becomes
	

	
	
	
	averaged over cluster core
	

	
	
	
	
	

	
	
	memory-freepercent
	Amount of free memory on the
	

	
	
	
	cluster node
	
	
	
	

	
	
	
	
	
	
	
	
	

[bookmark: page445]7.4	CLUSTER AS A SERVICE: THE LOGICAL DESIGN 206207

intercommunicating modules. Each module in the CaaS Service encapsulates one of the tasks and is able to communicate with other modules to extend its functionality.

Figure 7.8 presents the modules with the CaaS Service and illustrates the dependencies between them. To improve the description, elements from Figure 7.6 have been included to show what other entities are used by the CaaS service.

The modules inside the CaaS Web service are only accessed through an interface. The use of the interface means the Web service can be updated over time without requiring clients to be updated nor modified.

Invoking an operation on the CaaS Service Interface (discovery, etc.) invokes operations on various modules. Thus, to best describe the role each module plays, the following sections outline the various tasks that the CaaS Service carries out.

Cluster Discovery. Before a client uses a cluster, a cluster must be discoveredand selected first. Figure 7.9 shows the workflow on finding a required cluster. To start, clients submit cluster requirements in the form of attribute values to the CaaS Service Interface (1). The requirements range from the number of nodes in the cluster to the installed software (both operating systems and software APIs). The CaaS Service Interface invokes the Cluster Finder module

(2) that communicates with the Dynamic Broker (3) and returns service matches (if any).

To address the detailed results from the Broker, the Cluster Finder module invokes the Results Organizer module (4) that takes the Broker results and returns an organized version that is returned to the client (5—6). The organized

Dynamic

[bookmark: page446]7.4	CLUSTER AS A SERVICE: THE LOGICAL DESIGN 207207
[image:]
	Result Organizer
	File Manager
	Data Storage

	
	
	

	Cluster Finder
	Job Manager
	Scheduler

	CaaS Service Interface
	Example Cluster

	
	

Client

FIGURE 7.8. CaaS Service	design.

[bookmark: page447]7.4	CLUSTER AS A SERVICE: THE LOGICAL DESIGN 208207

results instruct the client what clusters satisfy the specified requirements. After reviewing the results, the client chooses a cluster.

Job Submission. After selecting a required cluster, all executables and datafiles have to be transferred to the cluster and the job submitted to the scheduler for execution. As clusters vary significantly in the software middleware used to create them, it can be difficult to place jobs on the cluster. To do so requires knowing how jobs are stored and how they are queued for execution on the cluster. Figure 7.10 shows how the CaaS Service simplifies the use of a cluster to the point where the client does not have to know about the underlying middleware.

	Dynamic Broker
	
	
	
	

	
	
	
	
	
	

	3.
	
	
	
	
	

	
	
	
	
	
	

	
	
	4.
	
	

	
	
	
	
	

	Cluster Finder
	
	
	Result Organizer

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	
	

[image:]

2.

5.

CaaS Service Interface

[image:] 6. 1. [image:]

Client

FIGURE 7.9. Cluster discovery.

[bookmark: page448]7.4	CLUSTER AS A SERVICE: THE LOGICAL DESIGN 209207
[image:]

File Manager

4.
Data Storage

3.

5.

Job Manager

6.

Scheduler

2.

7.

CaaS Service

Interface

Example Cluster

1.

8.

Client

FIGURE 7.10. Job submission.

[bookmark: page449]7.4	CLUSTER AS A SERVICE: THE LOGICAL DESIGN 210207

All required data, parameters, such as estimated runtime, are uploaded to the CaaS Service (1). Once the file upload is complete, the Job Manager is invoked (2). It resolves the transfer of all files to the cluster by invoking the File Manager (3) that makes a connection to the cluster storage and commences the transfer of all files (4).

Upon completion of the transfer (4), the outcome is reported back to the Job Manager (5). On failure, a report is sent and the client can decide on the appropriate action to take. If the file transfer was successful, the Job Manager invokes the scheduler on the cluster (6).

The same parameters the client gave to the CaaS Service Interface are submitted to the scheduler; the only difference being that the Job Manager also informs the scheduler where the job is kept so it can be started. If the outcome of the scheduler (6) is successful, the client is then informed (7—8). The outcome includes the response from the scheduler, the job identifier the scheduler gave to the job, and any other information the scheduler provides.

Job Monitoring. During execution, clients should be able to view theexecution progress of their jobs. Even though the cluster is not the owned by the client, the job is. Thus, it is the right of the client to see how the job is progressing and (if the client decides) terminate the job and remove it from the cluster. Figure 7.11. outlines the workflow the client takes when querying about job execution.

First, the client contacts the CaaS service interface (1) that invokes the Job Manager module (2). No matter what the operation is (check, pause, or terminate), the Job Manager only has to communicate with the scheduler (3) and reports back a successful outcome to the client (4—5).

Result Collection. The final role of the CaaS Service is addressingjobs that have terminated or completed their execution successfully. In both
[image:]

	
	3
	
	Job Manager
	.
	
	Scheduler

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	Example Cluster

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	4.
	
	
	
	CaaS Service
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	Interface
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	2.
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	Client
	
	
	
	

	
	
	
	
	
	
	
	
	
	

[image:][image:]

[bookmark: page450]7.4	CLUSTER AS A SERVICE: THE LOGICAL DESIGN 211207

5.

1.

FIGURE 7.11. Job monitoring.

[bookmark: page451]7.4	CLUSTER AS A SERVICE: THE LOGICAL DESIGN 212207
[image:]

	
	File Manager
	3.

	
	
	Data Storage

	
	
	

	4.
	CaaS Service
	Example Cluster

	
	
	

	
	Interface
	

	
	2.
	

	
	Client
	

5.

1.

FIGURE 7.12. Job result collection.

cases, error or data files need to be transferred to the client. Figure 7.12 presents the workflow and CaaS Service modules used to retrieve error or result files from the cluster.

Clients start the error or result file transfer by contacting the CaaS Service Interface (1) that then invokes the File Manager (2) to retrieve the files from the cluster’s data storage (3). If there is a transfer error, the File Manager attempts to resolve the issue first before informing the client. If the transfer of files (3) is successful, the files are returned to the CaaS Service Interface (4) and then the client (5). When returning the files, URL link or a FTP address is provided so the client can retrieve the files.

User Interface: CaaS Web Pages

The CaaS Service has to support at least two forms of client: software clients and human operator clients. Software clients could be other software applications or services and thus are able to communicate with the CaaS Service Interface directly.

[bookmark: page452]7.4	CLUSTER AS A SERVICE: THE LOGICAL DESIGN 213207

For human operators to use the CaaS Service, a series of Web pages has been designed. Each page in the series covers a step in the process of discovering, selecting, and using a cluster. Figure 7.13 shows the Cluster Specification Web page where clients can start the discovery of a required cluster.

In Section A the client is able to specify attributes about the required cluster. Section B allows specifying any required software the cluster job needs. Afterwards, the attributes are then given to the CaaS service that performs a search for possible clusters and the results are displayed in a Select Cluster Web page (Figure 7.14).

Next, the client goes to the job specification page, Figure 7.15. Section A allows specifying the job. Section B allows the client to specify and upload all data files and job executables. If the job is complex, Section B also allows specifying a job script. Job scripts are script files that describe and manage

	[bookmark: page453]
	
	
	7.4 CLUSTER AS A SERVICE: THE LOGICAL DESIGN
	211

	
	
	
	
	
	
	
	

	Section A: Hardware
	
	
	
	
	
	

	Number of Nodes:
	
	
	
	
	
	

	
	50
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	50
	
	
	GB
	

	Amount of Memory:
	
	
	
	
	
	

	Free Memory:
	
	
	
	
	
	
	

	
	
	50
	
	
	GB
	

	Disk Free:
	
	
	
	
	
	
	

	
	
	50
	
	
	GB
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	Pentium 4
	64 bit
	3.2
	GHz
	

	CPU:
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Section B: Software
	
	
	
	
	
	

	Operating System:
	
	
	
	
	
	
	
	

	
	
	
	Windows XP w/Service Pack 2
	
	
	
	

	
	
	
	
	
	
	
	
	

[image:][image:][image:][image:][image:][image:][image:][image:]

Discover ->

FIGURE 7.13. Web page for cluster	specification.

	Cluster A
	Cluster B

	select
	select

[image:]
Hardware

Number of Nodes :

Amount of Memory :

Free Memory :

Disk Free :

CPU :

Architecture :
[image:]

<- Refine Search

	[bookmark: page454]7.4 CLUSTER AS A SERVICE: THE
	LOGICAL DESIGN
	211

	FIGURE 7.14. Web page for showing matching
	clusters.
	

various stages of a large cluster job. Section C allows specifying an estimated time the job would take to complete.

Afterword, the CaaS Service attempts to submit the job; the outcome is shown in the Job Monitoring page, Figure 7.16. Section A tells the client whether the job is submitted successfully. Section B offers commands to allow the client to take an appropriate action.

When the job is complete, the client is able to collect the results from the Collect Results page (Figure 7.17). Section A shows the outcome of the job.

	[bookmark: page455]
	7.4 CLUSTER AS A SERVICE: THE LOGICAL DESIGN
	211

	
	
	
	
	

	Section A: Identification
	
	
	
	

	Job Name:
	
	
	
	
	

	
	Travelling Sales Man
	
	
	

	Job Owner
	
	
	
	
	

	
	Joe Bloggs
	
	
	
	

	
	
	
	
	
	

	Section B: Job File Specification
	
	
	
	

	Executible
	
	
	
	Browse...
	

	
	My_exec.exe
	
	
	
	

	Script:
	
	
	
	Browse...
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	custom_set.dat
	
	
	
	

	
	
	
	
	
	

	
	Add
	Remove
	Clear
	

	Data files:
	
	
	
	
	

[image:][image:][image:]

Proven.dat

Control.dat

Recent.dat

Output Filename:	out.dat

Section C: Execution Specification

Estimated Tme:	3d 14h
[image:]

<-	Change Clusters	Submit ->

FIGURE 7.15. Web page for job	specification.

	[bookmark: page456]7.4 CLUSTER AS A SERVICE: THE LOGICAL DESIGN
	211

Section A: Submission Outcome
Outcome:	Submitted Successfully

	Job
	ID:

	
	cj404

	Report:
	
	

	
	Delegating Submission request…. Request Accepted.
	

	
	Job has been started.
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

[image:][image:][image:]

Refresh	Pause	Halt

Section B: Job Control
[image:]

Collect Results ->

FIGURE 7.16. Web page for monitoring job	execution.

[bookmark: page457]7.5	PROOF OF CONCEPT 212213

Section A: Execution Outcome

Outcome:	Completed Successfully

Time Finished:	16:59

Report:	After a total of 2 days and 7 hours, your job has completed execution.
[image:]

Section B : Results Download
[image:]

Finish
HTTP:	http://download.clustera.org/cb404/out.dat

FIGURE 7.17. Web page for collecting result	files.

Section B allows the client to easily download the output file generated from the completed/aborted job via HTTP or using an FTP client.

PROOF OF CONCEPT

To demonstrate the RVWS framework and CaaS Technology, a proof of concept was performed where an existing cluster was published, discovered, selected, and used. It was expected that the existing cluster could be easily used all through a Web browser and without any knowledge of the underlying middleware.

[bookmark: page458]7.5	PROOF OF CONCEPT 213213

CaaS Technology Implementation

The CaaS Service was implemented using Windows Communication Foundations (WCF) of .NET 3.5 that uses Web services. An open source library for building SSH clients in .NET (sharpSSH) [19] was used to build the Job and File Managers. Because schedulers are mostly command driven, the commands and outputs were wrapped into a Web service. Each module outlined in Section

7.4.3 is implemented as its own Web service.

The experiments were carried out on a single cluster exposed via RVWS; communication was carried out only through the CaaS Service. To manage all the services and databases needed to expose and use clusters via Web services, VMware virtual machines were used. Figure 7.18 shows the complete test environment with the contents of each virtual machine. All virtual machines have 512 MB of virtual memory and run the Windows Server 2003. All virtual machines run .NET 2.0; the CaaS virtual machine runs .NET 3.5.

[bookmark: page459]7.5	PROOF OF CONCEPT 214213
[image:]

	
	
	

	Client System
	Web Browser
	

	
	
	

	
	
	

	CaaS System
	Temp File Store
	CaaS Service

	
	
	

	
	
	

	Dynamic Broker
	
	

	
	Database
	Dynamic Broker

	System
	
	

	
	
	

	Publisher Web
	
	Publisher Web

	Service System
	Connector
	

	
	
	

	{VMware VM}
	
	

	Cluster
	Deakin
	

FIGURE 7.18. Complete CaaS environment.

The first virtual machine is the Publisher Web service system. It contains the Connector, Publisher Web service [17], and all required software libraries. The Dynamic Broker virtual machine contains the Broker and its database. The final virtual machine is the CaaS virtual machine; it has the CaaS Service and a temporary data store. To improve reliability, all file transfers between the cluster and the client are cached. The client system is an Asus Notebook with 2 gigabytes of memory and an Intel Centrino Duo processor, and it runs the Windows XP operating system.

Cluster Behind the CaaS

The cluster used in the proof of concept consists of 20 nodes plus two head nodes (one running Linux and the other running Windows). Each node in the cluster has two Intel Cloverton Quad Core CPUs running at 1.6 GHz, 8 gigabytes of memory, and 250 gigabytes of data storage, and all nodes are connected via gigabit Ethernet and Infiniband. The head nodes are the same except they have 1.2 terabytes of data storage.

In terms of middleware, the cluster was constructed using Sun GridEngine [20], OpenMPI [21], and Ganglia [22]. GridEngine provided a high level of abstraction where jobs were placed in a queue and then allocated to cluster nodes based on policies. OpenMPI provided a common distribute application

[bookmark: page460]7.5	PROOF OF CONCEPT 215213

API that hid the underlying communication system. Finally, Ganglia provided easy access to current cluster node usage metrics.

[bookmark: page461]7.5	PROOF OF CONCEPT 216213

Even though there is a rich set of software middleware, the use of the middleware itself is complex and requires invocation from command line tools. In this proof of concept, it is expected that all the list middleware will be abstracted so clients only see the cluster as a large supercomputer and do not have to know about the middleware.

Experiments and Results

The first experiment was the publication of the cluster to the publisher Web service and easily discovering the cluster via the Dynamic Broker. For this experiment, a gene folding application from UNAFold [23] was used. The application was used because it had high CPU and memory demands. To keep consistency between results from the publisher Web service and Dynamic Broker, the cluster Connector was instructed to log all its actions to a text file to later examination.

Figure 7.19 shows that after starting the Connector, the Connector was able to learn of cluster node metrics from Ganglia, organize the captured Ganglia metrics into attributes, and forwarded the attributes to the Publisher Web service.

Figure 7.20 shows that the data from the Connector was also being presented in the stateful WSDL document. As the Connector was detecting slight changes in the cluster (created from the management services), the stateful WSDL of the cluster Web service was requested and the same information was found in the stateful WSDL document.

22/01/2009 1:51:52 PM-Connector[Update]:

Passing 23 attribute updates to the web service...

Updating west-03.eit.deakin.edu.au-state in free-memory to 7805776

Updating west-03.eit.deakin.edu.au-state in ready-queue-last-five-minutes to 0.00
...	Other attribute updates from various cluster nodes...

FIGURE 7.19. Connector output.

[bookmark: page462]7.5	PROOF OF CONCEPT 217213

<rvwi:state rvwi:element-identifier= "resource-state">

<cluster-state>

<west-03.eit.deakin.edu.au free-memory="7805776" />

...Other Cluster Node Entries...

</cluster-state>

...Rest of Stateful WSDL...

FIGURE 7.20. Updated WSDL element.

[bookmark: page463]7.5	PROOF OF CONCEPT 218213

In the consistency stage, a computational and memory intense job was started on a randomly selected node and the stateful WSDL of the Publisher Web service requested to see if the correct cluster node was updated. The WSDL document indicated that node 20 was running the job (Figure 7.21). This was confirmed when the output file of the Connector was examined. As the cluster changed, both the Connector and the Publisher Web service were kept current.

After publication, the Dynamic Broker was used to discover the newly published Web service. A functional attribute of {main: 5 monitor} was specified for the discovery. Figure 7.22 shows the Dynamic Broker discovery results with the location of the Publisher Web service and its matching dynamic attribute.

At this point, all the cluster nodes were being shown because no requirements on the state nor the characteristics of the cluster were specified. The purpose of the selection stage of this experiment is intended to ensure that when given client attribute values, the Dynamic Broker only returned matching attribute.

For this stage, only loaded cluster nodes were required; thus a state attribute value of {cpu_usage_percent: >10} was specified. Figure 7.23 shows the Dynamic Broker results only indicating node 20 as a loaded cluster node.

<west-20.eit.deakin.edu.au cpu-system-usage="1.5" cpu-usage-percent="16.8" free-memory="12104"

memory-free-percent="0.001489594" />

FIGURE 7.21. Loaded cluster node	element.

<ArrayOfServiceMatch>

<ServiceMatch>

<Url >http://einstein/rvws/rvwi_cluster / ClusterMonitorService.asmx</Url>

<Wsdl>...Service Stateful WSDL...</Wsdl>

[bookmark: page464]7.5	PROOF OF CONCEPT 219213

<Metadata>

<service-meta>

<Functionalty main="monitor" />

...Other Provider Attributes...

</service-meta>

</Metadata>

</ServiceMatch>

</ArrayOfServiceMatch>

FIGURE 7.22. Service match results from dynamic	broker.

[bookmark: page465]7.5	PROOF OF CONCEPT 220213

<west-20.eit.deakin.edu.au

cpu-usage-percent="64.3" />

FIGURE 7.23. The only state element returned.

<west-03.eit.deakin.edu.au cpu-usage-percent="12.5" />

<west-20.eit.deakin.edu.au cpu-usage-percent="63" />

FIGURE 7.24. Cluster nodes returned from the broker.

The final test was to load yet another randomly selected cluster node. This time, the cluster node was to be discovered using only the Dynamic Broker and without looking at the Connector or the Publisher Web service. Once a job was placed on a randomly selected cluster node, the Dynamic Broker was queried with the same attribute values that generated Figure 7.23.

Figure 7.24 shows the Dynamic Broker results indicating node 3 as a loaded cluster node. Figure 7.25 shows an excerpt from the Connector text file that confirmed that node 3 had recently changed state.

Figure 7.26 shows the filled-in Web form from the browser. Figure 7.27 shows the outcome of our cluster discovery. This outcome is formatted like that shown in Figure 7.14. As the cluster was now being successfully published, it was possible to test the rest of the CaaS solution.

Figure 7.26 shows the filled in Web form from the browser. Figure 7.27 shows the outcome of our cluster discovery, formatted like that shown in Figure 7.14. Because only the Deakin cluster was present, that cluster was chosen to run our job. For our example job, we specified the script, data files, and a desired return file.

Figure 7.28 shows the complete form. For this proof of concept, the cluster job was simple: Run UNIX grep over a text file and return another text file with lines that match our required pattern. While small, all the functionality of the CaaS service is used: The script and data file had to be uploaded and then submitted, to the scheduler, and the result file had to be returned.

Onceourjobwas specified, clicking the “Submit” buttonwas expectedtoupload the files to the CaaS virtual machine and then transfer the files to the cluster. Once

[bookmark: page466]7.5	PROOF OF CONCEPT 221213

the page in Figure 7.29 was presented to us, we examined both the CaaS virtual machine and cluster data store. In both cases, we found our script and data file.

After seeing the output of the Job Monitoring page, we contacted the cluster and queried the scheduler to see if information on the page was correct. The job listed on the page was given the ID of 3888, and we found the same job listed as running with the scheduler.

One final test was seeing if the Job Monitoring Web page was able to check the state of our job and (if finished) allows us to collect our result file. We got confirmation that our job had completed, and we were able to proceed to the Results Collection page.

[bookmark: page467]7.5	PROOF OF CONCEPT 222213

22/01/2009 2:00:58 PM-Connector[Update]:

Passing 36 attribute updates to the web service...

* Updating west-03.eit.deakin.edu.au-state in cpu-usage-percent to 12.5

FIGURE 7.25. Text file entry from the	connector.

Section A: Hardware

	Number of Nodes:
	20
	
	
	
	

	
	
	
	
	
	

	
	8130000
	Gigabyte
	
	

	Amount of Memory:
	
	
	
	
	

	
	7400000
	Gigabyte
	
	

	
	
	
	
	
	

	
	
	Gigabyte
	
	

	Free Memory:
	
	32-bit
	
	
	GigaHertz

	Disk Free:
	
	
	
	
	

	
	
	
	
	
	

[image:][image:][image:][image:][image:]
CPU:

Section B: Software

	Operating System:
	Any Linux

FIGURE 7.26. Cluster specification.

[bookmark: page468]7.5	PROOF OF CONCEPT 223213

	
	
	
	
	
	
	Hardware
	
	
	
	
	
	
	
	Software

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Cluster
	Nodes
	Mem.
	Amount
	Mem. Free
	Disk
	Free
	CPU Archi.
	CPU Speed
	
	
	OS Name
	OS Ver.
	OS Archi.
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	–
	

	Deakin
	
	20
	
	
	9
	3
	–
	
	9
	–
	
	20
	
	
	–

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[image:]
FIGURE 7.27. Cluster selection.

Section B: Job File Submission
[image:]

	Executible:
	
	
	Browse_

	
	
	
	

	
	
	
	

	Script:
	
	C:\collection\execution.s
	Browse_

	
	
	
	

	
	
	

	
	Data Files:
	C:\collection\data.zip
	Browse_

	
	
	
	

	
	
	

	
	Name of Output File:
	cats.txt
	

	
	
	
	

[image:][image:]
FIGURE 7.28. Job specification.

[bookmark: page469]7.5	PROOF OF CONCEPT 224213

Section A: Submission Outcome

Outcome: Your job 38888 (”execution.sh”) has been submitted

Job ID: 38888

	
	26/05/2009 10:39:03 AM: You job is still running.

	Report:
	26/05/2009 10:39:55 AM: You job appears to have finished.

	
	26/05/2009 10:39:55 AM: Please collect your result files.

	
	

FIGURE 7.29. Job monitoring.

Section B: Result File Download

HTTP:	cats.txt

FTP:

FIGURE 7.30. Result collection.

The collection of result file(s) starts when the “Collect Results” button (shown in Figure 7.16) is clicked. It was expected that by this time the result file would have been copied to the CaaS virtual machine. Once the collection Web page was displayed (Figure 7.30), we checked the virtual machine and found our results file.

FUTURE RESEARCH DIRECTIONS

In terms of future research for the RVWS framework and CaaS technology, the

[bookmark: page470]7.5	PROOF OF CONCEPT 225213

fields of load management, security, and SLA negotiation are open. Load management is a priority because loaded clusters should be able to offload their jobs to other known clusters. In future work, we plan to expose another cluster using the same CaaS technology and evaluate its performance with two clusters.

At the time of writing, the Dynamic Broker within the RVWS framework considers all published services and resources to be public: There is no support for paid access or private services. In the future, the RVWS framework has to be enhanced so that service providers have greater control over how services are published and who accesses them.

SLA negotiation is also a field of interest. Currently, if the Dynamic Broker cannot find matching services and resources, the Dynamic Broker returns no results. To better support a service-based environment, the Dynamic Broker needs to be enhanced to allow it to delegate service attributes with service providers. For example, the Dynamic Broker needs to be enhanced to try and “barter” down the price of a possible service if it matches all other requirements.

[bookmark: page471]REFERENCES	219

CONCLUSION

While cloud computing has emerged as a new economical approach for sourcing organization IT infrastructures, cloud computing is still in its infancy and suffers from poor ease of use and a lack of service discovery. To improve the use of clouds, we proposed the RVWS framework to improve publication, discovery, selection, and use of cloud services and resources.

We have achieved the goal of this project by the development of a technology for building Cluster as a Service (CaaS) using the RVWS framework. Through the combination of dynamic attributes, Web service’s

WSDL and brokering, we successfully created a Web service that quickly and easily published, discovered, and selected a cluster and allowed us to specify a job and we execute it, and we finally got the result file back.

The easy publication, discovery, selection, and use of the cluster are significant outcomes because clusters are one of the most complex resources in computing. Because we were able to simplify the use of a cluster, it is possible to use the same approach to simplify any other form of resource from databases to complete hardware systems. Furthermore, our proposed solution provides a new higher level of abstraction for clouds that supports cloud users. No matter the background of the user, all users are able to access clouds in the same easy-to-use manner.

REFERENCES

M. Brock and A. Goscinski, State aware WSDL, in Sixth Australasian Symposiumon Grid Computing and e-Research (AusGrid 2008). Wollongong, Australia, 82,January 2008, pp. 35—44.

M. Brock and A. Goscinski, Publishing dynamic state changes of resources through state aware WSDL, in International Conference on Web Services(ICWS) 2008. Beijing, September 23—26, 2008, pp. 449—456.

Amazon, Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/, 1 August 2009.

	4.
	Microsoft, Azure, http://www.microsoft.com/azure/default.mspx, 5 May 2009.

	5.
	Google, App Engine. http://code.google.com/appengine/, 17 February 2009.

P. Chaganti, Cloud computing with Amazon Web services, Part 1: Introduction. Updated 15 March 2009, http://www.ibm.com/developerworks/library/ ar-cloudaws1/.

P. Chaganti, Cloud computing with Amazon Web services, Part 2: Storage in the cloud with Amazon simple storage service (S3). Updated 15 March 2009, http://www.ibm.com/developerworks/library/ar-cloudaws2/.

P. Chaganti, Cloud computing with Amazon Web services, Part 3: Servers on demand with EC2. Updated 15 March 2009, http://www.ibm.com/developer-works/library/ar-cloudaws3/.

Amazon, Amazon Machine Images. http://developer.amazonwebservices.com/

[bookmark: page472]connect/kbcategory.jspa?categoryID 5 171, 28 July 2009.

[bookmark: page473]
10.	Amazon, Auto Scaling. http://aws.amazon.com/autoscaling/, 28 July	2009.

Amazon, Auto Scaling Developer Guide. Updated 15 May 2009, http://docs. amazonwebservices.com/AutoScaling/latest/DeveloperGuide/, 28 July 2009.

Amazon, Elastic Load Balancing Developer Guide. Updated 15 May 2009, http:// docs.amazonwebservices.com/ElasticLoadBalancing/latest/DeveloperGuide/, 28 July 2009.

Amazon, Amazon EC2 Technical FAQ. http://developer.amazonwebservices.com/ connect/entry.jspa?externalID=1145, 15 May 2009.

A. Skonnard, A Developer’s Guide to the Microsoft .NET Service Bus. December 2008.

M. Mealling and R. Denenberg, Uniform resource identifiers (URIs), URLs, and uniform resource names (URNs): Clarifications and recommendations, http:// tools.ietf.org/html/rfc3305, 28 June 2009.

Salesforce.com, CRM—salesforce.com, http://www.salesforce.com/.

M. Brock and A. Goscinski, Supporting service oriented computing with distributed brokering and dynamic WSDL, Computing Series, 8 December, 2008, Technical Report, C08/05, Deakin University. 2008.

World Wide Web Consortium, Web Services Description Language (WSDL)

Version 2.0. Updated 23 May 2007, http://www.w3.org/TR/wsdl20-primer/, 21 June 2007.

T. Gal, sharpSSH—A secure shell (SSH) library for .NET. Updated 30 October 2005, http://www.codeproject.com/KB/IP/sharpssh.aspx, 1 March 2009.

20.	Sun Microsystems, GridEngine, http://gridengine.sunsource.net/, 9 March	2009.

Indiana University, Open MPI: Open source high performance computing. Updated 14 July 2009, http://www.open-mpi.org/, 31 August 2009.

Ganglia, Ganglia. Updated 9 September 2008, http://ganglia.info/, 3 November 2008.

M. Zuker and N. R. Markham, UNAFold. Updated 18 January 2005, http:// dinamelt.bioinfo.rpi.edu/unafold/, 1 April 2009.

Google, Developer’s Guide—Google App Engine. http://code.google.com/ appengine/docs/, 28 June 2009.

[bookmark: page474]
CHAPTER 8

SECURE	DISTRIBUTED	DATA
STORAGE IN CLOUD COMPUTING

YU CHEN, WEI-SHINN KU, JUN FENG, PU LIU, and ZHOU SU

INTRODUCTION

Cloud computing has gained great attention from both industry and academia since 2007. With the goal of providing users more flexible services in a transparent manner, all services are allocated in a “cloud” that actually is a collection of devices and resources connected through the Internet. One of the core services provided by cloud computing is data storage. This poses new challenges in creating secure and reliable data storage and access facilities over remote service providers in the cloud. The security of data storage is one of the necessary tasks to be addressed before the blueprint for cloud computing is accepted.

In the past decades, data storage has been recognized as one of the main concerns of information technology. The benefits of network-based applications have led to the transition from server-attached storage to distributed storage. Based on the fact that data security is the foundation of information security, a great quantity of efforts has been made in the area of distributed storage security [1—3]. However, this research in cloud computing security is still in its infancy .

One consideration is that the unique issues associated with cloud computing security have not been recognized. Some researchers think that cloud computing security will not be much different from existing security practices

[bookmark: page475]and that the security aspects can be well-managed using existing techniques such as digital signatures, encryption, firewalls, and/or the isolation of virtual environments, and so on . For example, SSL (Secure Sockets Layer) is a protocol that provides reliable secure communications on the Internet for things such as Web browsing, e-mail, instant messaging, and other data transfers.

Cloud Computing: Principles and Paradigms, Edited by Rajkumar Buyya, James Broberg andAndrzej Goscinski Copyright r 2011 John Wiley & Sons, Inc.

221

[bookmark: page476]8.2	CLOUD STORAGE: FROM LANs TO WANs 222223

Another consideration is that the specific security requirements for cloud computing have not been well-defined within the community. Cloud security is an important area of research. Many consultants and security agencies have issued warnings on the security threats in the cloud computing model . Besides, potential users still wonder whether the cloud is secure. There are at least two concerns when using the cloud. One concern is that the users do not want to reveal their data to the cloud service provider. For example, the data could be sensitive information like medical records. Another concern is that the users are unsure about the integrity of the data they receive from the cloud. Therefore, within the cloud, more than conventional security mechanisms will be required for data security.

This chapter presents the recent research progress and some results of secure distributed data storage in cloud computing. The rest of this chapter is organized as follows. Section 8.2 indicates the results of the migration from traditional distributed data storage to the cloud-computing-based data storage platform. Aside from discussing the advantages of the new technology, we also illustrate a new vulnerability through analyzing three current commercial cloud service platforms. Section 8.3 presents technologies for data security in cloud computing from four different perspectives:

Database Outsourcing and Query Integrity	Assurance

Data Integrity in Untrustworthy Storage

Web-Application-Based Security

Multimedia Data Security Storage

Section 8.4 discusses some open questions and existing challenges in this area and outlines the potential directions for further research. Section 8.5 wraps up this chapter with a brief summary.

CLOUD STORAGE: FROM LANs TO	WANs

Cloud computing has been viewed as the future of the IT industry. It will be a revolutionary change in computing services. Users will be allowed to purchase CPU cycles, memory utilities, and information storage services conveniently just like how we pay our monthly water and electricity bills. However, this image will not become realistic until some challenges have been addressed. In this section, we will briefly introduce the major difference brought by distributed data storage in cloud computing environment. Then, vulnerabilities in today’s cloud computing platforms are analyzed and illustrated.

Moving From LANs to WANs

[bookmark: page477]8.2	CLOUD STORAGE: FROM LANs TO WANs 223223

Most designs of distributed storage take the form of either storage area networks (SANs) or network-attached storage (NAS) on the LAN level, such

[bookmark: page478]

	Download from Wow! eBook <www.wowebook.com>

8.2	CLOUD STORAGE: FROM LANs TO WANs 224223

as the networks of an enterprise, a campus, or an organization. SANs are constructed on top of block-addressed storage units connected through dedicated high-speed networks. In contrast, NAS is implemented by attaching specialized file servers to a TCP/IP network and providing a file-based interface to client machine . For SANs and NAS, the distributed storage nodes are managed by the same authority. The system administrator has control over each node, and essentially the security level of data is under control. The reliability of such systems is often achieved by redundancy, and the storage security is highly dependent on the security of the system against the attacks and intrusion from outsiders. The confidentiality and integrity of data are mostly achieved using robust cryptographic schemes.

However, such a security system would not be robust enough to secure the data in distributed storage applications at the level of wide area net works, specifically in the cloud computing environment. The recent progress of network technology enables global-scale collaboration over heterogeneous networks under different authorities. For instance, in a peer-to-peer (P2P) file sharing environment, or the distributed storage in a cloud computing environment, the specific data storage strategy is transparent to the user . Furthermore, there is no approach to guarantee that the data host nodes are under robust security protection. In addition, the activity of the medium owner is not controllable to the data owner. Theoretically speaking, an attacker can do whatever she wants to the data stored in a storage node once the node is compromised. Therefore, the confidentiality and the integrity of the data would be violated when an adversary controls a node or the node administrator becomes malicious.

Existing Commercial Cloud Services

As shown in Figure 8.1, data storage services on the platform of cloud computing are fundamentally provided by applications/software based on the Internet. Although the definition of cloud computing is not clear yet, several pioneer commercial implementations have been constructed and opened to the public, such as Amazon’s Computer Cloud AWS (Amazon Web service) , the Microsoft Azure Service Platform , and the Google App Engine (GAE) .

In normal network-based applications, user authentication, data confidentiality, and data integrity can be solved through IPSec proxy using encryption and digital signature. The key exchanging issues can be solved by

SSL proxy. These methods have been applied to today’s cloud computing to secure the data on the cloud and also secure the communication of data to and from the cloud. The service providers claim that their services are secure. This section describes three secure methods used in three commercial cloud services and discusses their vulnerabilities.

Amazon’s Web Service. Amazon provides Infrastructure as a Service (IaaS)with different terms, such as Elastic Compute Cloud (EC2), SimpleDB, Simple

[bookmark: page479]8.2	CLOUD STORAGE: FROM LANs TO WANs 225223

Mobile	Laptop	Station
[image:]

	Cloud
	Cloud

	
	

SaaS

PaaS

IaaS

Internet
[image:]

Storage Server Farm
[image:]

FIGURE 8.1. Illustration of cloud computing	principle.
[image:][image:][image:]

User	Service Provider
[image:]
[bookmark: page480]8.2	CLOUD STORAGE: FROM LANs TO WANs 226223
[image:]

Create a job Get the manifest file

Verify the manifest file with received signature

Sign the manifest file Email the manifest file

Operate as the file demand
[image:]

	Ship the device with
	
	
	Ship the device,

	signed file
	
	In One Session
	email the
	
	log with MD5

	
	
	
	
	
	
	

[image:]

FIGURE 8.2. AWS data processing	procedure.

Storage Service (S3), and so on. They are supposed to ensure the confidentiality, integrity, and availability of the customers’ applications and data. Figure

presents one of the data processing methods adopted in Amazon’s AWS , which is used to transfer large amounts of data between the AWS cloud and portable storage devices.

[bookmark: page481]8.2	CLOUD STORAGE: FROM LANs TO WANs 227223

When the user wants to upload the data, he/she stores some parameters such as AccessKeyID, DeviceID, Destination, and so on, into an import metadata file called the manifest file and then signs the manifest file and e-mails the signed manifest file to Amazon. Another metadata file named the signature file is used by AWS to describe the cipher algorithm that is adopted to encrypt the job ID and the bytes in the manifest file. The signature file can uniquely identify and authenticate the user request. The signature file is attached with the storage device, which is shipped to Amazon for efficiency. On receiving the stor age device and the signature file, the service provider will validate the signature in the device with the manifest file sent through the email. Then, Amazon will e - mail management information back to the user including the number of bytes saved, the MD5 of the bytes, the status of the load, and the location on the Amazon S3 of the AWS Import—Export Log. This log contains details about the data files that have been uploaded, including the key names, number of bytes, and MD5 checksum values.

The downloading process is similar to the uploading process. The user creates a manifest and signature file, e-mails the manifest file, and ships the storage device attached with signature file. When Amazon receives these two files, it will validate the two files, copy the data into the storage device, ship it back, and e-mail to the user with the status including the MD5 checksum of the data. Amazon claims that the maximum security is obtained via SSL endpoints.

Microsoft Windows Azure. The Windows Azure Platform (Azure) is anInternet-scale cloud services platform hosted in Microsoft data centers, which provides an operating system and a set of developer services that can be used individually or together . The platform also provides scalable storage service. There are three basic data items: blobs (up to 50 GB), tables, and queues (,8k). In the Azure Storage, based on the blob, table, and queue structures,

Microsoft promises to achieve confidentiality of the users’ data. The procedure shown in Figure 8.3 provides security for data accessing to ensure that the data will not be lost.

	ContentMD5

	Create

[bookmark: page482]
	a Account
	
	
	Secret Key
	

	
	
	
	
	

	Create
	
	
	Get the
	

	
	
	
	
	

8.2	CLOUD STORAGE: FROM LANs TO WANs 228223
[image:]

	Create Signature
	
	PUT

	
	GET
	Cloud Storage

	
	
	

	Data with MD5
	
	

FIGURE 8.3. Security data access	procedure.

[bookmark: page483]8.2	CLOUD STORAGE: FROM LANs TO WANs 229223

PUT http://jerry.blob.core.windows.net/movie/mov.avi

?comp=block &blockid=BlockId1 &timeout=30 HTTP/1.1 Content-Length: 2174344

Content-MD5: FJXZLUNMuI/KZ5KDcJPcOA==

Authorization:SharedKeyjerry:F5a+dUDvef+PfMb4T8Rc2jHcwfK58KecSZY+l2naIao= x-

GET http://jerry.blob.core.windows.net/movies/mov.avi HTTP/1.1

Authorization:SharedKeyjerry:ZF3lJMtkOMi4y/nedSk5Vn74IU6/fRMwiPsL+uYSDjY= x-ms-date: Sun, 13 Sept 2009 22:40:34 GMT

FIGURE 8.4. Example of a REST	request.

To use Windows Azure Storage service, a user needs to create a storage account, which can be obtained from the Windows Azure portal web interface. After creating an account, the user will receive a 256-bit secret key. Each time when the user wants to send the data to or fetch the data from the cloud, the user has to use his secret key to create a HMAC SHA256 signature for each individual request for identification. Then the user uses his signature to authenticate request at server. The signature is passed with each request to authenticate the user requests by verifying the HMAC signature.

The example in Figure 8.4 is a REST request for a PUT/GET block operation . Content-MD5 checksums can be provided to guard against network transfer errors and data integrity. The Content-MD5 checksum in the PUT is the MD5 checksum of the data block in the request. The MD5 checksum is checked on the server. If it does not match, an error is returned. The content length specifies the size of the data block contents. There is also an authorization header inside the HTTP request header as shown above in Figure 8.4.

At the same time, if the Content-MD5 request header was set when the blob has been uploaded, it will be returned in the response header. Therefore, the user can check for message content integrity. Additionally, the secure HTTP connection is used for true data integrity .

Google App Engine (GAE). The Google App Engine (GAE) provides apowerful distributed data storage service that features a query engine and

[bookmark: page484]8.2	CLOUD STORAGE: FROM LANs TO WANs 230223

transactions. An independent third-party auditor, who claims that GAE can be secure under the SAS70 auditing industry standard, issued Google Apps an unqualified SAS70 Type II certification. However, from its on-line storage

[bookmark: page485]8.2	CLOUD STORAGE: FROM LANs TO WANs 231223

Encrypted SDC Tunnel
[image:]
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	Google Apps
	
	
	Tunnel Servers
	Internet
	Corporate Firewall
	
	Secure Data Connector
	
	
	Optional Firewall
	
	WebService, API Server

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	FIGURE 8.5. Illustration of Google SDC working
	flow.
	
	

[image:][image:]

technical document of lower API , there are only some functions such as GET and PUT. There is no content addressing the issues of securing storage services. The security of data storage is assumed guaranteed using techniques such as by SSL link, based on our knowledge of security method adopted by other services.

Figure 8.5 is one of the secure services, called Google Secure Data Connector (SDC), based on GAE . The SDC constructs an encrypted connection between the data source and Google Apps. As long as the data source is in the Google Apps domain to the Google tunnel protocol servers, when the user wants to get the data, he/she will first send an authorized data requests to Google Apps, which forwards the request to the tunnel server. The tunnel servers validate the request identity. If the identity is valid, the tunnel protocol allows the SDC to set up a connection, authenticate, and encrypt the data that flows across the Internet. At the same time, the SDC uses resource rules to validate whether a user is authorized to access a specified resource. When the request is valid, the SDC performs a network request. The server validates the signed request, checks the credentials, and returns the data if the user is authorized.

The SDC and tunnel server are like the proxy to encrypt connectivity between Google Apps and the internal network. Moreover, for more security, the SDC uses signed requests to add authentication information to requests that are made through the SDC. In the signed request, the user has to submit identification information including the owner_id, viewer_id, instance_id,

[bookmark: page486]8.2	CLOUD STORAGE: FROM LANs TO WANs 232223

app_id, public_key, consumer_key, nonce, token, and signature within the request to ensure the integrity, security, and privacy of the request.

Vulnerabilities in Current Cloud Services

Previous subsections describe three different commercial cloud computing secure data storage schemes. Storage services that accept a large amount of data (.1 TB) normally adopt strategies that help make the shipment more convenient, just as the Amazon AWS does. In contrast, services that only

[bookmark: page487]8.2	CLOUD STORAGE: FROM LANs TO WANs 233223

accept a smaller data amount (#50 GB) allow the data to be uploaded or downloaded via the Internet, just as the Azure Storage Service does. To provide data integrity, the Azure Storage Service stores the uploaded data MD5 checksum in the database and returns it to the user when the user wants to retrieve the data. Amazon AWS computes the data MD5 checksum and e-mails it to the user for integrity checking. The SDC is based on GAE’s attempt to strengthen Internet authentication using a signed request. If these services are grouped together, the following scheme can be derived.

As shown in Figure 8.6, when user_1 stores data in the cloud, she can ship or send the data to the service provider with MD5_1. If the data are transferred through the Internet, a signed request could be used to ensure the privacy, security, and integrity of the data. When the service provider receives the data and the MD5 checksum, it stores the data with the corresponding checksum (MD5_1). When the service provider gets a verified request to retrieve the data from another user or the original user, it will send/ship the data with a MD5 checksum to the user. On the Azure platform, the original checksum MD5_1will be sent, in contrast, a re-computed checksum MD5_2 is sent on

Amazon’s AWS.

The procedure is secure for each individual session. The integrity of the data during the transmission can be guaranteed by the SSL protocol applied. However, from the perspective of cloud storage services, data integrity depends on the security of operations while in storage in addition to the security of the uploading and downloading sessions. The uploading session can only ensure that the data received by the cloud storage is the data that the user uploaded; the downloading session can guarantee the data that the user retrieved is the data cloud storage recorded. Unfortunately, this procedure applied on cloud storage services cannot guarantee data integrity.

To illustrate this, let’s consider the following two scenarios. First, assume that Alice, a company CFO, stores the company financial data at a cloud storage service provided by Eve. And then Bob, the company administration chairman, downloads the data from the cloud. There are three important concerns in this simple procedure:
[image:]

MD5_1	MD5_1/2

	[bookmark: page488]USER1
	
	USER2

	
	
	

[image:]

8.2	CLOUD STORAGE: FROM LANs TO WANs 234223

Cloud Service

FIGURE 8.6. Illustration of potential integrity	problem.

[bookmark: page489]CLOUD STORAGE: FROM LANs TO WANs 235223

Confidentiality. Eve is considered as an untrustworthy third party, Alice

and Bob do not want reveal the data	to Eve.

Integrity. As the administrator of the storage service, Eve has the capability to play with the data in hand. How can Bob be confident that the data he fetched from Eve are the same as what was sent by Alice? Are there any measures to guarantee that the data have not been tampered by Eve?

Repudiation. If Bob finds that the data have been tampered with, is there any evidence for him to demonstrate that it is Eve who should be responsible for the fault? Similarly, Eve also needs certain evidence to prove her innocence.

Recently, a potential customer asked a question on a cloud mailing-group regarding data integrity and service reliability. The reply from the developer was “Wewon’tlose your data—we have a robust backup and recovery strategy—but we’re not responsible for you losing your own data . . .”. Obviously, it is notpersuasive to the potential customer to be confident with the service.

The repudiation issue opens a door for potentially blackmailers when the user is malicious. Let’s assume that Alice wants to blackmail Eve. Eve is a cloud storage service provider who claims that data integrity is one of their key features. For that purpose, Alice stored some data in the cloud, and later she downloaded the data. Then, she reported that her data were incorrect and that it is the fault of the storage provider. Alice claims compensation for her socalled loss. How can the service provider demonstrate her innocence?

Confidentiality can be achieved by adopting robust encryption schemes. However, the integrity and repudiation issues are not handled well on the current cloud service platform. One-way SSL session only guarantees one-way integrity. One critical link is missing between the uploading and downloading sessions: There is no mechanism for the user or service provider to check whether the record has been modified in the cloud storage. This vulnerability leads to the following questions:

Upload-to-Download Integrity. Since the integrity in uploading and downloading phase are handled separately, how can the user or provider know the data retrieved from the cloud is the same data that the user uploaded previously?

Repudiation Between Users and Service Providers. When data errors

happen without transmission errors in the uploading and downloading sessions, how can the user and service provider prove their innocence?

Bridge the Missing Link

[bookmark: page490]8.2	CLOUD STORAGE: FROM LANs TO WANs 236223

This section presents several simple ideas to bridge the missing link based on digital signatures and authentication coding schemes. According to whether

	[bookmark: page491]8.2 CLOUD STORAGE: FROM LANs TO WANs
	231

there is a third authority certified (TAC) by the user and provider and whether the user and provider are using the secret key sharing technique (SKS), there

	are
	four solutions to bridge the missing link of data integrity between

	the
	uploading and downloading procedures. Actually, other digital signature

technologies can be adopted to fix this vulnerability with different	approaches.

Neither TAC nor SKS.

Uploading Session

User: Sends data to service provider with MD5 checksum and MD5Signature by User (MSU).

Service Provider: Verifies the data with MD5 checksum, if it is valid, theservice provider sends back the MD5 and MD5 Signature by Provider (MSP) to user.

MSU is stored at the user side, and MSP is stored at the service provider side.

Once the uploading operation finished, both sides agreed on the integrity of the uploaded data, and each side owns the MD5 checksum and MD5 signature generated by the opposite site.

Downloading Session

1. User: Sends request to service provider with authentication	code.

Service Provider: Verifies the request identity, if it is valid, the serviceprovider sends back the data with MD5 checksum and MD5 Signature by Provider (MSP) to user.

User verifies the data using the MD5 checksum.

When disputation happens, the user or the service provider can check the MD5 checksum and the signature of MD5 checksum generated by the opposite side to prove its innocence. However, there are some special cases that exist. When the service provider is trustworthy, only MSU is needed; when the user is trustworthy, only MSP is needed; if each of them trusts the other side, neither MSU nor MSP is needed. Actually, that is the current method adopted in cloud computing platforms. Essentially, this approach implies that when the identity is authenticated that trust is established.

With SKS but without TAC.

Uploading Session

	[bookmark: page492]8.2 CLOUD STORAGE: FROM LANs TO WANs
	231

1. User: Sends data to service provider with MD checksum	5.

Service Provider: Verifies the data with MD5 checksum, if it is valid, theservice provider sends back the MD5 checksum.

3. The service provider and the user share the MD5 checksum with	SKS.

	[bookmark: page493]8.2 CLOUD STORAGE: FROM LANs TO WANs
	231

Then, both sides agree on the integrity of the uploaded data, and they share the agreed MD5 checksum, which is used when disputation happens.

	Downloading Session
	

	1.
	User: Sends request to the service provider with authentication code.

	2.
	Service Provider: Verifies the request identity, if it is valid, the service

	
	provider sends back the data with MD5
	checksum.

	3.
	User verifies the data through the MD5
	checksum.

When disputation happens, the user or the service provider can take the shared MD5 together, recover it, and prove his/her innocence.

With TAC but without SKS.

Uploading Session

User: Sends data to the service provider along with MD5 checksum andMD5 Signature by User (MSU).

Service Provider: Verifies the data with MD5 checksum, if it is valid, theservice provider sends back the MD5 checksum and MD5 Signature by Provider (MSP) to the user.

MSU and MSP are sent to TAC.

On finishing the uploading phase, both sides agree on the integrity of the uploaded data, and TAC owns their agreed MD5 signature.

	Downloading Session
	

	1.
	User: Sends request to the service provider with authentication code.

	2.
	Service Provider: Verifies the request with identity, if it is valid, the service

	
	provider sends back the data with MD5
	checksum.

	3.
	User verifies the data through the MD5
	checksum.

When disputation happens, the user or the service provider can prove his innocence by presenting the MSU and MSP stored at the TAC.

Similarly, there are some special cases. When the service provider is trustworthy, only the MSU is needed; when the user is trustworthy, only the MSP is needed; if each of them trusts the other, the TAC is not needed. Again, the last case is the method adopted in the current cloud computing platforms. When the identity is authenticated, trust is established.

With Both TAC and SKS.

	[bookmark: page494]8.2 CLOUD STORAGE: FROM LANs TO WANs
	231

Uploading Session

1. User: Sends data to the service provider with MD5 checksum. 2. Service Provider: verifies the data with MD5 checksum.

[bookmark: page495]TECHNOLOGIES FOR DATA SECURITY IN CLOUD COMPUTING 232233

Both the user and the service provider send MD5 checksum to TAC.

TAC verifies the two MD5 checksum values. If they match, the TAC

distributes MD5 to the user and the service provider by	SKS.

Both sides agree on the integrity of the uploaded data and share the same MD5 checksum by SKS, and the TAC own their agreed MD5 signatures.

	Downloading Session
	

	1.
	User: Sends request to the service provider with authentication code.

	2.
	Service Provider: Verifies the request identity, if it is valid, the service

	
	provider sends back the data with MD5
	checksum.

	3.
	User verifies the data through the MD5
	checksum.

When disputation happens, the user or the service provider can prove their innocence by checking the shared MD5 checksum together. If the disputation cannot be resolved, they can seek further help from the TAC for the MD5 checksum.

Here are the special cases. When the service provider is trustworthy, only the user needs the MD5 checksum; when the user is trustworthy, only the service provider needs MD5 checksum; if both of them can be trusted, the TAC is not needed. This is the method used in the current cloud computing platform.

TECHNOLOGIES FOR DATA SECURITY IN CLOUD	COMPUTING

This section presents several technologies for data security and privacy in cloud computing. Focusing on the unique issues of the cloud data storage platform, this section does not repeat the normal approaches that provide confidentiality, integrity, and availability in distributed data storage applications. Instead, we select to illustrate the unique requirements for cloud computing data security from a few different perspectives:

●	Database Outsourcing and Query Integrity Assurance. Researchers havepointed out that storing data into and fetching data from devices and machines behind a cloud are essentially a novel form of database outsourcing. Section 8.3.1 introduces the technologies of Database Outsourcing and Query Integrity Assurance on the clouding computing platform.

Data Integrity in Untrustworthy Storage. One of the main challenges thatprevent end users from adopting cloud storage services is the fear of

[bookmark: page496]8.3	TECHNOLOGIES FOR DATA SECURITY IN CLOUD COMPUTING 233233

losing data or data corruption. It is critical to relieve the users’ fear by providing technologies that enable users to check the integrity of their data. Section 8.3.2 presents two approaches that allow users to detect whether the data has been touched by unauthorized people.

[bookmark: page497]TECHNOLOGIES FOR DATA SECURITY IN CLOUD COMPUTING 234233

Web-Application-Based Security. Once the dataset is stored remotely, aWeb browser is one of the most convenient approaches that end users can use to access their data on remote services. In the era of cloud computing, Web security plays a more important role than ever. Section 8.3.3 discusses the most important concerns in Web security and analyzes a couple of widely used attacks.

Multimedia Data Security. With the development of high-speed networktechnologies and large bandwidth connections, more and more multimedia data are being stored and shared in cyber space. The security requirements for video, audio, pictures, or images are different from other applications. Section 8.3.4 introduces the requirements for multimedia data security in the cloud.

Database Outsourcing and Query Integrity Assurance

In recent years, database outsourcing has become an important component of cloud computing. Due to the rapid advancements in network technology, the cost of transmitting a terabyte of data over long distances has decreased significantly in the past decade. In addition, the total cost of data management is five to ten times higher than the initial acquisition costs. As a result, there is a growing interest in outsourcing database management tasks to third parties that can provide these tasks for a much lower cost due to the economy of scale. This new outsourcing model has the benefits of reducing the costs for running Database Management Systems (DBMS) independently and enabling enterprises to concentrate on their main businesses . Figure 8.7 demonstrates the general architecture of a database outsourcing environment with clients. The database owner outsources its data management tasks, and clients send queries to the untrusted service provider. Let T denote the data to be outsourced. The data T are is preprocessed, encrypted, and stored at the service provider. For evaluating queries, a user rewrites a set of queries Q against T to queries against the encrypted database.

The outsourcing of databases to a third-party service provider was first introduced by Hacigu¨ mu¨ s et al. . Generally, there are two security concerns
[image:][image:][image:]

queryRewrite(Q)
DB

[bookmark: page498]8.3	TECHNOLOGIES FOR DATA SECURITY IN CLOUD COMPUTING 235233
[image:][image:]
dataTransform(T)
[image:]

Clients	Query Results

Database Owner

Service Provider

FIGURE 8.7. The system architecture of database	outsourcing.

[bookmark: page499]8.3	TECHNOLOGIES FOR DATA SECURITY IN CLOUD COMPUTING 236233

in database outsourcing. These are data privacy and query integrity. The related research is outlined below.

Data Privacy Protection. Hacigu¨ mu¨ s et al. [37] proposed a method to executeSQL queries over encrypted databases. Their strategy is to process as much of a query as possible by the service providers, without having to decrypt the data. Decryption and the remainder of the query processing are performed at the client side. Agrawal et al. [14] proposed an order-preserving encryption scheme for numeric values that allows any comparison operation to be directly applied on encrypted data. Their technique is able to handle updates, and new values can be added without requiring changes in the encryption of other values. Generally, existing methods enable direct execution of encrypted queries on encrypted datasets and allow users to ask identity queries over data of different encryptions. The ultimate goal of this research direction is to make queries in encrypted databases as efficient as possible while preventing adversaries from learning any
	useful knowledge about the data. However, researches in this
	field
	did not

	consider
	the problem of query
	integrity.
	
	

	Query
	Integrity Assurance.
	In addition to data privacy,
	an
	important

security concern in the database outsourcing paradigm is query integrity. Query integrity examines the trustworthiness of the hosting environment. When a client receives a query result from the service provider, it wants to be assured that the result is both correct and complete, where correct means that the result must originate in the owner’s data and not has been tampered with, and complete means that the result includes all records satisfying the query. Devanbu et al. [15] authenticate data records using the Merkle hash tree [16], which is based on the idea of using a signature on the root of the Merkle hash tree to generate a proof of correctness. Mykletun et al. [17] studied and compared several signature methods that can be utilized in data authentication, and they identified the problem of completeness but did not provide a solution. Pang et al. [18] utilized an aggregated signature to sign each record with the information from neighboring records by assuming that all the records are sorted with a certain order. The method ensures the completeness of a selection query by checking the aggregated signature. But it has difficulties in handling multipoint selection query of which the result tuples occupy a noncontinuous region of the ordered sequence.

The work in Li et al. [19] utilizes Merkle hash tree-based methods to audit the completeness of query results, but since the Merkle hash tree also applies the signature of the root Merkle tree node, a similar difficulty exists. Besides, the network and CPU overhead on the client side can be prohibitively high for some types of queries. In some extreme cases, the overhead could be as high as processing these queries locally, which can undermine the benefits of database outsourcing. Sion [20] proposed a mechanism called the challenge token and uses it as a probabilistic proof that the server has executed the query over the entire database. It can handle arbitrary types of queries including joins and

[bookmark: page500]8.3	TECHNOLOGIES FOR DATA SECURITY IN CLOUD COMPUTING 237233

does not assume that the underlying data is ordered. However, the approach is not applied to the adversary model where an adversary can first compute the complete query result and then delete the tuples specifically corresponding to the challenge tokens [21]. Besides, all the aforementioned methods must modify the DBMS kernel in order to provide proof of integrity.

Recently, Wang et al. [22] proposed a solution named dual encryption to ensure query integrity without requiring the database engine to perform any special function beyond query processing. Dual encryption enables cross-examination of the outsourced data, which consist of (a) the original data stored under a certain encryption scheme and (b) another small percentage of the original data stored under a different encryption scheme. Users generate queries against the additional piece of data and analyze their results to obtain integrity assurance.

For auditing spatial queries, Yang et al [23] proposed the MR-tree, which is an authenticated data structure suitable for verifying queries executed on outsourced spatial databases. The authors also designed a caching technique to reduce the information sent to the client for verification purposes. Four spatial transformation mechanisms are presented in Yiu et al. [24] for protecting the privacy of outsourced private spatial data. The data owner selects transformation keys that are shared with trusted clients, and it is infeasible to reconstruct the exact original data points from the transformed points without the key. However, both aforementioned researches did not consider data privacy protection and query integrity auditing jointly in their design. The state-of-the-art technique that can ensure both privacy and integrity for outsourced spatial data is proposed in Ku et al. . In particular, the solution first employs a one-way spatial transformation method based on Hilbert curves, which encrypts the spatial data before outsourcing and hence ensures its privacy. Next, by probabilistically replicating a portion of the data and encrypting it with a different encryption key, the authors devise a mechanism for the client to audit the trustworthiness of the query results.

Data Integrity in Untrustworthy Storage

While the transparent cloud provides flexible utility of network-based resources, the fear of loss of control on their data is one of the major concerns that prevent end users from migrating to cloud storage services. Actually it is a potential risk that the storage infrastructure providers become self-interested, untrustworthy, or even malicious. There are different motivations whereby a storage service provider could become untrustworthy—for instance, to cover the consequence of a mistake in operation, or deny the vulnerability in the system after the data have been stolen by an adversary. This section introduces two technologies to enable data owners to verify the data integrity while the files are stored in the remote untrustworthy storage services.

Actually, before the term “cloud computing” appears as an IT term, there are several remote data storage checking protocols that have been suggested [25], [26]. Later research has summarized that in practice a remote data

[bookmark: page501]8.3	TECHNOLOGIES FOR DATA SECURITY IN CLOUD COMPUTING 238233

possession checking protocol has to satisfy the following five requirements [27]. Note that the verifier could be either the data owner or a trusted third party, and the prover could be the storage service provider or storage medium owner or system administrator.

Requirement #1. It should not be a pre-requirement that the verifier has topossess a complete copy of the data to be checked. And in practice, it does not make sense for a verifier to keep a duplicated copy of the content to be

verified. As long as it serves the purpose well, storing a more concise contents digest of the data at the verifier should be enough.

Requirement #2. The protocol has to be very robust considering theuntrustworthy prover. A malicious prover is motivated to hide the violation of data integrity. The protocol should be robust enough that such a prover ought to fail in convincing the verifier.

Requirement #3. The amount of information exchanged during the

verification operation should not lead to high communication	overhead.

Requirement #4. The protocol should be computationally efficient.

Requirement #5. It ought to be possible to run the verification anunlimited number of times.

A PDP-Based Integrity Checking Protocol. Ateniese et al. [28] proposed aprotocol based on the provable data procession (PDP) technology, which allows users to obtain a probabilistic proof from the storage service providers. Such a proof will be used as evidence that their data have been stored there. One of the advantages of this protocol is that the proof could be generated by the storage service provider by accessing only a small portion of the whole dataset. At the same time, the amount of the metadata that end users are required to store is also small—that is, O(1). Additionally, such a small amount data exchanging procedure lowers the overhead in the communication channels too.

Figure 8.8 presents the flowcharts of the protocol for provable data possession [28]. The data owner, the client in the figure, executes the protocol to verify that a dataset is stored in an outsourced storage machine as a collection of n blocks. Before uploading the data into the remote storage, the data owner pre-processes the dataset and a piece of metadata is generated. The metadata are stored at the data owner’s side, and the dataset will be transmitted to the storage server. The cloud storage service stores the dataset and sends the data to the user in responding to queries from the data owner in the future.

As part of pre-processing procedure, the data owner (client) may conduct operations on the data such as expanding the data or generating additional metadata to be stored at the cloud server side. The data owner could execute the PDP protocol before the local copy is deleted to ensure that the uploaded copy has been stored at the server machines successfully. Actually, the data owner may encrypt a dataset before transferring them to the storage machines. During the time that data are stored in the cloud, the data owner can generate a

[bookmark: page502]

R

0/1

8.3	TECHNOLOGIES FOR DATA SECURITY IN CLOUD COMPUTING 239233

Client generates metadata (m) and

modified file (F') No server processing

Input file
[image:]
F	[image:] Client [image:] F'	Server

m
[image:]

m	F'[image:]

Client	store	Server store

(a) Pre-process and store

(1) Client generates a random challenge

R
[image:]

(2) Server computes proof of possession P
[image:]
(3) C ent verifies server’s proof l
[image:]
i
[image:]

[bookmark: page503]8.3	TECHNOLOGIES FOR DATA SECURITY IN CLOUD COMPUTING 240233

Client	P

S e r v e r

F'	m
[image:]

m

F'

Client	store	Server store

(b) Verify server possession

FIGURE 8.8. Protocol for provable data possession	[28].

“challenge” and send it to the service provider to ensure that the storage server has stored the dataset. The data owner requests that the storage server generate a metadata based on the stored data and then send it back. Using the previously stored local metadata, the owner verifies the response.

On the behalf of the cloud service provider’s side, the server may receive

	multiple challenges
	from
	different
	users at the
	same time. For the sake

	of availability, it is
	highly
	desired
	to minimize
	not only the computational

[bookmark: page504]8.3	TECHNOLOGIES FOR DATA SECURITY IN CLOUD COMPUTING 241233

overhead of each individual calculation, but also the number of data blocks to be accessed. In addition, considering the pressure on the communication networks, minimal bandwidth consumption also implies that there are a limited amount of metadata included in the response generated by the server. In the protocol shown in Figure 8.8, the PDP scheme only randomly accesses one subdata block when the sample the stored dataset [28]. Hence, the PDP scheme probabilistically guarantees the data integrity. It is mandatory to access the whole dataset if a deterministic guarantee is required by the user.

An Enhanced Data Possession Checking Protocol. Sebe et al. [27]pointed out that the above PDP-based protocol does not satisfy Requirement

#2 with 100% probability. An enhanced protocol has been proposed based on the idea of the Diffie—Hellman scheme. It is claimed that this protocol satisfies all five requirements and is computationally more efficient than the PDP-based protocol [27]. The verification time has been shortened at the setup stage by taking advantage of the trade-offs between the computation times required by the prover and the storage required at the verifier. The setup stage sets the following parameters:

p and q : two primary factors chosen by the	verifier;

N 5 pq: a public RSA modulus created by the verifier;

Φ(N)5(p21)(q21): the private key of the verifier, which is the secret onlyknown by the verifier;

l: an integer that is chosen depending on the trade-offs between thecomputation time required at the prover and the storage required at

	
	the verifier;
	
	
	

	t: a security parameter;
	
	
	

	PRNG: a pseudorandom
	number generator, which generates t-bit integer

	
	values.
	
	
	

	The protocol is presented as
	follows:
	
	

	At first, the verifier generates the digest of data
	m:
	

	1.
	Break the data m into n pieces, each is
	l-bit. Let m1, m2,. ..
	, mn

	
	(n¼ djmj=le) be the integer values corresponding to fragments of
	m.

	2.
	For each fragment mi, compute and store Mi5mi mod Φ(N).
	

The challenge—response verification protocol is as follows:

[bookmark: page505]8.3	TECHNOLOGIES FOR DATA SECURITY IN CLOUD COMPUTING 242233

1. The verifier

generates a random seed S and a random element αAZN \{1, N—1} and sends the challenge (α, S) to the prover.

[bookmark: page506]TECHNOLOGIES FOR DATA SECURITY IN CLOUD COMPUTING 243233

Upon receiving the challenge, the prover:

generates n pseudorandom values ciA [1,2t], for i5 1 to n, using PRNG seeded by S,

	calculates r¼
	Pn
	i¼1 cimiand R 5
	r
	mod N, and

	
	
	
	α
	

sends R to the verifier. 3. The verifier:

regenerates the n pseudorandom values ciA [1,2t], for
	PRNG seeded by S,
	

	calculates r0
	¼
	Pn
	i¼1 cimimodΦ(N) and R ’5αr’

	
	
	
	

checks whether R5R’.

i 51 to n, using

mod N, and

Due to the space constraints, this section only introduces the basic principles and the working flows of the protocols for data integrity checking in untrustworthy storages. The proof of the correctness, security analysis, and the performance analysis of the protocols are left for the interested readers to explore deeper in the cited research papers [25, 26—28].

Web-Application-Based	Security

In cloud computing environments, resources are provided as a service over the Internet in a dynamic, virtualized, and scalable way [29, 30]. Through cloud computing services, users access business applications on-line from a Web browser, while the software and data are stored on the servers. Therefore, in the era of cloud computing, Web security plays a more important role than ever. The Web site server is the first gate that guards the vast cloud resources. Since the cloud may operate continuously to process millions of dollars’ worth of daily on-line transactions, the impact of any Web security vulnerability will be amplified at the level of the whole cloud.

Web attack techniques are often referred as the class of attack. When any Web security vulnerability is identified, attacker will employ those techniques to take advantage of the security vulnerability. The types of attack can be categorized in Authentication, Authorization, Client-Side Attacks, Comm and Execution, Information Disclosure, and Logical Attacks [31]. Due to the limited space, this section introduces each of them briefly. Interested read ers are encouraged to explore for more detailed information from the materials cited.

Authentication. Authentication is the process of verifying a claim that asubject made to act on behalf of a given principal. Authentication attacks target a Web site’s method of validating the identity of a user, service, or application, including Brute Force, Insufficient Authentication, and Weak Password

[bookmark: page507]8.3	TECHNOLOGIES FOR DATA SECURITY IN CLOUD COMPUTING 244233

Recovery Validation. Brute Force attack employs an automated process to guess a person’s username and password by trial and error. In the Insufficient

Authentication case, some sensitive content or functionality are protected by

	[bookmark: page508]8.3 TECHNOLOGIES FOR DATA SECURITY IN CLOUD COMPUTING
	241

“hiding” the specific location in obscure string but still remains accessible directly through a specific URL. The attacker could discover those URLs through a Brute Force probing of files and directories. Many Web sites provide password recovery service. This service will automatically recover the user name or password to the user if she or he can answer some questions defined as part of the user registration process. If the recovery questions are either easily guessed or can be skipped, this Web site is considered to be Weak Password Recovery Validation.

Authorization. Authorization is used to verify if an authenticated subjectcan perform a certain operation. Authentication must precede authorization. For example, only certain users are allowed to access specific content or functionality.

Authorization attacks use various techniques to gain access to protected areas beyond their privileges. One typical authorization attack is caused by Insufficient Authorization. When a user is authenticated to a Web site, it does not necessarily mean that she should have access to certain content that has been granted arbitrarily. Insufficient authorization occurs when a Web site does not protect sensitive content or functionality with proper access control restrictions. Other authorization attacks are involved with session. Those attacks include Credential/Session Prediction, Insufficient Session Expiration, and Session Fixation.

In many Web sites, after a user successfully authenticates with the Web site for the first time, the Web site creates a session and generate a unique “session ID” to identify this session. This session ID is attached to subsequent requests to the Web site as “Proof” of the authenticated session.

Credential/Session Prediction attack deduces or guesses the unique value of a session to hijack or impersonate a user.

Insufficient Session Expiration occurs when an attacker is allowed to reuse old session credentials or session IDs for authorization. For example, in a shared computer, after a user accesses a Web site and then leaves, with Insufficient Session Expiration, an attacker can use the browser’s back button to access Web pages previously accessed by the victim.

Session	Fixation	forces	a	user’s	session	ID	to	an	arbitrary	value	via

CrossSite Scripting or peppering the Web site with previously made HTTP requests. Once the victim logs in, the attacker uses the predefined session ID value to impersonate the victim’s identity.

Client-Side Attacks. The Client-Side Attacks lure victims to click a link in amalicious Web page and then leverage the trust relationship expectations of the victim for the real Web site. In Content Spoofing, the malicious Web page can trick a user into typing user name and password and will then use this information to impersonate the user.

Cross-Site Scripting (XSS) launches attacker-supplied executable code in the victim’s browser. The code is usually written in browser-supported scripting

	[bookmark: page509]8.3 TECHNOLOGIES FOR DATA SECURITY IN CLOUD COMPUTING
	241

languages such as JavaScript, VBScript, ActiveX, Java, or Flash. Since the code will run within the security context of the hosting Web site, the code has the ability to read, modify, and transmit any sensitive data, such as cookies, accessible by the browser.

Cross-Site Request Forgery (CSRF) is a serve security attack to a vulnerable site that does not take the checking of CSRF for the HTTP/HTTPS request. Assuming that the attacker knows the URLs of the vulnerable site which are not protected by CSRF checking and the victim’s browser stores credentials such as cookies of the vulnerable site, after luring the victim to click a link in a malicious Web page, the attacker can forge the victim’s identity and access the vulnerable Web site on victim’s behalf.

Command Execution. The Command Execution attacks exploit server-sidevulnerabilities to execute remote commands on the Web site. Usually, users supply inputs to the Web-site to request services. If a Web application does not properly sanitize user-supplied input before using it within application code, an attacker could alter command execution on the server. For example, if the length of input is not checked before use, buffer overflow could happen and result in denial of service. Or if the Web application uses user input to construct statements such as SQL, XPath, C/C11 Format String, OS system command, LDAP, or dynamic HTML, an attacker may inject arbitrary executable code into the server if the user input is not properly filtered.

Information Disclosure. The Information Disclosure attacks acquire sensitiveinformation about a web site revealed by developer comments, error messages, or well-know file name conventions. For example, a Web server may return a list of files within a requested directory if the default file is not present. This will supply an attacker with necessary information to launch further attacks against the system. Other types of Information Disclosure includes using special paths such as “.” and “..” for Path Traversal, or uncovering hidden

URLs via Predictable Resource Location.

Logical Attacks. Logical Attacks involve the exploitation of a Webapplication’s logic flow. Usually, a user’s action is completed in a multi-step process. The procedural workflow of the process is called application logic. A common Logical Attack is Denial of Service (DoS). DoS attacks will attempt to consume all available resources in the Web server such as CPU, memory, disk space, and so on, by abusing the functionality provided by the Web site. When any one of any system resource reaches some utilization threshold, the Web site will no long be responsive to normal users. DoS attacks are often caused by Insufficient Anti-automation where an attacker is permitted to automate a process repeatedly. An automated script could be executed thousands of times a minute, causing potential loss of performance or service.

[bookmark: page510]8.4	OPEN QUESTIONS AND CHALLENGES 2 4 2 243

Multimedia Data Security Storage

With the rapid developments of multimedia technologies, more and more multimedia contents are being stored and delivered over many kinds of devices, databases, and networks. Multimedia Data Security plays an important role in the data storage to protect multimedia data. Recently, how storage multimedia contents are delivered by both different providers and users has attracted much attentions and many applications. This section briefly goes through the most critical topics in this area.

Protection from Unauthorized Replication. Contents replication is requi redto generate and keep multiple copies of certain multimedia contents. For example, content distribution networks (CDNs) have been used to manage content distribution to large numbers of users, by keeping the replicas of the same contents on a group of geographically distributed surrogates [32, 33]. Although the replication can improve the system performance, the unauthorized replication causes some problems such as contents copyright, waste of replication cost, and extra control overheads.

Protection from Unauthorized Replacement. As the storage capacity islimited, a replacement process must be carried out when the capacity exceeds its limit. It means the situation that a currently stored content [34] must be removed from the storage space in order to make space for the new coming content. However, how to decide which content should be removed is very important. If an unauthorized replacement happens, the content which the user doesn’t want to delete will be removed resulting in an accident of the data loss.

Furthermore, if the important content such as system data is removed by unauthorized replacement, the result will be more serious.

Protection from Unauthorized Pre-fetching. The Pre-fetching is widelydeployed in Multimedia Storage Network Systems between server databases and end users’ storage disks [35]. That is to say, If a content can be predicted to be requested by the user in future requests, this content will be fetched from the server database to the end user before this user requests it, in order to decrease user response time. Although the Pre-fetching shows its efficiency, the unauthorized pre-fetching should be avoided to make the system to fetch the necessary content.

OPEN QUESTIONS AND CHALLENGES

Almost all the current commercial cloud service providers claim that their

[bookmark: page511]8.4	OPEN QUESTIONS AND CHALLENGES 2 4 3 243

platforms are secure and robust. On one hand, they adopt robust cipher algorithms for confidentiality of stored data; on the other hand, they depend on network communication security protocols such as SSL, IPSec, or others to

[bookmark: page512]8.4	OPEN QUESTIONS AND CHALLENGES 2 4 4 243

protect data in transmission in the network. For the service availability and high performance, they choose virtualization technologies and apply strong authentication and authorization schemes in their cloud domains. However, as a new infrastructure/platform leading to new application/service models of the future’s IT industry, the requirement for a security cloud computing is different from the traditional security problems. As pointed out by Dr. K. M. Khan :

Encryption, digital signatures, network security, firewalls, and the isolation of virtual environments all are important for cloud computing security, but these alone won’t make cloud computing reliable for consumers.

Concerns at Different	Levels

The cloud computing environment consists of three levels of abstractions	:

The cloud infrastructure providers, which is at the back end, own andmanage the network infrastructure and resources including hardware devices and system software.

The cloud service providers, which offer services such as on-demandcomputing, utility computing, data processing, software services, and platforms for developing application software.

The cloud consumers, which is at the front end of the cloud computingenvironment and consists of two major categories of users: (a) applicationdevelopers, who take advantage of the hardware infrastructure and thesoftware platforms to construct application software for ultimate end users; and (b) end users, who carry out their daily works using the ondemand computing, software services, and utility services.

Regarding data/information security, the users at different levels have variant expectations and concerns due to the roles they play in the data’s life cycle.

From the perspective of cloud consumers, normally who are the data owners, the concerns are essentially raised from the loss of control when the data are in a cloud. As the dataset is stored in unknown third-party infrastructure, the owner loses not only the advantages of endpoint restrictions and management, but also the fine-grained credential quality control. The uncertainty about the privacy and the doubt about the vulnerability are also resulted from the disappearing physical and logical network boundaries [36].

The main security concerns of the end users include confidentiality, loss of control of data, and the undisclosed security profiles of the cloud service and

[bookmark: page513]8.4	OPEN QUESTIONS AND CHALLENGES 2 4 5 243

infrastructure providers. The users’ data are transmitted between the local machine and cloud service provider for variant operations, and they are also persistently stored in the cloud infrastructure provider’s facilities. During this

[bookmark: page514]8.4	OPEN QUESTIONS AND CHALLENGES 2 4 6 243

procedure, data might not be adequately protected while they are being moved within the systems or across multiple sites owned by these providers. The data owner also cannot check the security assurances before using the service from the cloud, because the actual security capabilities associated with the providers are transparent to the user/owner.

The problem becomes more complicated when the service and infrastructure providers are not the same, and this implies additional communication links in the chain. Involving a third party in the services also introduces an additional vector of attack. Actually, in practice there are more challenging scenarios. For instance, consider that multiple end users have different sets of security requirements while using the same service offered by an individual cloud service provider. To handle such kind of complexity, one single set of security provisions does not fit all in cloud computing. The scenarios also imply that the back-end infrastructure and/or service providers must be capable of supporting multiple levels requirements of security similar to those guaranteed by front-end service provider.

From the perspective of the cloud service providers, the main concern with regard to protecting users’ data is the transfer of data from devices and servers within the control of the users to its own devices and subsequently to those of the cloud infrastructure, where the data is stored. The data are stored in cloud service provider’s devices on multiple machines across the entire virtual layer.

The data are also hosted on devices that belong to infrastructure provider. The cloud service provider needs to ensure users that the security of their data is being adequately addressed between the partners, that their virtual environments are isolated with sufficient protection, and that the cleanup of outdated images is being suitably managed at its site and cloud infrastructure

provider’s storage machines.

Undoubtedly, the cloud infrastructure providers’ security concerns are not less than those of end users or cloud service providers. The infrastructure provider knows that a single point of failure in its infrastructure security mechanisms would allow hackers to take out thousands of data bytes owned by the clients, and most likely data owned by other enterprises. The cloud

infrastructure providers need to ask the following	questions:

● How are the data stored in its physical devices	protected?

How does the cloud infrastructure manage the backup of data, and the destruction of outdated data, at its site?

How can the cloud infrastructure control access to its physical devices and the images stored on those devices?

Technical and Nontechnical Challenges

The above analysis has shown that besides technical challenges, the cloud computing platform (infrastructure and service) providers are also required to

[bookmark: page515]8.4	OPEN QUESTIONS AND CHALLENGES 2 4 7 243

meet a couple of nontechnical issues—for example, the lack of legal requirements on data security to service providers [36]. More specifically, the following technical challenges need to be addressed in order to make cloud computing acceptable for common consumers:

Open security profiling of services that is available to end users and verifiable automatically. Service providers need to disclose in detail the levels of specific security properties rather than providing blanket assurances of “secure” services.

The cloud service/infrastructure providers are required to enable end users to remotely control their virtual working platforms in the cloud and monitor others’ access to their data. This includes the capability of finegrained accessing controls on their own data, no matter where the data files are stored and processed. In addition, it is ideal to possess the capability of restricting any unauthorized third parties from manipulating users’ data, including the cloud service provider, as well as cloud infrastructure providers.

Security compliance with existing standards could be useful to enhance cloud security. There must be consistency between the security requirements and/or policies of service consumers and the security assurances of cloud providers .

It is mandatory for the providers to ensure that software is as secure as they claim. These assurances may include certification of the security of the systems in question. A certificate—issued after rigorous testing according to agreed criteria (e.g., ISO/IEC 15408)—can ensure the degree of reliability of software in different configurations and environments as claimed by the cloud providers.

Regarding the above technical issues, actually they have been and will be addressed by constant development of new technologies. However, some special efforts are needed to meet the nontechnical challenges. For instance, one of the most difficult issue to be solved in cloud computing is the users’ fear of losing control over their data. Because end users feel that they do not clearly know where and how their data are handled, or when the users realize that their data are processed, transmitted, and stored by devices under the control of some strangers, it is reasonable for them to be concerned about things happening in the cloud. In traditional work environments, in order to keep a dataset secure, the operator just keeps it away from the threat. In cloud computing, however, it seems that datasets are moved closer to their threats; that is, they are transmitted to, stored in, and manipulated by remote devices controlled by third parties, not by the owner of the data set. It is recognized that this is partly a psychological issue; but until end users have enough information and insight that make them believe cloud computing security and its dynamics, the fear is unlikely to go away.

[bookmark: page516]8.4	OPEN QUESTIONS AND CHALLENGES 2 4 8 243

End-user license agreements (EULAs) and vendor privacy policies are not enough to solve this psychological issue. Service-level agreements (SLAs) need to specify the preferred security assurances of consumers in detail. Proper business models and risk assessments related to cloud computing security need to be defined. In this new security-sensitive design paradigm, the ability to change one’s mind is crucial, because consumers are more security-aware than ever before. They not only make the service-consuming decision on cost and service, they also want to see real, credible security measures from cloud providers.

SUMMARY

In this chapter we have presented the state-of-the-art research progress and results of secure distributed data storage in cloud computing. Cloud computing has acquired considerable attention from both industry and academia in recent years. Among all the major building blocks of cloud computing, data storage plays a very important role. Currently, there are several challenges in implementing distributed storage in cloud computing environments. These challenges will need to be addressed before users can enjoy the full advantages of cloud computing. In addition, security is always a significant issue in any computing system. Consequently, we surveyedanumberof topics relatedtothechallenging issues ofsecuring distributed data storage, including database outsourcing and query integrity assurance, data integrity in untrustworthy storage, Web-application-based security, and multimedia data security. It is anticipated that the technologies developed in the aforementioned research will contribute to paving the way for securing distributed data storage environments within cloud computing.

REFERENCES

J. A. Garay, R. Gennaro, C. Jutla, and T. Rabin, Secure distributed storage and retrieval, in Proceedings of the 11th International workshop on DistributedAlgorithms, Saarbrucken, pp. 275—289 Germany, September 1997.

V. Kher and Y. Kim, Securing distributed storage: Challenges, techniques, and systems, in Proceedings of the 2005 ACM Workshop on Storage Security andSurvivability, Fairfax, VA, November 11, 2005.

R. Ranjan, A. Harwood, and R. Buyya, Peer-to-peer-based resource discovery in global grids: A tutorial, IEEE Communications Surveys & Tutorials, 10(2), 2008, pp. 6—33.

K. M. Khan, Security dynamics of cloud computing, Cutter IT Journal, June/July 2009, pp. 38—43.

[bookmark: page517]OPEN QUESTIONS AND CHALLENGES 2 4 9 243

J. Heiser and M. Nicolett, Assessing the Security Risks of Cloud Computing, Gartner Inc., June 2, 2008.

G. A. Gibson and R. V. Meter, Network attached storage architecture,

Communications of the ACM, 43(11): 37—45, 2000.

[bookmark: page518]REFERENCES	247

Amazon Import/Export Developer Guid”, Version 1.2, http://aws.amazon.com/ documentation/, August 2009.

Microsoft Azure Services Platform, http://www.microsoft.com/azure/default. mspx, 2009.

Google, What is Google App Engine?, http://code.google.com/appengine/docs/ whatisgoogleappengine.html, September 2009.

Microsoft Azura MSDN API, http://msdn.microsoft.com/en-us/library/dd179394. aspx, 2009.

Google mail, http://groups.google.com/group/google-appengine/browse-thread/ thread/782aea7f85ecbf98/8a9a505e8aaee07a?show_docid=8a9a505e8aaee07a#

W.-S. Ku, L. Hu, C. Shahabi, and H. Wang, Query integrity assurance of locationbased services accessing outsourced spatial databases, in Proceedings ofthe International Symposium on Spatial and Temporal Databases (SSTD),2009, pp. 80—97.

H. Hacigu¨ mu¨ s, S. Mehrotra, and B. R. Iyer, Providing database as a service, in

Proceedings of the IEEE International Conference on Data Engineering (ICDE),2002, p. 29.

R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, Order-preserving encryption for numeric data, in Proceedings of the ACM International Conference on Managementof Data (SIGMOD), 2004, pp. 563—574.

P. T. Devanbu, M. Gertz, C. U. Martel, and S. G. Stubblebine, Authentic thirdparty data publication, in Proceedings of the IFIP Working Conference onData and Applications Security (DBSec), 2000, pp. 101—112.

R. C. Merkle, A certified digital signature, in Proceedings of the AnnualInternational Cryptology Conference (CRYPTO), 1989, pp. 218—238.

E. Mykletun, M. Narasimha, and G. Tsudik, Authentication and integrity in outsourced databases, in Proceedings of the Network and Distributed SystemSecurity Symposium (NDSS), 2004.

H.-H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan, Verifying completeness of relational query results in data publishing, in Proceedings of the ACM InternationalConference on Management of Data (SIGMOD), 2005, pp. 407—418.

F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, Dynamic authenticated index structures for outsourced databases, in Proceedings of the ACM InternationalConference on Management of Data (SIGMOD), 2006, pp. 121—132.

	20. R. Sion, Query execution assurance
	for outsourced databases,
	in Proceedings

	of the International Conference on
	Very Large Data Bases
	(VLDB), 2005,

pp. 601—612.

M. Xie, H. Wang, J. Yin, and X. Meng, Integrity auditing of outsourced data, in

Proceedings of the International Conference on Very Large Data Bases (VLDB),2007, pp. 782—793.

H. Wang, J. Yin, C.-S. Perng, and P. S. Yu, Dual encryption for query integrity assurance, in Proceedings of the ACM Conference on Information and KnowledgeManagement (CIKM), 2008, pp. 863—872.

Y, Yang, S, Papadopoulos, D, Papadias, and G. Kollios, Spatial outsourcing for location-based services, in IEEE International Conference on Data Engineering

(ICDE), 2008, pp. 1082—1091.

[bookmark: page519]24PART.M.-L . IIIYiu, G. Ghinita, C. S. Jensen, and P. Kalnis, Outsourcing search services on private spatial data, in Proceedings of the IEEE International Conference on Data
Engineering (ICDE), 2009, pp. 1140—1143.

Y. Deswarte, J.-J. Quisquater, and A. Saidane, Remote integrity checking, in

Integrity and Internal Control in Information Systems VI, Kluwer AcademicPublishers, Boston, 2003, pp. 1—11.

D. L. Gazzaoni-Filho and P. S. Licciardi-Messeder-Barreto, Demonstrating data possession and uncheatable data transfer, Cryptology ePrint Archive, Report 2006/ 150, http://eprint.iacr.org/, 2006.

F. Sebe, J. Domingo-Ferrer, A. Martinez-Balleste, Y. Deswarte, and J.-J. Quisquater, Efficient remote data possession checking in critical information infrastructure, IEEE Transactions on Knowledge and Data Engineering, 20(8): 1034—1038, 2008.

G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and

	D. Song, Provable data possession at untrusted stores, in
	Proceedings
	14th

	ACM Conference on Computer and Communication Security
	(CCS’07),
	2007,

pp. 598—609.

M. D. Dikaiakos, D. Katsaros, G. Pallis, A. Vakali, P. Mehra: Guest editors introduction: Cloud computing, IEEE Internet Computing, 12(5), 2009, pp. 10—13.

S. Murugesan, Cloud computing: IT’s day in the sun?, in Cutter Consortium, 2009, http://www.cutter.com/content/itjournal/fulltext/2009/06/index.html.

Web Application Security Consortium, www.webappsec.org, 2009.

M. A. Niazi and A. R. Baig, Phased approach to simulation of security algorithms for ambient intelligent (ami) environments, the Winter Simulation Conference, Washington D.C., December 9—12, 2007.

Z. Su, J. Katto, and Y. Yasuda, Optimal replication algorithm for scalable streaming media in contents delivery networks, IEICE Transactions on Informationand Systems, E87(12):2723—2732, 2004.

A. Rowstron and P. Druschel, Storage management and caching in PAST, a largescale, persistent peer-to-peer storage utility, in Proceedings of the EighthWorkshop on Hot Topics in Operating Systems, Banff, Canada, 2001, pp. 75—80.

Z. Su, T. Washizawa, J. Katto, and Y. Yasuda, Integrated pre-fetching and replacing algorithm for graceful image caching, IEICE Transactions onCommunications, E89-B(9):2753—2763, 2003.

A. Stamos, A. Becherer, and N. Wilcox, Cloud computing models and vulnerabilities: Raining on the trendy new parade, in Blackhat USA 2009, Las Vegas, Nevada.

H. Hacigu¨ mu¨ s, B. R. Iyer, C. Li, and S. Mehrotra, Executing SQL over encrypted data in the database-service-provider model, in Proceedings of the ACM InternationalConference on Management of Data (SIGMOD), 2002, pp. 216—227.

[bookmark: page520]

	Download from Wow! eBook <www.wowebook.com>

PART III

PLATFORM	AND	SOFTWARE
AS A SERVICE (PAAS/IAAS)

[bookmark: page521]
PART III

[bookmark: page522]
CHAPTER 9

ANEKA—INTEGRATION OF PRIVATE
AND PUBLIC CLOUDS

CHRISTIAN VECCHIOLA, XINGCHEN CHU, MICHAEL MATTESS, and

RAJKUMAR BUYYA

9.1	INTRODUCTION

A growing interest in moving software applications, services, and even infrastructure resources from in-house premises to external providers has been witnessed recently. A survey conducted by F5 Networks between June and July 20091 showed that such a trend has now reached a critical mass; and an increasing number of IT managers have already adopted, or are considering adopting, this approach to implement IT operations. This model of making IT resources available, known as Cloud Computing [1], opens new opportunities to small, medium-sized, and large companies. It is not necessary anymore to bear considerable costs for maintaining the IT infrastructures or to plan for peak demand. Instead, infrastructure and applications can scale elastically according to the business needs at a reasonable price. The possibility of instantly reacting to the demand of customers without long-term planning is one of the most appealing features of cloud computing, and it has been a key factor in making this trend popular among technology and business practitioners.

As a result of this growing interest, the major players in the IT industry such as Google, Amazon, Microsoft, Sun, and Yahoo have started offering cloudcomputing-based solutions that cover the entire IT computing stack, from hardware to applications and services. These offerings have become quickly

[bookmark: page523]
CHAPTER 9

1The survey, available at http://www.f5.com/pdf/reports/cloud-computing-survey-results-2009.pdf, interviewed 250 IT companies with at least 2500 employees worldwide and targeted the following personnel: managers, directors, vice presidents, and senior vice presidents.

Cloud Computing: Principles and Paradigms, Edited by Rajkumar Buyya, James Broberg andAndrzej Goscinski Copyright r 2011 John Wiley & Sons, Inc.

251

[bookmark: page524]popularCHAPTERandledto9the establishment of the concept of “Public Cloud,” which r

epresents a publicly accessible distributed system hosting the execution of applications and providing services billed on a pay-per-use basis. After an initial enthusiasm for this new trend, it soon became evident that a solution built on outsourcing the entire IT infrastructure to third parties would not be applicable in many cases, especially when there are critical operations to be performed and security concerns to consider. Moreover, with the public cloud distributed anywhere on the planet, legal issues arise and they simply make it difficult to rely on a virtual public infrastructure for any IT operation. As an example, data location and confidentiality are two of the major issues that scare stakeholders to move into the cloud—data that might be secure in one country may not be secure in another. In many cases though, users of cloud services don’t know where their information is held and different jurisdictions can apply. It could be stored in some data center in either Europe, (a) where the European Union favors very strict protection of privacy, or (b) America, where laws such as the U.S. Patriot Act2 invest government and other agencies with virtually limitless powers to access information including that belonging to companies. In addition, enterprises already have their own IT infrastructures. In spite of this, the distinctive feature of cloud computing still

remains appealing, and the possibility of replicating in-house (on their own IT infrastructure) the resource and service provisioning model proposed by cloud computing led to the development of the “Private Cloud” concept.

Private clouds are virtual distributed systems that rely on a private infrastructure and provide internal users with dynamic provisioning of computing resources. Differently from public clouds, instead of a pay-as-you-go model, there could be other schemes in place, which take into account the usage of the cloud and proportionally bill the different departments or sections of the enterprise. Private clouds have the advantage of keeping inhouse the core business operations by relying on the existing IT infrastructure and reducing the burden of maintaining it once the cloud has been set up. In this scenario, security concerns are less critical, since sensitive information does not flow out of the private infrastructure. Moreover, existing IT resources can be better utilized since the Private cloud becomes accessible to all the division of the enterprise. Another interesting opportunity that comes with private clouds is the possibility of testing applications and systems at a comparatively lower price rather than public clouds before deploying them on the public virtual infrastructure. In April 2009, a Forrester Report on the benefits of delivering in-house cloud computing solutions for enterprises

[bookmark: page525]2The U.S. Patriot Act is a statute enacted by the United States Government that increases the ability of law enforcement agencies to search telephone, e-mail communications, medical, financial,

and other records; it eases restrictions on foreign intelligence gathering within the United States. TheCHAPTERfulltextoftheact9is available at the Web site of the Library of the Congress at the following

address: http://thomas.loc.gov/cgi-bin/query/z?c107:H.R.3162.ENR (accessed December 5, 2009).

[bookmark: page526]9.1	INTRODUCTION	253

highlighted some of the key advantages of using a private cloud computing infrastructure:

Customer Information Protection. Despite assurances by the public cloudleaders about security, few provide satisfactory disclosure or have long enough histories with their cloud offerings to provide warranties about the

specific level of security put in place in their system. Security in-house is easier to maintain and to rely on.

Infrastructure Ensuring Service Level Agreements (SLAs). Quality ofservice implies that specific operations such as appropriate clustering and failover, data replication, system monitoring and maintenance, disaster recovery, and other uptime services can be commensurate to the

application needs. While public clouds vendors provide some of these features, not all of them are available as needed.

Compliance with Standard Procedures and Operations. If organizationsare subject to third-party compliance standards, specific procedures have

to be put in place when deploying and executing applications. This could be not possible in the case of virtual public infrastructure.

In spite of these advantages, private clouds cannot easily scale out in the case of peak demand, and the integration with public clouds could be a solution to the increased load. Hence, hybrid clouds, which are the result of a private cloud growing and provisioning resources from a public cloud, are likely to be best option for the future in many cases. Hybrid clouds allow exploiting existing IT infrastructures, maintaining sensitive information within the premises, and naturally growing and shrinking by provisioning external resources and releasing them when needed. Security concerns are then only limited to the public portion of the cloud, which can be used to perform operations with less stringent constraints but that are still part the system workload.

Platform as a Service (PaaS) solutions offer the right tools to implement and deploy hybrid clouds. They provide enterprises with a platform for creating, deploying, and managing distributed applications on top of existing infrastructures. They are in charge of monitoring and managing the infrastructure and acquiring new nodes, and they rely on virtualization technologies in order to scale applications on demand. There are different implementations of the PaaS model; in this chapter we will introduce Manjrasoft Aneka, and we will discuss how to build and deploy hybrid clouds based on this technology. Aneka is a programming and management platform for building and deploying cloud computing applications. The core value of Aneka is its service-oriented architecture that creates an extensible system able to address different application scenarios and deployments such as public, private, and heterogeneous clouds. On top of these, applications that can be expressed by means of different programming models can transparently execute under the desired service-level agreement.

[bookmark: page527]
The remainder of this chapter is organized as follows: In the next section we will briefly review the technologies and tools for Cloud Computing by presenting both the commercial solution and the research projects currently available, we will then introduce Aneka in Section 9.3 and provide an overview of the architecture of the system. In Section 9.4 we will detail the resource provisioning service that represents the core feature for building hybrid clouds. Its architecture and implementation will be described in Section 9.5, together with a discussion about the desired features that a software platform support hybrid clouds should offer. Some thoughts and future directions for practitioners will follow, before the conclusions.

TECHNOLOGIES AND TOOLS FOR CLOUD	COMPUTING

Cloud computing covers the entire computing stack from hardware infrastructure to end-user software applications. Hence, there are heterogeneous offerings addressing different niches of the market. In this section we will concentrate mostly on the Infrastructure as a Service (IaaS) and Platform as a Service (PaaS) implementations of the cloud computing model by first presenting a subset of the most representative commercial solutions and then discussing the few research projects and platforms, which attracted considerable attention.

Amazon is probably the major player for what concerns the Infrastructureas-a-Service solutions in the case of public clouds. Amazon Web Services deliver a set of services that, when composed together, form a reliable, scalable, and economically accessible cloud. Within the wide range of services offered, it is worth noting that Amazon Elastic Compute Cloud (EC2) and Simple Storage Service (S3) allow users to quickly obtain virtual compute resources and storage space, respectively. GoGrid provides customer with a similar offer: it allows users to deploy their own distributed system on top of their virtual infrastructure. By using the GoGrid Web interface users can create their custom virtual images, deploy database and application servers, and mount new storage volumes for their applications. Both GoGrid and Amazon EC2 charge their customers on a pay-as-you-go basis, and resources are priced per hours of usage. 3Tera AppLogic lays at the foundation of many public clouds, it provides a grid operating system that includes workload distribution, metering, and management of applications. These are described in a platformindependent manner, and AppLogic takes care of deploying and scaling them on demand. Together with AppLogic, which can also be used to manage and deploy private clouds, 3Tera also provides cloud hosting solutions and, because of its grid operating system, makes the transition from the private to the public virtual infrastructure simple and completely transparent. Solutions that are completely based on a PaaS approach for public clouds are Microsoft Azure and Google AppEngine. Azure allows developing scalable applications for the cloud. It is

[bookmark: page528]a cloud services operating system that serves as the development,

	[bookmark: page529]TECHNOLOGIES AND TOOLS FOR CLOUD COMPUTING
	255

runtime, and control environment for the Azure Services Platform. By using the Microsoft Azure SDK, developers can create services that leverage the .NET framework. These services are then uploaded to the Microsoft Azure portal and executed on top of Windows Azure. Additional services such as workflow management and execution, web services orchestration, and SQL data storage are provided to empower the hosted applications. Azure customers are billed on a pay-per-use basis and by taking into account the different services: compute, storage, bandwidth, and storage transactions. Google AppEngine is a development platform and a runtime environment focusing primarily on web applications that will be run on top of Google’s server infrastructure. It provides a set of APIs and an application model that allow developers to take advantage of additional services provided by Google such as Mail, Datastore, Memcache, and others. Developers can create applications in Java, Python, and JRuby. These applications will be run within a sandbox, and AppEngine will take care of automatically scaling when needed. Google provides a free limited service and utilizes daily and per minute quotas to meter and price applications requiring professional service.

Different options are available for deploying and managing private clouds. At the lowest level, virtual machine technologies such as Xen , KVM , and VMware can help building the foundations of a virtual infrastructure. On top of this, virtual machine managers such as VMWare vCloud [14] and Eucalyptus [15] allow the management of a virtual infrastructure and turning a cluster or a desktop grid into a private cloud. Eucalyptus provides a full compatibility with the Amazon Web Services interfaces and supports different virtual machine technologies such as Xen, VMWare, and KVM. By using Eucalyptus, users can test and deploy their cloud applications on the private premises and naturally move to the public virtual infrastructure provided by Amazon EC2 and S3 in a complete transparent manner. VMWare vCloud is the solution proposed by VMWare for deploying virtual infrastructure as either public or private clouds. It is built on top of the VMWare virtual machine technology and provides an easy way to migrate from the private premises to the public infrastructure that leverages VMWare for infrastructure virtualization. For what concerns the Platform-as-a-Service solutions, we can notice DataSynapse, Elastra, Zimory Pools, and the already mentioned AppLogic. DataSynapse [16] is a global provider of application virtualization software. By relying on the VMWare, virtualization technology provides a flexible environment that converts a data center into a private cloud. Elastra [17] cloud server is a platform for easily configuring and deploying distributed application infrastructures on clouds: by using a simple control panel, administrators can visually describe the distributed application in terms of components and connections and then deploying them on one or more cloud providers such Amazon EC2 or VMware ESX. Cloud server can provision resources from either private or public clouds, thus deploying application on hybrid infrastructures. Zimory [18], a spinoff company from Deutsche Telekom, provides a software infrastructure layer that automates the use of

[bookmark: page530]
resource pools based on Xen, KVM, and VMware virtualization technologies. It allows creating an internal cloud composed by sparse private and public resources that both host the Zimory’s software agent and provides facilities for quickly migrating applications from one data center to another and utilizing at best the existing infrastructure.

The wide range of commercial offerings for deploying and managing private and public clouds mostly rely on a few key virtualization technologies, on top of which additional services and features are provided. In this sense, an interesting research project combining public and private clouds and adding advanced services such as resource reservation is represented by the coordinated use of OpenNebula [19] and Haizea [20]. OpenNebula is a virtual infrastructure manager that can be used to deploy and manage virtual machines on local resources or on external public clouds, automating the setup of the virtual machines regardless of the underlying virtualization layer (Xen, KVM, or VMWare are currently supported) or external cloud such as Amazon EC2. A key feature of OpenNebula’s architecture is its highly modular design, which facilitates integration with any virtualization platform and third-party component in the cloud ecosystem, such as cloud toolkits, virtual image managers, service managers, and VM schedulers such as Haizea. Haizea is a resource lease manager providing leasing capabilities not found in other cloud systems, such as advance reservations and resource preemption. Integrated together, OpenNebula and Haizea constitute a virtual management infrastructure providing flexible and advanced capabilities for resource management in hybrid clouds. A similar set of capabilities is provided by OpenPEX [21], which allows users to provision resources ahead of time through advance reservations. It also incorporates a bilateral negotiation protocol that allows users and providers to come to an agreement by exchanging offers and counter offers. OpenPEX natively supports Xen as a virtual machine manager (VMM), but additional plug-ins can be integrated into the system to support other VMMs. Nimbus [22], formerly known as Globus Workspaces, is another framework that provides a wide range of extensibility points. It is essentially a framework that allows turning a cluster into an Infrastructure-as-a-Service cloud. What makes it interesting from the perspective of hybrid clouds is an extremely modular architecture that allows the customization of many tasks: resource scheduling, network leases, accounting, propagation (intra VM file transfer), and fine control VM management.

All of the previous research platforms are mostly IaaS implementation of the cloud computing model: They provide a virtual infrastructure management layer that is enriched with advanced features for resource provisioning and scheduling. Aneka, which is both a commercial solution and a research platform, positions itself as a Platform-as-a-Service implementation. Aneka provides not only a software infrastructure for scaling applications, but also a wide range of APIs that help developers to design and implement applications that can transparently run on a distributed infrastructure whether this be the local cluster or the cloud. Aneka, as OpenNebula and Nimbus, is characterized

	[bookmark: page531]ANEKA CLOUD PLATFORM
	257

by a modular architecture that allows a high level of customization and integration with existing technologies, especially for what concerns resource provisioning. Like Zimory, the core feature of Aneka is represented by a configurable software agent that can be transparently deployed on both physical and virtual resources and constitutes the runtime environment for the cloud. This feature, together with the resource provisioning infrastructure, is at the heart of Aneka-based hybrid clouds. In the next sections we will introduce the key feature of Aneka and describe in detail the architecture of the resource provisioning service that is responsible of integrating cloud resources into the existing infrastructure.

ANEKA CLOUD PLATFORM

Aneka is a software platform and a framework for developing distributed applications on the cloud. It harnesses the computing resources of a heterogeneous network of workstations and servers or data centers on demand. Aneka provides developers with a rich set of APIs for transparently exploiting these resources by expressing the application logic with a variety of programming abstractions. System administrators can leverage a collection of tools to monitor and control the deployed infrastructure. This can be a public cloud available to anyone through the Internet, a private cloud constituted by a set of nodes with restricted access within an enterprise, or a hybrid cloud where external resources are integrated on demand, thus allowing applications to scale.

Figure 9.1 provides a layered view of the framework. Aneka is essentially an implementation of the PaaS model, and it provides a runtime environment for executing applications by leveraging the underlying infrastructure of the cloud. Developers can express distributed applications by using the API contained in the Software Development Kit (SDK) or by porting existing legacy applications to the cloud. Such applications are executed on the Aneka cloud, represented by a collection of nodes connected through the network hosting the Aneka container. The container is the building block of the middleware and represents the runtime environment for executing applications; it contains the core functionalities of the system and is built up from an extensible collection of services that allow administrators to customize the Aneka cloud. There are three classes of services that characterize the container:

Execution Services. They are responsible for scheduling and executingapplications. Each of the programming models supported by Aneka

defines specialized implementations of these services for managing the execution of a unit of work defined in the model.

[bookmark: page532]●Foundation Services. These are the core management services of theAneka container. They are in charge of metering applications, allocating

	[bookmark: page533]
	
	
	
	9.4
	ANEKA RESOURCE PROVISIONING SERVICE259

	
	
	
	
	
	
	
	
	
	
	
	

	
	Applications: Development and Management
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	Management Kit
	

	
	Software Development Kit
	
	
	
	Management Studio
	
	Admin. Portal
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	API
	
	Tutorials
	
	Samples
	
	
	
	Web Services: SLA and Management
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Middleware: Container

	Foundation Services
	
	

	Task Model Thread Model MapReduce Model
	…

	Foundation Services
	
	

	Membership
	Storage
	Resource Reservation

	Accounting
	Licensing
	…
	…

	
	Platform Abstraction Layer (PAL)
	

	Fabric Services
	
	
	

	Hardware Profiling
	Dynamic Resource Provisioning

	Security

	Persistence

ECMA 334-335: .NET or Mono/Windows and Linux and Mac

	
	Physical Resources
	
	Virtualized Resources

	
	
	
	

	[bookmark: page534][image:]
	IBM
	259

	9.4 ANEKA RESOURCE PROVISIONING SERVICE
	

	Amazon
	Microsoft
	

Private Cloud (LAN)

FIGURE 9.1. Aneka framework architecture.

resources for execution, managing the collection of available nodes, and keeping the services registry updated.

Fabric Services: They constitute the lowest level of the services stack ofAneka and provide access to the resources managed by the cloud. An

	[bookmark: page535]9.4 ANEKA RESOURCE PROVISIONING SERVICE
	259

important service in this layer is the Resource Provisioning Service, which enables horizontal scaling3 in the cloud. Resource provisioning makes Aneka elastic and allows it to grow or to shrink dynamically to meet the QoS requirements of applications.

The container relies on a platform abstraction layer that interfaces it with the underlying host, whether this is a physical or a virtualized resource. This makes the container portable over different runtime environments that feature an implementation of the ECMA 334 [23] and ECMA 335 [24] specifications (such as the .NET framework or Mono).

Aneka also provides a tool for managing the cloud, allowing adminis trators to easily start, stop, and deploy instances of the Aneka container on new resources and then reconfigure them dynamically to alter the behavior of the cloud.

ANEKA RESOURCE PROVISIONING SERVICE

The most significant benefit of cloud computing is the elasticity of resources, services, and applications, which is the ability to automatically scale out based on demand and users’ quality of service requests. Aneka as a PaaS not only features multiple programming models allowing developers to easily build their distributed applications, but also provides resource provisioning facilities in a seamless and dynamic fashion. Applications managed by the Aneka container can be dynamically mapped to heterogeneous resources, which can grow or shrink according to the application’s needs. This elasticity is achieved by means of the resource provisioning framework, which is composed primarily of services built into the Aneka fabric layer.

Figure 9.2 provides an overview of Aneka resource provisioning over private and public clouds. This is a typical scenario that a medium or large enterprise may encounter; it combines privately owned resources with public rented resources to dynamically increase the resource capacity to a larger scale.

Private resources identify computing and storage elements kept in the premises that share similar internal security and administrative policies. Aneka identifies two types of private resources: static and dynamic resources. Static resources are constituted by existing physical workstations and servers that may be idle for a certain period of time. Their membership to the Aneka cloud is manually configured by administrators and does not change over time. Dynamic resources are mostly represented by virtual instances that join and leave the Aneka cloud and are controlled by resource pool managers that provision and release them when needed.

	[bookmark: page536]9.4 ANEKA RESOURCE PROVISIONING SERVICE
	259

3Horizontal scaling is the process of adding more computing nodes to a system. It is counterposed to vertical scaling, which is the process of increasing the computing capability of a single computer resource.

	[bookmark: page537]9.4 ANEKA RESOURCE PROVISIONING SERVICE
	261

Public Cloud

Dynamic Provisioning

Internet

Private Cloud
Aneka

	Static deployment
	Dynamic Provisioning

Interanet

Physical Desktops/Servers	Virtual Machines

FIGURE 9.2. Aneka resource provisioning over private and public clouds.

Public resources reside outside the boundaries of the enterprise and are provisioned by establishing a service-level agreement with the external provider. Even in this case we can identify two classes: on-demand and reserved resources. On-demand resources are dynamically provisioned byresource pools for a fixed amount of time (for example, an hour) with no long-term commitments and on a pay-as-you-go basis. Reserved resources are provisioned in advance by paying a low, one-time fee and mostly suited for long-term usage. These resources are actually the same as static resources, and no automation is needed in the resource provisioning service to manage them.

Despite the specific classification previously introduced, resources are managed uniformly once they have joined the Aneka cloud and all the standard operations that are performed on statically configured nodes can be transparently applied to dynamic virtual instances. Moreover, specific

	[bookmark: page538]9.4 ANEKA RESOURCE PROVISIONING SERVICE
	261

operations pertaining to dynamic resources, such as join and leave, are seen as connection and disconnection of nodes and transparently handled. This is mostly due to

	[bookmark: page539]9.4 ANEKA RESOURCE PROVISIONING SERVICE
	261

the indirection layer provided by the Aneka container that abstracts the specific nature of the hosting machine.

Resource Provisioning Scenario

Figure 9.3 illustrates a possible scenario in which the resource provisioning service becomes important. A private enterprise maintains a private cloud, which consists of (a) five physical dedicated desktops from its engineering department and (b) a small data center managed by Xen Hypervisor providing virtual machines with the maximum capacity of 12 VMs. In most of the cases, this setting is able to address the computing needs of the enterprise. In the case of peak computing demand, additional resources can be provisioned by leveraging the virtual public infrastructure. For example, a mission critical application could require at least 30 resources to complete within an hour, and the customer is willing to spend a maximum of 5 dollars to achieve this goal. In this case, the Aneka Resource Provisioning service becomes a fundamental infrastructure component to address this scenario.

In this case, once the client has submitted the application, the Aneka scheduling engine detects that the current capacity in terms of resources (5 dedicated nodes) is not enough to satisfy the user’s QoS requirement and to complete the application on time. An additional 25 resources must be provisioned. It is the responsibility of the Aneka Resource Provisioning service to acquire these resources from both the private data center managed by Xen Hypervisor and the Amazon public cloud. The provisioning service is configured by default with a cost-effective strategy, which privileges the use of local resources instead of the dynamically provisioned and chargeable ones. The computing needs of the application require the full utilization of the local data center that provides the Aneka cloud with 12 virtual machines. Such capacity is still not enough to complete the mission critical application in time; and the

[bookmark: page540]

Client	Request(30, $5)

Enterprise A-

Join(5, 0)

Dedicated Desktops

Capacity(5)

	9.4 ANEKA RESOURCE PROVISIONING SERVICE
	261

Provisioning Service
Provision(13, $1.105)

Aneka

Provision(12, 0)

Private Data Center

Capacity(12 VMs)

FIGURE 9.3. Use case of resource provisioning under Aneka.

[bookmark: page541]9.5	HYBRID CLOUD IMPLEMENTATION 2 6 2 263

remaining 13 resources are rented from Amazon for a minimum of one hour, which incurs a few dollars’ cost.4

This is not the only scenario that Aneka can support, and different provisioning patterns can be implemented. Another simple strategy for provisioning resources could be minimizing the execution time to let the application finish as early as possible; this requires Aneka to request more powerful resources from the Amazon public cloud. For example, in the previous case instead of provisioning 13 small instances from Amazon, a major number of resources, or more powerful resources, can be rented by spending the entire budget available for the application. The resource provisioning infrastructure can also serve broader purposes such as keeping the length of the system queue, or the average waiting time of a job in the queue, under a specified value. In these cases, specific policies can be implemented to ensure that the throughput of the system is kept at a reasonable level.

HYBRID CLOUD IMPLEMENTATION

Currently, there is no widely accepted standard for provisioning virtual infrastructure from Infrastructure as a Service (IaaS) providers, but each provider exposes its own interfaces and protocols. Hence, it is not possible

	to seamlessly integrate
	different
	providers
	into
	one single infrastructure.

	The resource provisioning service implemented
	in Aneka
	addresses these

	issues and abstracts
	away the
	differences
	of
	providers’
	implementation.

In this section we will briefly review what the desired features of a hybrid cloud implementation are and then we will give a closer a look at the solution implemented in Aneka together with a practical application of the infrastructure developed.

Design and Implementation Guidelines

The particular nature of hybrid clouds demands additional and specific functionalities that software engineers have to consider while designing software systems supporting the execution of applications in hybrid and dynamic environments. These features, together with some guidelines on how to implement them, are presented in the following:

Support for Heterogeneity. Hybrid clouds are produced by heterogeneousresources such as clusters, public or private virtual infrastructures, and

workstations. In particular, for what concerns a virtual machine manager, it must be possible to integrate additional cloud service providers (mostly

[bookmark: page542]9.5	HYBRID CLOUD IMPLEMENTATION 2 6 3 263

4At the time of writing (October 2010), the cost for a small Linux-based instance in Amazon EC2 is

cent/hour and the total cost bore by the customer will be in this case 1.105 UD. We expect this price to decrease even more in the next years.

[bookmark: page543]9.5	HYBRID CLOUD IMPLEMENTATION 2 6 4 263

IaaS providers) without major changes to the entire system design and codebase. Hence, the specific code related to a particular cloud resource provider should be kept isolated behind interfaces and within pluggable components.

Support for Dynamic and Open Systems. Hybrid clouds change theircomposition and topology over time. They form as a result of dynamic

conditions such as peak demands or specific Service Level Agreements attached to the applications currently in execution. An open and extensible architecture that allows easily plugging new components and rapidly integrating new features is of a great value in this case. Specific enterprise architectural patterns can be considered while designing such software systems. In particular, inversion of control and, more precisely, dependency injection5 in component-based systems is really helpful.

Support for Basic VM Operation Management. Hybrid clouds integratevirtual infrastructures with existing physical systems. Virtual infrastructures are produced by virtual instances. Hence, software frameworks that support hypervisor-based execution should implement a

minimum set of operations. They include requesting a virtual instance, controlling its status, terminating its execution, and keeping track of all the instances that have been requested.

Support for Flexible Scheduling Policies. The heterogeneity of resourcesthat constitute a hybrid infrastructure naturally demands for flexible scheduling policies. Public and private resources can be differently utilized, and the workload should be dynamically partitioned into different streams according to their security and quality of service (QoS) requirements. There is then the need of being able to transparently change

scheduling policies over time with a minimum impact on the existing infrastructure and almost now downtimes. Configurable scheduling policies are then an important feature.

Support for Workload Monitoring. Workload monitoring becomes evenmore important in the case of hybrid clouds where a subset of resources is leased and resources can be dismissed if they are no longer necessary. Workload monitoring is an important feature for any distributed

middleware, in the case of hybrid clouds, it is necessary to integrate this feature with scheduling policies that either directly or indirectly govern the management of virtual instances and their leases.

5Dependency injection is a technique that allows configuring and connecting components within a software container (such as a Web or an application server) without hard coding their relation but for example by providing an abstract specification—for example, a configuration file that specifies which component to instantiate and to connect them together. A detailed description of this programming pattern can be found at the following link: http://martinfowler.com/articles/injection. html (accessed December 2009).

[bookmark: page544]9.5	HYBRID CLOUD IMPLEMENTATION 2 6 5 263

Those presented are, according to the authors, the most relevant features for successfully supporting the deployment and the management of hybrid clouds. In this list we did not extensively mention security that is transversal to all features listed. A basic recommendation for implementing a security infrastructure for any runtime environment is to use a Defense in Depth6 security model whenever it is possible. This principle is even more important in heterogeneous systems such as hybrid clouds, where both applications and resources can represent treats to each other.

Aneka Hybrid Cloud Architecture

The Resource Provisioning Framework represents the foundation on top of which Aneka-based hybrid clouds are implemented. In this section we will introduce the components that compose this framework and briefly describe their interactions.

The basic idea behind the Resource Provisioning Framework is depicted in Figure 9.4. The resource provisioning infrastructure is represented by a collection of resource pools that provide access to resource providers, whether they are external or internal, and managed uniformly through a specific component called a resource pool manager. A detailed description of the components follows:

Aneka Container
Membership Catalogue

Services

Join/Leave

Scheduling Service

Provisioning Service

Provision/Release
Resource Pool Manager

List

FIGURE 9.4. System architecture of the Aneka Resource Provisioning	Framework.

[bookmark: page545]9.5	HYBRID CLOUD IMPLEMENTATION 2 6 6 263

6Defense in depth is an information assurance (IA) strategy in which multiple layers of defense are placed throughout an information technology (IT) system. More information is available at the following link: http://www.nsa.gov/ia/_files/support/defenseindepth.pdf (accessed December 2009).

[bookmark: page546]9.5	HYBRID CLOUD IMPLEMENTATION 2 6 7 263

Resource Provisioning Service. This is an Aneka-specific service thatimplements the service interface and wraps the resource pool manager,

thus allowing its integration within the Aneka	container.

Resource Pool Manager. This manages all the registered resource poolsand decides how to allocate resources from those pools. The resource pool manager provides a uniform interface for requesting additional resources from any private or public provider and hides the complexity of managing multiple pools to the Resource Provisioning Service.

Resource Pool. This is a container of virtual resources that mostly comefrom the same resource provider. A resource pool is in charge of managing the virtual resources it contains and eventually releasing them when they are no longer in use. Since each vendor exposes its own specific interfaces, the resource pool (a) encapsulates the specific implementation of the communication protocol required to interact with it

and (b) provides the pool manager with a unified interface for acquiring, terminating, and monitoring virtual resources.

The request for additional resources is generally triggered by a scheduler that detects that the current capacity is not sufficient to satisfy the expected quality of services ensured for specific applications. In this case a provisioning request is made to the Resource Provisioning Service. According to specific policies, the pool manager determines the pool instance(s) that will be used to provision resources and will forward the request to the selected pools. Each resource pool will translate the forwarded request by using the specific protocols required by the external provider and provision the resources. Once the requests are successfully processed, the requested number of virtual resources will join the Aneka cloud by registering themselves with the Membership Catalogue Service, which keeps track of all the nodes currently connected to the cloud. Once joined the cloud the provisioned resources are managed like any other node.

A release request is triggered by the scheduling service when provisioned resources are no longer in use. Such a request is then forwarded to the interested resources pool (with a process similar to the one described in the previous paragraph) that will take care of terminating the resources when more appropriate. A general guideline for pool implementation is to keep provisioned resources active in a local pool until their lease time expires. By doing this, if a new request arrives within this interval, it can be served without leasing additional resources from the public infrastructure. Once a virtual instance is terminated, the Membership Catalogue Service will detect a disconnection of the corresponding node and update its registry accordingly. It can be noticed that the interaction flow previously described is completely independent from the specific resource provider that will be integrated into the system. In order to satisfy such a requirement, modularity and welldesigned interfaces between components are very important. The current design, implemented in Aneka, maintains the specific implementation details

[bookmark: page547]9.5	HYBRID CLOUD IMPLEMENTATION 2 6 8 263

within the ResourcePool implementation, and resource pools can be dynamically configured and added by using the dependency injection techniques, which are already implemented for configuring the services hosted in the container. The current implementation of Aneka allows customizing the Resource Provisioning Infrastructure by specifying the following elements:

Resource Provisioning Service. The default implementation provides alightweight component that generally forwards the requests to the

	resource Pool Manager. A possible extension of the system can
	be

	the implementation of a distributed resource provisioning service
	that

	can operate at this level or at the Resource Pool Manager level.
	

Resource Pool Manager. The default implementation provides the basicmanagement features required for resource and provisioning request forwarding.

Resource Pools. The Resource Pool Manager exposes a collection ofresource pools that can be used. It is possible to add any implementation that is compliant to the interface contract exposed by the Aneka provisioning API, thus adding a heterogeneous open-ended set of external providers to the cloud.

Provisioning Policy. Scheduling services can be customized with resource

provisioning aware algorithms that can perform scheduling of applications by taking into account the required QoS.

The architecture of the Resource Provisioning Framework shares some features with other IaaS implementations featuring configurable software containers, such as OpenNebula [19] and Nimbus [22]. OpenNebula uses the concept of cloud drivers in order to abstract the external resource providers and providesa pluggable scheduling engine that supports the integration with advanced schedulers such Haizea [20] and others. Nimbus provides a plethora of extension points into its programming API, and among these there are hooks for scheduling and resource management and the remote management (RM) API. The first ones control when and where a virtual machine will run, while the RM API act as unified interface to Infrastructure as a Service (IaaS) implementations such as Amazon EC2 and OpenNebula. By providing a specific implementation of RM API, it is possible to integrate other cloud providers.

In the next paragraph, we will detail the implementation of the Amazon EC2 resource pool to provide a practical example of a resource pool implementation.

Use Case—The Amazon EC2 Resource	Pool

Amazon EC2 is one of the most popular cloud resource providers. At the time

[bookmark: page548]9.5	HYBRID CLOUD IMPLEMENTATION 2 6 9 263

of writing it is listed among	the top 10 companies providing cloud computing

[bookmark: page549]9.5	HYBRID CLOUD IMPLEMENTATION 2 7 0 263

services.7 It provides a Web service interface for accessing, managing, and controlling virtual machine instances. The Web-service-based interface simplifies the integration of Amazon EC2 with any application. This is the case of Aneka, for which a simple Web service client has been developed to allow the interaction with EC2. In order to interact with Amazon EC2, several parameters are required:

User Identity. This represents the account information used to authenticatewith Amazon EC2. The identity is constituted by a pair of encrypted keys that are the access key and the secret key. These keys can be obtained from the Amazon Webservices portalonce the userhassignedin, and they are required to perform any operation that involves Web service access.

Resource Identity. The resource identity is the identifier of a public or aprivate Amazon Machine Image (AMI) that is used as template from which to create virtual machine instances.

Resource Capacity. This specifies the different type of instance that willbe deployed by Amazon EC2. Instance types vary according to the number of cores, the amount of memory, and other settings that affect the performance of the virtual machine instance. Several types of images are available, those commonly used are: small, medium, and large. The capacity of each type of resource has been predefined by Amazon and is charged differently.

This information is maintained in the EC2ResourcePoolConfiguration class and need to be provided by the administrator in order to configure the pool. Hence, the implementation of EC2ResourcePool is forwarding the request of the pool manager to EC2 by using the Web service client and the configuration information previously described. It then stores the metadata of each active virtual instance for further use.

In order to utilize at best the virtual machine instances provisioned from EC2, the pool implements a cost-effective optimization strategy. According to the current business model of Amazon, a virtual machine instance is charged by using one-hour time blocks. This means that if a virtual machine instance is used for 30 minutes, the customer is still charged for one hour of usage. In order to provide a good service to applications with a smaller granularity in terms of execution times, the EC2ResourcePool class implements a local cache that keeps track of the released instances whose time block is not expired yet. These instances will be reused instead of activating new instances from Amazon.

With the cost-effective optimization strategy, the pool is able to minimize the cost of provisioning resources from Amazon cloud and, at the same time, achieve high utilization of each provisioned resource.

[bookmark: page550]9.5	HYBRID CLOUD IMPLEMENTATION 2 7 1 263

7Source: http://www.networkworld.com/supp/2009/ndc3/051809-cloud-companies-to-watch.html (accessed December 2009). A more recent review ranked Amazon still in the top ten (Source: http://searchcloudcomputing.techtarget.com/generic/0,295582,sid201_gci1381115,00.html#slideshow)

[bookmark: page551]9.5	HYBRID CLOUD IMPLEMENTATION 2 7 2 263

Implementation Steps for Aneka Resource Provisioning Service

The resource provisioning service is a customized service which will be used to enable cloud bursting by Aneka at runtime. Figure 9.5 demonstrates one of the application scenarios that utilize resource provisioning to dynamically provision virtual machines from Amazon EC2 cloud.

The general steps of resource provisioning on demand in Aneka are the following:

●	The application submits its tasks to the scheduling service, which, in turns, adds the tasks into the scheduling queue.

The scheduling algorithm finds an appropriate match between a task and a resource. If the algorithm could not find enough resources for serving all the tasks, it requests extra resources from the scheduling service.

The scheduling service will send a ResourceProvisionMessage to provision service and will ask provision service to get X number of resources as determined by the scheduling algorithm.

	Message Dispatcher

	5. Start VMs

[bookmark: page552]9.5	HYBRID CLOUD IMPLEMENTATION 2 7 3 263

Master Machine

	1. Submit Tasks
	Aneka Container
	

	
	
	

	
	Membership Service
	

	Private Cloud
	
	2. Schedule

	
	
	

	
	1. Submit Tasks
	

	
	Scheduling Service
	Scheduling

	
	4. Provision
	3. Request Extra

	
	4. Provision
	

	
	Provision Service
	

	
	
	Task Queue

Public Cloud
Amazon EC2

Aneka

AMI

Aneka Workers

7. VM started, Join Aneka Network

9. Dispatch Task to Worker

	Message
	Aneka Worker Container

	
	9. Dispatch to Execute

	Dispatcher
	

	
	

FIGURE 9.5. Aneka resource provisioning (cloud bursting) over Amazon EC2.

	[bookmark: page553]9.6 VISIONARY THOUGHTS FOR PRACTITIONERS
	269

Upon receiving the provision message, the provision service will delegate the provision request to a component called resource pool manager, which is responsible for managing various resource pools. A resource pool is a logical view of a cloud resource provider, where the virtual machines can be provisioned at runtime. Aneka resource provisioning supports multiple resource pools such as Amazon EC2 pool and Citrix Xen server pool.

The resource pool manager knows how to communicate with each pool and will provision the requested resources on demand. Based on the requests from the provision service, the pool manager starts X virtual machines by utilizing the predefined virtual machine template already configured to run Aneka containers.

A worker instance of Aneka will be configured and running once a virtual resource is started. All the work instances will then connect to the Aneka master machine and will register themselves with Aneka membership service.

The scheduling algorithm will be notified by the membership service once those work instances join the network, and it will start allocating pending tasks to them immediately.

Once the application is completed, all the provisioned resources will be released by the provision service to reduce the cost of renting the virtual machine.

VISIONARY THOUGHTS FOR PRACTITIONERS

The research on the integration of public and private clouds is still at its early stage. Even though the adoption of cloud computing technologies is still growing, delivering IT services via the cloud will be the norm in future. The key areas of interest that need to be explored include security standardization; pricing models; and management and scheduling policies for heterogeneous environments. At the time of writing, only limited research has been carried out in these fields.

As briefly addressed in the introduction, security is one of the major concerns in hybrid clouds. While private clouds significantly reduce the security risks concerned by retaining sensitive information within corporate boundaries, in the case of hybrid clouds the workload that is delegated to the public portion of the infrastructure is subject to the same security risks that are prevalent in public clouds. In this sense, workload partitioning and classification can help in reducing the security risks for sensitive data. Keeping sensitive operations within the boundaries of the private part of the infrastructure and ensuring that the information flow in the cloud is kept under control is a naı¨ ve and probably often limited solution. The major issues that need to be addressed are the following: security of virtual execution environments (either hypervisors or

[bookmark: page554]managed runtime environments for PaaS implementations), data	retention,

[bookmark: page555]
possibility of massive outages, provider trust, and also jurisdiction issues that can break the confidentiality of data. These issues become even more crucial in the case of hybrid clouds because of the dynamic nature of the way in which public resources are integrated into the system. Currently, the security measures and tools adopted for traditional distributed systems are used. Cloud computing brings not only challenges for security, but also advantages. Cloud service providers can make sensible investments on the security infrastructure and provide more secured environments than those provided by small enterprises. Moreover, a cloud’s virtual dynamic infrastructure makes it possible to achieve better fault tolerance and reliability, greater resiliency to failure, rapid reconstruction of services, and a low-cost approach to disaster recovery. The lack of standardization is another important area that has to be covered.

Currently, each vendor publishes their own interfaces, and there is no common agreement on a standard for exposing such services. This condition limits the adoption of inter-cloud services on a global scale. As discussed in this chapter, in order to integrate IaaS solutions from different vendors it is necessary to implement ad hoc connectors. The lack of standardization covers not only the programming and management interface, but also the use of abstract representations for virtual images and active instances. An effort in this direction is the Open Virtualization Format (OVF) [25], an open standard for packaging and distributing virtual appliances or more generally software to be run in virtual machines. However, even if endorsed by the major representative companies in the field (Microsoft, IBM, Dell, HP, VMWare, and XenSource) and released as a preliminary standard by the Distributed Management Task Force, the OVF specification only captures the static representation of a virtual instance; it is mostly used as a canonical way of distributing virtual machine images. Many vendors and implementations simply use OVF as an import format and convert it into their specific runtime format when running the image. Additional effort has to be spent on defining a common method to represent live instances of applications and in providing a standard approach to customizing these instances during startup. Research in this area will be

necessary to completely eliminate vendor lock-in.8 In addition, when building a hybrid cloud based on legacy hardware and virtual public infrastructure, additional compatibility issues arise due to the heterogeneity of the runtime environments: almost all the hypervisors support the x86 machine model, which could constitute a technology barrier in the seamless transition from private environments to public ones. Finally, as discussed by Keahey et al. [26], there is a need for providing (a) a standardized way for describing and comparing the quality of service (QoS) offerings of different cloud services providers and (b) a standardized approach to benchmark those services. These are all areas that have to be explored in order to take advantage of heterogeneous clouds, which, due to their dynamic nature, require automatic methods for optimizing and monitoring the publicly provisioned services. An important step in providing a standardization path and to foster the adoption of cloud computing is the Open Cloud Manifesto,9 which provides a starting point for the promotion of open clouds characterized by interoperability between providers and true scalability

[bookmark: page556]for	applications.

Since the integration of external resources comes with a price, it is interesting to study how to optimize the usage of such resources. Currently, resources are priced in time blocks, and often their granularity does not meet the needs of enterprises. Virtual resource pooling, as provided by Aneka, is an initial step in closing this gap, but new strategies for optimizing the usage of external provisioned resources can be devised. For example, intelligent policies that can predict when to release a resource by relying on the statistics of the workload can be investigated. Other policies could identify the optimal number of resources to provision according to the application needs, the budget allocated for the execution of the application, and the workload. Research in this direction will become even more consistent when different pricing models will be introduced by cloud providers. In this future scenario, the introduction of a market place for brokering cloud resources and services will definitely give more opportunities to fully realize the vision of cloud computing. Each vendor will be able to advertise their services and customers will have more options to choose from, eventually by relying on meta-brokering services. Once realized, these opportunities will make the accessibility of cloud computing technology more natural and at a fairer price, thus simplifying the integration of existing computing infrastructure owned within the premises.

We believe that one of the major areas of interest in the next few years for what concerns the implementation and the deployment of hybrid clouds will be the scheduling of applications and the provisioning of resources for these applications. In particular, due to the heterogeneous nature of hybrid clouds, additional coordination between the private and the public service management becomes fundamental. Hence, cloud schedulers will necessarily be integrated with different aspects such as federate policy management tools, seamless hybrid integration, federated security, information asset management, coordinated provisioning control, and unified monitoring.

[bookmark: page557]

COMETCLOUD: AN AUTONOMIC CLOUD
ENGINE

10.1	INTRODUCTION

Clouds typically have highly dynamic demands for resources with highly heterogeneous and dynamic workloads. For example, the workloads associated with the application can be quite dynamic, in terms of both the number of tasks processed and the computation requirements of each task. Furthermore, different applications may have very different and dynamic quality of service (QoS) requirements; for example, one application may require high throughput while another may be constrained by a budget, and a third may have to balance both throughput and budget. The performance of a cloud service can also vary based on these varying loads as well as failures, network conditions, and so on, resulting in different “QoS” to the application.

Combining public cloud platforms and integrating them with existing grids and data centers can support on-demand scale-up, scale-down, and scale-out. Users may want to use resources in their private cloud (or data center or grid) first before scaling out onto a public cloud, and they may have a preference for a particular cloud or may want to combine multiple clouds. However, such integration and interoperability is currently nontrivial. Furthermore, integrating these public cloud platforms with exiting computational grids provides opportunities for on-demand scale-up and scale-down, that is cloudbursts.

In this chapter, we present the CometCloud autonomic cloud engine. The overarching goal of CometCloud is to realize a virtual computational cloud with resizable computing capability, which integrates local computational environments and public cloud services on-demand, and provide abstractions and mechanisms to support a range of programming paradigms and

[bookmark: page558]Cloud Computing: Principles and Paradigms, Edited by Rajkumar Buyya, James Broberg andAndrzej Goscinski Copyright r 2011 John Wiley & Sons, Inc.

275

[bookmark: page559]
applications requirements. Specifically, CometCloud enables policy-based autonomic cloudbridging and cloudbursting. Autonomic cloudbridging enables on-the-fly integration of local computational environments (data centers, grids) and public cloud services (such as Amazon EC2 and Eucalyptus [20]), and autonomic cloudbursting enables dynamic application scale-out to address dynamic workloads, spikes in demands, and other extreme requirements.

CometCloud is based on a decentralized coordination substrate, and it supports highly heterogeneous and dynamic cloud/grid infrastructures, integration of public/private clouds, and cloudbursts. The coordination substrate is also used to support a decentralized and scalable task space that coordinates the scheduling of task, submitted by a dynamic set of users, onto sets of dynamically provisioned workers on available private and/or public cloud resources based on their QoS constraints such as cost or performance. These QoS constraints along with policies, performance history, and the state of resources are used to determine the appropriate size and mix of the public and private clouds that should be allocated to a specific application request.

This chapter also demonstrates the ability of CometCloud to support the dynamic requirements of real applications (and multiple application groups) with varied computational requirements and QoS constraints. Specifically, this chapter describes two applications enabled by CometCloud, a computationally intensive value at risk (VaR) application and a high-throughput medical image registration. VaR is a market standard risk measure used by senior managers and regulators to quantify the risk level of a firm’s holdings. A VaR calculation should be completed within the limited time, and the computational requirements for the calculation can change significantly. Image registration is the process to determine the linear/nonlinear mapping between two images of the same object or similar objects. In image registration, a set of image registration methods are used by different (geographically distributed) research groups to process their locally stored data. The set of images will be typically acquired at different time, or from different perspectives, and will be in different coordinate systems. It is therefore critical to align those images into the same coordinate system before applying any image analysis.

The rest of this chapter is organized as follows. We present the CometCloud architecture in Section 10.2. Section 10.3 elaborates policy-driven autonomic cloudbursts,—specifically, autonomic cloudbursts for real-world applications, autonomic cloudbridging over a virtual cloud, and runtime behavior of CometCloud. Section 10.4 states the overview of VaR and image registration applications. We evaluate the autonomic behavior of CometCloud in Section 10.5 and conclude this paper in Section 10.6.

COMETCLOUD ARCHITECTURE

CometCloud is an autonomic computing engine for cloud and grid environments. It is based on the Comet [1] decentralized coordination

[bookmark: page560]substrate, and	it

[bookmark: page561]
supports highly heterogeneous and dynamic cloud/grid infrastructures, integration of public/private clouds, and autonomic cloudbursts. CometCloud is based on a peer-to-peer substrate that can span enterprise data centers, grids, and clouds. Resources can be assimilated on-demand and on-the-fly into its peer-to-peer overlay to provide services to applications. Conceptually, CometCloud is composed of a programming layer, a service layer, and an infrastructure layer; these layers are described in more detail in the following section. CometCloud (and Comet) adapts the Squid information discov ery scheme to deterministically map the information space onto the dynamic set of peer nodes. The resulting structure is a locality preserving semantic distributed hash table (DHT) on top of a self-organizing structured overlay. It maintains content locality and guarantees that content-based queries, using flexible content descriptors in the form of keywords, partial keywords, and wildcards, are delivered with bounded costs. Comet builds a tuple-based coordination space abstraction using Squid, which can be associatively accessed by all system peers without requiring the location information of tuples and host identifiers. CometCloud also provides transient spaces that enable applications to explicitly exploit context locality.

CometCloud Layered Abstractions

A schematic overview of the CometCloud architecture is presented in Fig ure 10.1. The infrastructure layer uses the Chord self-organizing overlay , and the Squid information discovery and content-based routing substrate built on top of Chord. The routing engine supports flexible content-based

Application

	
	Master/Worker/BOT
	
	
	
	

	Programming
	
	
	
	
	
	Workflow
	
	MapReduce/

	
	
	
	
	
	Task
	
	
	

	
	Scheduling
	
	Monitoring
	
	
	
	Hadoop

	layer
	
	
	
	
	
	
	
	

	
	
	
	
	consistency
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	Clustering/
	
	Coordination
	
	Publish/Subscribe

	
	Anomaly Detection
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	Discovery
	
	
	Event
	
	
	Messaging

	
	
	
	
	
	
	
	
	
	

[image:][image:]
Service layer

[bookmark: page562]

	
	Replication
	
	Load balancing

	Infrastructure
	
	
	
	

	
	Content-based routing
	
	Content security

	layer
	
	
	
	

	
	Self-organizing layer
	
	

	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	Data center/Grid/Cloud
	
	

	
	
	
	
	

[image:]

FIGURE 10.1. The CometCloud architecture for autonomic	cloudbursts.

[bookmark: page563]
routing and complex querying using partial keywords, wildcards, or ranges. It also guarantees that all peer nodes with data elements that match a query/ message will be located. Nodes providing resources in the overlay have different roles and, accordingly, different access privileges based on their credentials and capabilities. This layer also provides replication and load balancing services, and it handles dynamic joins and leaves of nodes as well as node failures. Every node keeps the replica of its successor node’s state, and it reflects changes to this replica whenever its successor notifies it of changes. It also notifies its predecessor of any changes to its state. If a node fails, the predecessor node merges the replica into its state and then makes a replica of its new successor. If a new node joins, the joining node’s predecessor updates its replica to reflect the joining node’s state, and the successor gives its state information to the joining node. To maintain load balancing, load should be redistributed among the nodes whenever a node joins and leaves.

The service layer provides a range of services to supports autonomics at the programming and application level. This layer supports the Linda-like tuple space coordination model, and it provides a virtual shared-space abstraction as well as associative access primitives. The basic coordination primitives are listed below:

out(ts, t): a nonblocking operation that inserts tuple t into space ts.

in (ts, t’):a blocking operation that removes a tuple t matching template t’ from the space ts and returns it.

●	rd (ts, t’): a blocking operation that returns a tuple t matching template t’from the space ts. The tuple is not removed from the space.

The out is for inserting a tuple into the space, and in and rd are for reading a tuple from the space are implemented. in removes the tuple after read, and rd only reads the tuple. We support range query, hence “*” can beused forsearching all tuples. The above uniform operators do not distinguish between local and remote spaces, and consequently the Comet is naturally suitable for context-transparent applications. However, this abstraction does not maintain geographic locality between peer nodes and may have a detrimental effect on the efficiency of the applications imposing context-awareness, for example mobile applications. These applications require that context locality be maintained in addition to content locality; that is, they impose requirements for context-awareness. To address this issue, CometCloud supports dynamically constructed transient spaces that have a specific scope definition (e.g., within the same geographical region or the same physical subnet). The global space is accessible to all peer nodes and acts as the default coordination platform. Membership and authentication mechanisms are adopted to restrict access to the transient spaces. The structure of the transient space is exactly the same as the global space. An application can switch between spaces at runtime and can simultaneously use multiple spaces. This layer also provides asynchronous

[bookmark: page564]
(publish/subscribe) messaging and evening services. Finally, on-line clustering services support autonomic management and enable self-monitoring and control. Events describing the status or behavior of system components are clustered, and the clustering is used to detect anomalous behaviors.

The programming layer provides the basic framework for application development and management. It supports a range of paradigms including the master/worker/BOT. Masters generate tasks and workers consume them. Masters and workers can communicate via virtual shared space or using a direct connection. Scheduling and monitoring of tasks are supported by the application framework. The task consistency service handles lost tasks. Even though replication is provided by the infrastructure layer, a task may be lost due to network congestion. In this case, since there is no failure, infrastructure level replication may not be able to handle it. This can be handled by the master, for example, by waiting for the result of each task for a predefined time interval and, if it does not receive the result back, regenerating the lost task. If the master receives duplicate results for a task, it selects the first one and ignores other subsequent results. Other supported paradigms include workflow-based applications as well as Mapreduce and Hadoop .

Comet Space

In Comet, a tuple is a simple XML string, where the first element is the tuple’s tag and is followed by an ordered list of elements containing the tuple’s fields. Each field has a name followed by its value. The tag, field names, and values must be actual data for a tuple and can contain wildcards (“*”) for a template tuple. This lightweight format is flexible enough to represent the information for a wide range of applications and can support rich matching relationships

. Further more, the cross-platform nature of XML makes this format suitable for information exchange in distributed heterogeneous environments. A tuple in Comet can be retrieved if it exactly or approximately matches a template tuple. Exact matching requires the tag and field names of the template tuple to be specified without any wildcard, as in Linda. However, this strict matching pattern must be relaxed in highly dynamic environments, since applications (e.g., service discovery) may not know exact tuple structures. Comet supports tuple retrievals with incomplete structure information using approximate matching, which only requires the tag of the template tuple be specified using a keyword or a partial keyword. Examples are shown in

Figure 10.2. In this figure, tuple (a) tagged “contact” has fields “name, phone, email, dep” with values “Smith, 7324451000, smith@gmail.com, ece” and can be retrieved using tuple template (b) or (c).

Comet adapts Squid information discovery scheme and employs the Hilbert space-filling curve (SFC) to map tuples from a semantic information space to a linear node index. The semantic information space, consisting of based-10 numbers and English words, is defined by application users. For example, a computational storage resource may belong to the 3D storage space with

[bookmark: page565]AUTONOMIC BEHAVIOR OF COMETCLOUD282281

	<contact>
	<contact>
	<contact>

	<name> Smith </name>
	<name> Smith </name>
	<na*> Smith </na*>

	<phone> 7324451000 </phone>
	<phone> 7324451000 </phone><*>

	<email>smith@gmail.com </email><email> * </email>
	<*>

	<dep> ece </dep>
	<dep> * </dep>
	<dep> ece </dep>

	</contact>
	</contact>
	</contact>

	(a)
	(b)
	(c)

FIGURE 10.2. Example of tuples in	CometCloud.

coordinates “space,” “bandwidth,” and “cost.” Each tuple is associated with k keywords selected from its tag and field names, which are the keys of a tuple.

For example, the keys of tuple (a) in Figure 10.2 can be “name, phone” in a 2D student information space. Tuples are local in the information space if their keys are lexicographically close, or if they have common keywords. The selection of keys can be specified by the applications.

A Hilbert SFC is a locality preserving continuous mapping from a k-dimensional (kD) space to a 1D space. It is locality preserving in that points that are close on the curve are mapped from close points in the kD space. The Hilbert curve readily extends to any number of dimensions. Its localitypreserving property enables the tuple space to maintain content locality in the index space. In Comet, the peer nodes form a one-dimensional overlay, which is indexed by a Hilbert SFC. Applying the Hilbert mapping, the tuples are mapped from the multi-dimensional information space to the linear peer index space. As a result, Comet uses the Hilbert SFC constructs the distribute hash table (DHT) for tuple distribution and lookup. If the keys of a tuple only include complete keywords, the tuple is mapped as a point in the information space and located on at most one node. If its keys consist of partial keywords, wildcards, or ranges, the tuple identifies a region in the information space. This region is mapped to a collection of segments on the SFC and corresponds to a set of points in the index space. Each node stores the keys that map to the segment of the curve between itself and the predecessor node. For example, as shown in Figure 10.3, five nodes (with id shown in solid circle) are indexed using SFC from 0 to 63, the tuple defined as the point (2, 1) is mapped to index 7 on the SFC and corresponds to node 13, and the tuple defined as the region (2—3, 1—5) is mapped to two segments on the SFC and corresponds to nodes 13 and 32.

[bookmark: page566]AUTONOMIC BEHAVIOR OF COMETCLOUD283281

AUTONOMIC BEHAVIOR OF COMETCLOUD

Autonomic Cloudbursting

The goal of autonomic cloudbursts is to seamlessly and securely integrate private enterprise clouds and data centers with public utility clouds on-demand, to provide the abstraction of resizable computing capacity. It enables the

[bookmark: page567]AUTONOMIC BEHAVIOR OF COMETCLOUD284281

	
	
	
	
	40
	
	
	40

	
	
	
	
	5
	
	28
	

	
	
	
	32
	
	
	
	31 32

	
	
	
	
	51
	
	11
	51

	1
	13
	
	
	
	
	13
	

	
	
	
	
	
	
	
	

	
	
	7
	
	1
	
	
	6

	
	
	2
	
	
	
	2
	3

	0
	13
	32
	40
	51
	0
	13
	

	0
	63
	0
	63

	(a)
	
	
	(b)

FIGURE 10.3. Examples of mapping tuples from 2D information space to 1D index space [1].

dynamic deployment of application components (which typically run on internal organizational compute resources) onto a public cloud to address dynamic workloads, spikes in demands, and other extreme requirements. Furthermore, given the increasing application and infrastructure scales, as well as their cooling, operation, and management costs, typical over-provisioning strategies are no longer feasible. Autonomic cloudbursts can leverage utility clouds to provide on-demand scale-out and scale-in capabilities based on a range of metrics.

The overall approach for supporting autonomic cloudbursts in CometCloud is presented in Figure 10.4. CometCloud considers three types of clouds based on perceived security/trust and assigns capabilities accordingly. The first is a highly trusted, robust, and secure cloud, usually composed of trusted/secure nodes within an enterprise, which is typically used to host masters and other

[bookmark: page568]AUTONOMIC BEHAVIOR OF COMETCLOUD285281

key (management, scheduling, monitoring) roles. These nodes are also used to store states. In most applications, the privacy and integrity of critical data must be maintained; as a result, tasks involving critical data should be limited to cloud nodes that have required credentials. The second type of cloud is one composed of nodes with such credentials—that is, the cloud of secure workers. A privileged Comet space may span these two clouds and may contain critical data, tasks, and other aspects of the application-logic/workflow. The final type of cloud consists of casual workers. These workers are not part of the space but can access the space through the proxy and a request handler to obtain (possibly encrypted) work units as long as they present required credentials. Nodes can be added or deleted from any of these clouds by purpose. If the space needs to be scale-up to store dynamically growing workload as well as requires more computing capability, then autonomic cloudbursts target secure worker to scale up. But only if more computing capability is required, then unsecured workers are added.

[bookmark: page569]10.3	AUTONOMIC BEHAVIOR OF COMETCLOUD282283

Space sharing zone

Robust/Secure	Generate

Task 1
Management	Computing	Get tasks	Secure Workers
Task 2

	agent
	agent
	
	Computing agent

	
	
	
	

	
	Comet
	
	

	Request Handler
	4. Send a task
	

	
	2. Forward requests in Round-robin
	5. Send results

	
	
	
	

[image:]

Datacenter

Grid

Clouds

1. Request a task

Unsecured Workers

Computing agent

FIGURE 10.4. Autonomic cloudbursts using	CometCloud.

[bookmark: page570]AUTONOMIC BEHAVIOR OF COMETCLOUD283283

Key motivations for autonomic cloudbursts	include:

Load Dynamics. Application workloads can vary significantly. Thisincludes the number of application tasks as well the computational requirements of a task. The computational environment must dynamically grow (or shrink) in response to these dynamics while still maintaining strict deadlines.

Accuracy of the Analytics. The required accuracy of risk analytics dependson a number of highly dynamic market parameters and has a direct impact on the computational demand—for example the number of scenarios in the Monte Carlo VaR formulation. The computational environment must be able to dynamically adapt to satisfy the accuracy requirements while still maintaining strict deadlines.

Collaboration of Different Groups. Different groups can run the sameapplication with different dataset policies . Here, policy means user’s SLA

bounded by their condition such as time frame, budgets, and economic models. As collaboration groups join or leave the work, the computational environment must grow or shrink to satisfy their SLA.

Economics. Application tasks can have very heterogeneous and dynamicpriorities and must be assigned resources and scheduled accordingly.

[bookmark: page571]AUTONOMIC BEHAVIOR OF COMETCLOUD284283

Budgets and economic models can be used to dynamically provision computational resources based on the priority and criticality of the application task. For example, application tasks can be assigned budgets and can be assigned resources based on this budget. The computational environment must be able to handle heterogeneous and dynamic provisioning and scheduling requirements.

Failures. Due to the strict deadlines involved, failures can be disastrous.The computation must be able to manage failures without impacting application quality of service, including deadlines and accuracies.

Autonomic Cloudbridging

Autonomic cloudbridging is meant to connect CometCloud and a virtual cloud which consists of public cloud, data center, and grid by the dynamic needs of the application. The clouds in the virtual cloud are heterogeneous and have different types of resources and cost policies, besides, the performance of each cloud can change over time by the number of current users. Hence, types of used clouds, the number of nodes in each cloud, and resource types of nodes should be decided according to the changing environment of the clouds and application’s resource requirements.

Figure 10.5 shows an overview of the operation of the CometCloud based autonomic cloudbridging. The scheduling agent manages autonomic
[image:]

Research site 1	Research site 2 [image:] Research site n

CometCloud

Scheduling agent	Policy

[bookmark: page572]AUTONOMIC BEHAVIOR OF COMETCLOUD285283
[image:]
	
	Cloud-Bridging
	

	Public
	Datacenter
	Grid

	
	
	

	
	
	

Virtually integrated working cloud

FIGURE 10.5. Overview of the operation of autonomic	cloudbridging.

[bookmark: page573]AUTONOMIC BEHAVIOR OF COMETCLOUD286283

cloudbursts over the virtual cloud, and there can be one or more scheduling agents. A scheduling agent is located at a robust/secure master site. If multiple collaborating research groups work together and each group requires generating tasks with its own data and managing the virtual cloud by its own policy, then it can have a separate scheduling agent in its master site. The requests for tasks generated by the different sites are logged in the CometCloud virtual shared space that spans master nodes at each of the sites. These tasks are then consumed by workers, which may run on local computational nodes at the site, a shared data center, and a grid or on a public cloud infrastructure. A scheduling agent manages QoS constraints and autonomic cloudbursts of its site according to the defined policy. The workers can access the space using appropriate credentials, access authorized tasks, and return results back to the appropriate master indicated in the task itself.

A scheduling agent manages autonomic cloudbridging and guarantees QoS within user policies. Autonomic cloudburst is represented by changing resource provisioning not to violate defined policy. We define three types of policies.

Deadline-Based. When an application needs to be completed as soon aspossible, assuming an adequate budget, the maximum required workers are allocated for the job.

Budget-Based. When a budget is enforced on the application, the numberof workers allocated must ensure that the budget is not violated.

Workload-Based. When the application workload changes, the number of

workers explicitly defined by the application is allocated or	released.

Other Autonomic Behaviors

Fault-Tolerance. Supporting fault-tolerance during runtime is critical tokeep the application’s deadline. We support fault-tolerance in two ways which are in the infrastructure layer and in the programming layer. The replication substrate in the infrastructure layer provides a mechanism to keep the same state as that of its successor’s state, specifically coordination space and overlay information. Figure 10.6 shows the overview of replication in the overlay. Every node has a local space in the service layer and a replica space in the infrastructure layer. When a tuple is inserted or extracted from the local space, the node notifies this update to its predecessor and the predecessor updates the replica space. Hence every node keeps the same replica of its successor’s local space. When a node fails, another node in the overlay detects the failure and notifies it to the predecessor of the failed node. Then the predecessor of the failed node merges the replica space into the local space, and this makes all the tuples from the failed node recovered. Also the predecessor node makes a new replica for the local space of its new successor. We also support faulttolerance in the programming layer. Even though replica of each node is maintained, some tasks can be lost during runtime because of network

[bookmark: page574]AUTONOMIC BEHAVIOR OF COMETCLOUD287283

	Master 2
	Worker 1
	Worker 2

	Master 1
	
	Worker 3

	
	
	

	Worker 6
	Worker 5
	Worker 4

	
	
	Local space

CometCloud

FIGURE 10.6. Replication overview in the CometCloud	overlay.

congestion or task generation during failure. To address this issue, the master checks the space periodically and regenerates lost tasks.

Load Balancing. In a cloud environment, executing application requestson underlying grid resources consists of two key steps. The first, which we call VM Provisioning, consists of creating VM instances to host each

	application request, matching the
	specific
	characteristics and requirements

	of the request. The second step is
	mapping
	and scheduling these requests

onto distributed physical resources (Resource Provisioning). Most virtualized data centers currently provide a set of general-purpose VM classes with generic resource configurations, which quickly become insufficient to sup port the highly varied and interleaved workloads. Furthermore, clients can easily underor overestimate their needs because of a lack of understanding of application requirements due to application complexity and/or uncer tainty, and this often results in over-provisioning due to a tendency to be conservative.

The decentralized clustering approach specifically addresses the distributed nature of enterprise grids and clouds. The approach builds on a decentralized messaging and data analysis infrastructure that provides monitoring and density-based clustering capabilities. By clustering workload requests across data center job queues, the characterization of different resource classes can be accomplished to provide autonomic VM provisioning. This approach has several advantages, including the capability of analyzing jobs across a dynamic set of distributed queues, the nondependency on a priori knowledge of the number of clustering classes, and the amenity for online application and timely adaptation to changing workloads and resources. Furthermore, the robust

[bookmark: page575]AUTONOMIC BEHAVIOR OF COMETCLOUD288283

nature of the approach allows it to handle changes (joins/leaves) in the job queue servers as well as their failures while maximizing the quality and efficiency of the clustering.

[bookmark: page576]AUTONOMIC BEHAVIOR OF COMETCLOUD289283

OVERVIEW OF COMETCLOUD-BASED APPLICATIONS

In this section, we describe two types of applications which are VaR for measuring the risk level of a firm’s holdings and image registration for medical informatics. A VaR calculation should be completed within the limited time, and the computational requirements for the calculation can change significantly. Besides, the requirement for additional computation happens irregularly. Hence, for VaR we will focus on how autonomic cloudbursts work for dynamically changing workloads. Image registration is the process to determine the linear/nonlinear mapping T between two images of the same object or similar objects that are acquired at different time, or from different perspectives. Besides, because a set of image registration methods are used by different (geographically distributed) research groups to process their locally stored data, jobs can be injected from multiple sites. Another distinguished difference between two applications is that data size of image registration is much larger than that of VaR. For a 3D image, the image size is usually a few tens of megabytes. Hence, image data should be separated from its task tuple, and instead it locates on a separate storage server and its location is indicated in the task tuple. For image registration, because it usually needs to be completed as soon as possible within budget limit, we will focus on how CometCloud works using budget-based policy.

Value at Risk (VaR)

Monte Carlo VaR is a very powerful measure used to judge the risk of portfolios of financial instruments. The complexity of the VaR calculation stems from simulating portfolio returns. To accomplish this, Monte Carlo methods are used to “guess” what the future state of the world may look like. Guessing a large number of times allows the technique to encompass the complex distributions and the correlations of different factors that drive portfolio returns into a discreet set of scenarios. Each of these Monte Carlo scenarios contains a state of the world comprehensive enough to value all instruments in the portfolio, thereby allowing us to calculate a return for the portfolio under that scenario.

The process of generating Monte Carlo scenarios begins by selecting primitive instruments or invariants. To simplify simulation modeling, invariants are chosen such that they exhibit returns that can be modeled using a stationary normal probability distribution . In practice these invariants are returns on stock prices, interest rates, foreign exchange rates, and so on. The universe of invariants must be selected such that portfolio returns are driven only by changes to the invariants.

To properly capture the nonlinear pricing of portfolios containing options, we use Monte Carlo techniques to simulate many realizations of the invariants. Each realization is referred to as a scenario. Under each of these scenarios, each option is priced using the invariants and the portfolio is valued. As outlined

[bookmark: page577]
above, the portfolio returns for scenarios are ordered from worst loss to best gain, and a VaR number is calculated.

Image Registration

Nonlinear image registration is the computationally expensive process to determine the mapping T between two images of the same object or similar objects acquired at different time, in different position or with different acquisition parameters or modalities. Both intensity/area based and landmark based methods have been reported to be effective in handling various registration tasks. Hybrid methods which integrate both techniques have demonstrated advantages in the literature [13—15].

Alternative landmark point detection and matching method are developed as a part of hybrid image registration algorithm for both 2D and 3D images [16]. The algorithm starts with automatic detection of a set of landmarks in both fixed and moving images, followed by a coarse to fine estimation of the nonlinear mapping using the landmarks. Intensity template matching is further used to obtain the point correspondence between landmarks in the fixed and moving images. Because there is a large portion of outliers in the initial landmark correspondence, a robust estimator, RANSAC [17], is applied to reject outliers. The final refined inliers are used to robustly estimate a Thin Spline Transform (TPS) [18] to complete the final nonlinear registration.

IMPLEMENTATION AND EVALUATION

In this section, we evaluate basic CometCloud operations first, and then compare application runtime varying the number of nodes after describing how the applications were implemented using CometCloud. Then we evaluate VaR using workload-based policy and Image registration using budget-based policy. Also we evaluate CometCloud with/without a scheduling agent. For deadline-based policy that doesn’t have a budget limit, because it allocates as many workers as possible, we applied it just to compare results with and without scheduling agent for budget-based policy.

Evaluation of CometCloud

Basic CometCloud Operations. In this experiment we evaluated the costs ofbasic tuple insertion and exact retrieval operations on the Rutgers cloud. Each machine was a peer node in the CometCloud overlay and the machines formed a single CometCloud peer group. The size of the tuple in the experiment was fixed at 200 bytes. Aing-pong-like process was used in the experiment, in which an application process inserted a tuple into the space using the out

[bookmark: page578]operator, read the same tuple using the rd operator, and deleted it using the in operator. In the experiment, the out and exact matching in/rd operators used

[bookmark: page579]
a three-dimensional information space. For an out operation, the measured time corresponded to the time interval between when the tuple was posted into the space and when the response from the destination was received. For an in or rd operation, the measured time was the time interval between when thetemplate was posted into the space and when the matching tuple was returned to the application, assuming that a matching tuple existed in the space. This time included the time for routing the template, matching tuples in the repository, and returning the matching tuple. The average performances were measured for different system sizes.

Figure 10.7a plots the average measured performance and shows that the system scales well with increasing number of peer nodes. When the number of peer nodes increases 32 times (i.e., from 2 to 64), the average round-trip time increases only about 1.5 times, due to the logarithmic complexity of the routing algorithm of the Chord overlay. rd and in operations exhibit similar

	
	(a)
	150
	
	
	
	
	

	
	
	140
	in a tuple
	
	
	
	

	
	
	
	rd a tuple
	
	
	
	

	130
	(ms)
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	120
	time
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	110
	Average
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	100
	
	
	
	
	
	
	

	90
	
	2000
	4000
	6000
	8000
	10000
	12000

	
	
	
	
	
	
	
	

[image:]
80	Number of tuples (average 110 bytes each)

70

60

	(b)
	140
	

	
	120
	out

	
	
	rd

	
	
	

	(ms)
	100
	

	tion Time
	
	

	
	
	

[image:]

[bookmark: page580]
	
	
	
	80
	
	
	
	
	
	

	
	
	
	60
	
	
	
	
	
	

	
	
	
	40
	
	
	
	
	
	

	
	
	
	20
	
	
	
	
	
	

	2
	4
	8
	16
	24
	32
	40
	48
	56
	64

Number of Nodes

FIGURE 10.7. Evaluation of CometCloud primitives on the Rutgers cloud. (a) Average time for out, in, and rd operators for increasing system sizes. (b) Average time for in and rd operations with increasing number of tuples. System size fixed at 4 nodes.

[bookmark: page581]
TABLE 10.1. The Overlay Join Overhead on Amazon EC2

	
	Number of Nodes
	Time (msec)

	
	
	

	
	10
	353

	
	20
	633

	
	40
	1405

	
	80
	3051

	
	100
	3604

	
	
	

performance, as shown in Figure 10.7a. To further study the in/rd operator, the average time for in/rd was measured using an increasing number of tuples. Figure 10.7b shows that the performance of in/rd is largely independent of the number of tuples in the system: The average time is approximately 105 ms as the number of tuples is increased from 2000 to 12,000.

Overlay Join Overhead. To share the Comet space, a node should join theCometCloud overlay and each node should manage a finger table to keep track of changing neighbors. When a node joins the overlay, it first connects to a predefined bootstrap node and sends its information such as IP address to the bootstrap. Then the bootstrap node makes a finger table for the node and sends it back to the node. Hence, the more nodes join the overlay at the same time, the larger join overhead happens. Table 10.1 shows the join overhead varying the number of joining nodes at the same time. We evaluated it on Amazon EC2, and the figure shows that the join overhead is less than 4 seconds even when 100 nodes join the overlay at the same time.

Application Runtime

All tasks generated by the master are inserted into the Comet space and each should be described by XML tags that are described differently for the purpose of an application. Data to be computed can be included in a task or outside of the task such as in a file server. To show each case, let VaR tasks include data inside the tuple and image registration tasks include data outside of the tuple because image data are relatively larger than VaR data. A typical out task for VaR is described as shown below.

, VarAppTask .
, TaskId . taskid , /TaskId .
, DataBlock . data_blocks , /DataBlock .
, MasterNetName . master_name , /MasterNetName .

[bookmark: page582], /VarAppTask .

In image registration, each worker processes a whole image, hence the number of images to be processed is the number of tasks. Besides, because

[bookmark: page583]
the image size is too large to be conveyed on a task, when the master generates tasks, it just includes the data location for the task as a tag. After a worker takes a task from the Comet space, it connects to the data location and gets data. A typical out task for image registration is described as shown below.

ImageRegAppTask .

TaskId . taskid , /TaskId .
ImageLocation . image_location , /ImageLocation .
MasterNetName . master_name , /MasterNetName .

/ImageRegAppTask .

Figure 10.8 shows the total application runtime of CometCloud-based (a) VaR and (b) image registration on Amazon EC2 for different number of scenarios. In this experiment, we ran a master on the Rutgers cloud and up to 80 workers on EC2 instances. Each worker ran on a different instance. We assumed that all workers were unsecured and did not share the Comet space. As shown in Figure 10.8a, and as expected, the application runtime of VaR decreases as the number of EC2 workers increases up to some points. However, when the number of workers is larger than some values, the application runtime increases (see 40 and 80 workers). This is because of the communication overhead that workers ask tasks to the proxy. Note that the proxy is the access point for unsecured workers even though a request handler sends a task to the worker after the proxy forwards the request to the request handler. If the computed data size is large and it needs more time to be completed, then workers will have less access the proxy and the communication overhead of the proxy will decrease. Figure 10.8b shows the performance improvement of image registration when the number of workers increases. The same as in VaR, when the number of workers increases, the application runtime decreases. In this application, one image takes around 1 minute to be completed, hence the communication overhead does not appear in the graph.

	
	
	60
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	(a) 200
	
	40
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	180
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	(sec)
	20
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	160
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	1
	5
	10
	20
	40
	80

	
	
	
	
	
	
	
	

	time
	0
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	140
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Execution
	
	
	
	
	
	
	
	
	
	
	
	
	
	Number of workers
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	120
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

100

80

[bookmark: page584][image:]
	(b) 7000
	
	
	
	
	100 Images

	
	
	
	
	
	3000 scenarios

	600
	
	
	
	
	1000 scenarios

	0
	
	
	
	
	

	
	
	
	
	
	time(sec)

	500
	
	
	
	
	

	
	
	
	
	
	Execution

	0
	
	
	
	
	

	400
	
	
	
	
	

	
	
	
	
	
	

	0
	1
	5
	10
	20
	40

	
	
	80
	
	
	

	300
	Number of workers
	

	0
	
	

	
	
	
	
	
	

	200
	
	
	
	
	

	0
	
	
	
	
	

	100
	
	
	
	
	

	0
	
	
	
	
	

	0
	
	
	
	
	

FIGURE 10.8. Evaluation	of	CometCloud-based	applications	on	Amazon	EC2.

(a) VaR. (b) Image	registration.

[bookmark: page585]
Autonomic Cloudbursts Behaviors

VaR Using Workload-Based Policy. In this experiment, autonomiccloudburst is represented by the number of changing workers. When the application workload increases (or decreases), a predefined number of workers are added (or released), based on the application workload. Specifically, we defined workload-specific and workload-bounded policies. In workload-specific, a user can specify the workload that nodes are allocated or released. In workloadbounded, whenever the workload increases by more than a specified threshold, a predefined number of workers is added. Similarly, if the workload decreases by more than the specified threshold, the predefined number of workers is released.

Figure 10.9 demonstrates autonomic cloudbursts in CometCloud based on two of the above polices—that is, workload-specific and workload-bounded. The figure plots the changes in the number of worker as the workload changes. For the workload-specific policy, the initial workload is set to 1000 simulations and the initial number of workers is set to 8. The workload is then increased or decreased by 200 simulations at a time, and the number of worked added or released set to 3. For workload-bounded policy, the number of workers is initially 8 and the workload is 1000 simulations. In this experiment, the workload is increased by 200 and decreased by 400 simulations, and 3 workers are added or released at a time. The plots in Figure 10.9 clearly demonstrate the cloudburst behavior. Note that the policy used as well as the thresholds can be changed on-the-fly.

Image Registration Using Budget-Based Policy. The virtual cloudenvironment used for the experiments consisted of two research sites located at Rutgers University and the University of Medicine and Dentistry of New Jersey: one public cloud (i.e., Amazon Web Service (AWS) EC2) and one private data center at Rutgers (i.e., TW). The two research sites hosted their own image servers and job queues, and workers running on EC2 or TW access these image servers to get the image described in the task assigned to them (see Figure 10.5). Each image

	12 (a)
	1800
	
	16
	
	(b)
	1800

	
	
	(number of simulations)
	1600
	
	14
	
	
	1600

	
	
	
	1400
	
	12
	
	
	1400

	
	
	
	
	
	
	
	
	

	10
	Workload
	
	
	
	
	Number of workers
	Workload (number ofsimulations)
	

	
	
	
	1200
	
	10
	
	
	1200

	
	
	
	1000
	
	
	
	
	1000

	
	
	
	
	
	8
	
	
	

	
	
	
	800
	
	
	
	
	800

	
	
	
	
	
	6
	
	
	

	
	
	
	600
	
	
	
	
	600

	
	
	
	
	
	4
	
	
	

	
	
	
	400
	Workload
	
	
	
	400

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	2
	
	
	

	
	
	
	200
	Number of workers
	
	
	
	200

	
	
	
	0
	
	0
	
	
	0

[image:][image:][image:][image:][image:][image:]

	
	of workers

	8
	Number

	6
	

	
	

	4
	

[image:]
	Workload
	2

	Number of workers
	

	
	

	
	0

[image:][image:][image:][image:][image:][image:]

[bookmark: page586]
	0
	235000
	0
	425000

	Time (ms)
	
	
	Time (ms)

FIGURE 10.9. Policy-based autonomic cloudburst using CometCloud. (a) Workloadspecific policy. (b) Workload-bounded policy.

[bookmark: page587]
server has 250 images resulting in a total of 500 tasks. Each image is twodimensional, and its size is between 17 kB and 65 kB. The costs associated with running tasks on EC2 and TW nodes were computed based on costing models presented in references 10 and 9, respectively. On EC2, we used standard small instances with a computing cost of $0.10/hour, data transfer costs of $0.10/GB for inward transfers, and $0.17/GB for outward transfers. Because the computing cost is charged by hourly base, users should pay for the full hour even though they use just a few minutes. However, in this experiment, we calculated the cost by seconds because the total runtime is less than an hour.

Costs for the TW data center included hardware investment, software, electricity, and so on, and were estimated based on the discussion in , which says that a data center costs $120K/life cycle per rack and has a life cycle of 10 years. Hence, we set the cost for TW to $1.37/hour per rack. In the experiments we set the maximum number of available nodes to 25 for TW and 100 for EC2. Note that TW nodes outperform EC2 nodes, but are more expensive. We used budget-based policy for scheduling where the scheduling agent tries to complete tasks as soon as possible without violating the budget. We set the maximum available budget in the experiments to $3 to complete all tasks. The motivation for this choice is as follows. If the available budget was sufficiently high, then all the available nodes on TW will be allocated, and tasks would be assigned until the all the tasks were completed. If the budget is too small, the scheduling agent would not be able to complete all the tasks within the budget. Hence, we set the budget to an arbitrary value in between. Finally, the monitoring component of the scheduling agent evaluated the performance every 1 minute.

Evaluation of CometCloud-Based Image Registration Application Enabled Scheduling Agent. The results from the experiments are plotted in Figure 10.10.Note that since the scheduling interval is 1 min, the x axis corresponds to both time (in minutes) and the scheduling iteration number. Initially, the CometCloud scheduling agent does not know the cost of completing a task. Hence, it initially allocated 10 nodes each from TW and EC2. Figure 10.10a shows the scheduled number of workers on TW and EC2 and Figure 10.10b shows costs per task for TW and EC2. In the beginning, since the budget is sufficient, the scheduling agent tries to allocate TW nodes even though they cost more than EC2 node. In the second scheduling iteration, there are 460 tasks still remaining, and the agent attempts to allocate 180 TW nodes and 280 EC2 nodes to finish all tasks as soon as possible within the available budget. If TW and EC2 could provide the requested nodes, all the tasks would be completed by next iteration. However, since the maximum available number of TW nodes is only 25, it allocates these 25 TW nodes and estimates that a completion time of 7.2 iterations. The agent then decides on the number of EC2 workers to be used based on the estimated rounds.

In case of the EC2, it takes around 1 minute to launch (from the start of virtual machine to ready state for consuming tasks); as a result, by the 4th

[bookmark: page588]

0

(b) 0.03

0.02

0.02

0.01

0.01

0.00

	(a)
	120

	
	EC2 schedule

	of workers
	100

	
	80

	
	60

	Number
	

	
	40

	
	

	
	20

	
	(c) 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

[image:]

	Used budget ($)

	Cost per task ($)

	[bookmark: page589]
	Time (min)
	
	
	
	
	
	
	
	

	1
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	EC2 cost

	2
	
	
	
	
	
	
	
	
	
	
	

	3
	
	
	
	
	
	
	
	
	
	
	

	4
	
	
	
	
	
	
	
	
	
	
	

	5
	
	
	
	
	
	
	
	
	
	
	

	6
	
	
	
	
	
	
	
	
	
	
	

	7
	
	
	
	
	
	
	
	
	
	
	

	8
	
	
	
	
	
	
	
	
	
	
	

	9
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10 11 12
	13

	1
	Time (min)
	
	
	
	
	
	
	
	

	0
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

[image:]
	1
	
	
	
	
	
	
	
	
	
	
	

	1
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10 11 12
	13

	
	
	
	
	
	
	
	
	
	
	
	

	1
	
	
	
	
	
	
	
	
	
	
	

	2
	Time (min)
	
	
	
	
	
	
	
	

	1
	
	
	
	
	
	
	
	
	
	
	

	3
	
	
	
	
	
	
	
	
	
	
	

FIGURE 10.10. Experimental evaluation of medical image registration using CometCloud. Results were obtained using the scheduling agent. (a) Scheduled number of nodes. (b) Calculated cost per task. (c) Cumulative budget usage over time.

[bookmark: page590]
iteration the cost per task for EC2 increases. At this point, the scheduling agent decides to decrease the number of TW nodes, which are expensive, and instead it decides to increase the number of EC2 nodes using the available budget. By the 9th iteration, 22 tasks are still remaining. The scheduling agent now decides to release 78 EC2 nodes because they will not have jobs to execute. The reason why the remaining jobs have not completed at the 10th iteration (i.e., 10 minutes) even though 22 nodes are still working is that the performance of EC2 decreased for some reason in our experiments. Figure 10.10c shows the used budget over time. It shows that all the tasks were completed within the budget and took around 13 minutes.

Comparison of Execution Time and Used Budget with/without Scheduling Agent. Figure 10.11 shows a comparison of execution time and used budgetwith/without the CometCloud scheduling agent. In the case where only EC2 nodes are used, when the number of EC2 nodes is decreased from 100 to 50 and 25, the execution time increases and the used budget decreases as shown in Figures 10.11a and 10.11b. Comparing the same number of EC2 and TW nodes (25 EC2 and 25 TW), the execution time for 25 TW nodes is approximately half that for 25 EC2 nodes; however, the cost for 25 TW nodes is significantly more than that for 25 EC2 nodes. When the CometCloud autonomic scheduling agent is used, the execution time is close to that obtained using 25 TW nodes, but the cost is much smaller and the tasks are completed within the budget. An interesting observation from the plots is that if you don’t have any limits on the number of EC2 nodes used, then a better solution is to allocate as many EC2 nodes as you can. However, if you only have a limited number of nodes to use and want to be guaranteed that your job is completed in limited budget, then the autonomic scheduling approach achieves an acceptable trade-off. Note that launching EC2 nodes at runtime impacts application performance because it

	(a)
	30
	
	10

	
	
	100 EC2
	

	
	
	
	

	
	
	50 EC2
	

	25
	
	
	5

	
	
	25 EC2
	

	(min)
	
	
	

	
	
	25 TW
	

	time
	
	
	

	
	
	Scheduled
	0

	20
	
	
	

	
	
	
	

	Execution
	
	
	

	15
	
	
	

[bookmark: page591]

(

b

)

8

.

0

7

.

0

	Used budget ($)

100 EC2

6.0 [image:][image:] 50 EC2

25 EC2
5.0

25 TW

	4.0
	Scheduled

	
	

	3.0
	

2.0

1.0

0.0

FIGURE 10.11. Experimental evaluation of medical image registration using CometCloud Comparison of performance and costs with/without autonomic scheduling.

(a) Execution time varying the number of nodes of EC2 and TW. (b) Used budget over time varying the number of nodes for EC2 and TW.

[bookmark: page592]ACKNOWLEDGMENTS	295

takes about a minute: A node launched at time t minutes only starts working at time t1 1 minutes. Since different cloud service will have different performance and cost profiles, the scheduling agent will have to use historical data and more complex models to compute schedules, as we extend CometCloud to include other service providers.

T-SYSTEMS’	CLOUD-BASED

SOLUTIONS	FOR	BUSINESS

APPLICATIONS

INTRODUCTION

Thanks to the widespread acceptance of the Internet, cloud computing has become firmly established in the private sphere. And now enterprises appear poised to adopt this technology on a large scale. This is a further example of the consumerization of IT—with technology in the consumer world driving developments in the business world.

T-Systems is one of Europe’s largest ICT service providers. It offers a wide range of IT, telecommunications, and integrated ICT services, and it boasts extensive experience in managing complex outsourcing projects. The company offers hosting and other services from its 75 data centers with over 50,000 servers and over 125.000 MIPS—in Europe, Asia, the Americas and Africa. In addition, it is a major provider of desktop and network services. T-Systems approaches cloud computing from the viewpoint of an organization with an established portfolio of dynamic, scalable services delivered via networks. The service provider creates end-to-end offerings that integrate all elements, in collaboration with established hardware and software vendors.

Cloud computing is an opportunity for T-Systems to leverage its established concept for services delivered from data centers. Cloud computing entails the industrialization of IT production, enabling customers to use services and resources on demand. Business, however, cannot adopt wholesale the

[bookmark: page593]principles of cloud computing from the consumer world. Instead, T-Systems aligns cloud computing with the specific requirements of large enterprises. This can mean rejecting cloud principles where these conflict with statutory requirements or security imperatives [1].

WHAT ENTERPRISES DEMAND OF CLOUD COMPUTING

Whether operated in-house or by an external provider, ICT is driven by two key factors (Figure 11.1): cost pressure and market pressure. Both of these call for increases in productivity.

Changing Markets

Today’s markets are increasingly dynamic. Products and skills rapidly become obsolete, eroding competitiveness. So incumbents need to find and implement new ideas at an ever faster pace. Also, new businesses are entering the market more rapidly, and they are extending their portfolios by forging alliances with other players.

The Internet offers the opportunity to implement new business models and integrate new stakeholders into processes—at speeds that were previously unimaginable. One excellent example is the automotive industry, which has brought together OEMs, suppliers, dealers, and customers on shared Internet
[image:][image:]

Drivers

Cost pressure
[image:]

• Convert fixed costs into variable costs

• Reduce (IT) administration costs
• Increase liquidity

Requirements

	Increased
	
	Market

	productivity
	
	pressure

	• Speed and ease of
	• Meet new

	use
	competition

	• Collaboration
	• New markets

	• New technologies
	(expansion)

	
	
	• New business

	
	
	models

	
	
	• Consolidation

[image:]

[bookmark: page594][image:]
	
	Demands on ICT
	

	• Speed
	
	
	• Security

	• Flexibility
	• Availability
	
	• Cost benefits

	• Scalabilit
	• Quality
	of
	• Transparency

	y
	service
	
	

Cloud computing

FIGURE 11.1. The route to cloud computing—industrialization of IT.

[bookmark: page595]platforms. In line with Web 2.0 principles, customers can influence vehicle development. This and other examples demonstrate the revolutionary potential of cloud computing.

Markets and market participants are changing at an unprecedented pace. New competitors are constantly entering the ring, and established enterprises are undergoing transformation. Value grids are increasing the number of joint ventures. This often leads to acquisitions, mergers, and divestments and gives rise to new enterprises and business models.

At the same time, markets have become more flexible. This not only enables enterprises to move into new lines of business with greater ease and speed, it also changes prevailing market conditions. Customers respond faster to changes in the supply of goods and services, market shares shift, some supply-and-demand relationships vanish completely, and individual markets shrink or disappear. These phenomena have, for instance, radically transformed the retail industry in recent years.

Against this background, companies not only need to scale up, but also to scale down—for example, if demand falls, or if they take a strategic decision to abandon a line of business or territory.

There is a need to respond to all these factors. Pressure is rising not only on management, but also on ICT—because business processes supported by ICT have to be rapidly modified to meet new imperatives. While the focus was on saving money, ICT outsourcing was the obvious answer. But traditional outsourcing cannot deliver the speed and agility markets now demand.

Today’s legacy ICT infrastructures have evolved over many years and lack flexibility. Moreover, few organizations can afford the capital investment required to keep their technology up to date. At the same time, ICT resources need to be quickly scaled up and down in line with changing requirements.

Intriguingly, ICT triggered this trend toward faster, more flexible businesses. Now, this has come full circle—with more dynamic businesses calling for more dynamic ICT.

Increased Productivity

Today, enterprise ICT and business processes are closely interwoven—so that the line between processes and technology is becoming blurred. As a result, ICT is now a critical success factor: It significantly influences competitiveness and value creation. The impact of fluctuations in the quality of ICT services (for example, availability) is felt immediately. The nonavailability of ERP (enterprise resource planning) and e-mail systems brings processes grinding to a halt and makes collaboration impossible. And the resulting time-to-market delays mean serious competitive disadvantage.

The demands are also increasing when it comes to teamwork and collaboration. Solutions not only have to deliver speed plus ease of use, they also have to support simultaneous work on the same documents, conduct team meet ings with participants on different continents, and provide the necessary

[bookmark: page596]
infrastructure (anywhere access, avoidance of data redundancy, etc.). That is no easy task in today’s environment.

Rising Cost Pressure

Globalization opens up new markets. But it also means exposure to greater competition. Prices for goods and services are falling at the same time that the costs for power, staff, and raw materials are rising. The financial crisis has aggravated the situation, with market growth slowing or stagnating. To master these challenges, companies have to improve their cost structures.

This generally means cutting costs. Staff downsizing and the divestment of loss-making units are often the preferred options. However, replacing fixed costs with variable costs can also contribute significantly—without resorting to sensitive measures such as layoffs. This improves liquidity. Money otherwise tied up in capital investment can be put to good use elsewhere. In extreme cases, this can even avert insolvency; most commonly, the resulting liquidity is used to increase equity, mitigating financial risk.

A radical increase in the flexibility of the ICT landscapes can deliver significant long-term benefits. It fundamentally transforms cost structures, since ICT-related expenses are a significant cost factor. ICT spending (for example, administration and energy costs) offers considerable potential for savings.

However, those savings must not be allowed to impact the quality of ICT services. The goal must be standardized, automated (i.e., industrialized), and streamlined ICT production. The high quality of the resulting ICT services increases efficiency and effectiveness and enhances reliability, thereby cutting costs and improving competitiveness.

In other words, today’s businesses expect a great deal from their ICT. It not only has to open up market opportunities, it also has to be secure and reliable. This means that ICT and associated services have to deliver speed, flexibility, scalability, security, cost-effectiveness, and transparency. And cloud computing promises to meet all these expectations.

DYNAMIC ICT SERVICES

Expectations differ considerably, depending on company size and industry. For example, a pharmaceuticals multinational, a traditional midsize retailer, and a startup will all have very different ICT requirements, particularly when it comes to certification.

However, they all face the same challenges: the need to penetrate new markets, to launch new services, to supply sales models, or to make joint offerings with partners. This is where dynamic ICT delivers tangible benefits. At first sight, it may seem paradoxical to claim that standardization can create

[bookmark: page597]flexibility. But industrialized production within the scope of outsourcing

[bookmark: page598]is not restrictive. In fact, quite the opposite: Industrialization provides the basis for ICT services that are dynamic, fast, in line with real-world requirements, and secure and reliable. ICT services of this kind are the foundation of a cloud that provides services on demand. Only by industrializing ICT is it possible to create the conditions for the flexible delivery of individual ICT services, and for combining them in advantageous ways.

Standardized production also enables ICT providers to achieve greater economies of scale. However, this calls for highly effective ICT management— on the part of both the service provider and the customer. Proven concepts and methodologies from the manufacturing industry can be applied to ICT. The following are particularly worth mentioning:

Standardization

Automation

Modularization

Integrated creation of ICT services

Steps Toward Industrialized	ICT

Standardization and automation greatly reduce production costs and increase the efficiency and flexibility of ICT. However, they come at a price: There is less scope for customization. This is something that everyone with a personal e-mail account from one of the big providers has encountered. Services of this kind fulfill their purpose, but offer only very stripped-down functionality and are usually free of charge. More sophisticated e-mail solutions are

available only via fee-based “premium” offerings. In	other	words,	lower

costs and simpler processes go hand in hand. And this is why companies have to streamline their processes. When it comes to standardization, ICT service providers focus on the technology while businesses focus on services and processes.

The growing popularity of standard software reflects this. In the ERP space, this trend has been evident for years, with homegrown solutions being replaced by standard packages. A similar shift can be observed in CRM, with a growing number of slimmed-down offerings available as software as a service (SaaS) from the cloud.

At the same time, standards-based modularization enables new forms of customization. However, greater customization of the solutions delivered to businesses reduces efficiency for providers, thereby pushing up prices. In the world of ICT, there is a clear conflict between customization and cost.

Standardization has the appeal (particularly for service providers) of cutting ICT production costs. This means that ICT providers have to take these arguments in favor of standardization seriously and adapt their production accordingly. For enterprise customers, security and compliance are also key considerations, alongside transparent service delivery, data storage, and

[bookmark: page599]
transfer. These parameters must be clearly defined in contracts and service-level agreements (SLAs).

Customization through Modularization

Modular production enables ICT to be tailored to customers’ specific requirements—in conjunction with standardization. Modularization allows providers to pool resources as the basis for delivering the relevant services .

Modularization is essentially a set of standardized individual modules that can be combined. The resulting combinations give rise to sophisticated applications tailored to the needs of the specific company. Standardized interfaces (e.g., APIs) between individual modules play a pivotal role. And one of the great strengths of modules is their reusability.

The more easily and flexibly such modules can be combined, the greater the potential benefits. Providers have to keep the number of modules as low as possible while meeting as many of their customers’ requirements as possible, and this is far from easy.

One example of modularization in a different context is combining Web services from various sources (mashups). In the cloud era, providers of modules of this kind claim that they enable users with no programming skills to support processes with ICT. However, experience shows that where such skills are lacking, a specialist integrator is generally called in as an implementation partner.

The benefit of modular services is that they can be flexibly combined, allowing standard offerings to be tailored to specific requirements. At the same time, they prevent customized solutions from straying too far from the standard, which would significantly drive up the costs of later modifications.

Integrated Creation of ICT Services

Each of the elements outlined above can have significant advantages. But only an integrated approach to creating ICT services—combining standardization, automation and modularization—can deliver the entire range of benefits. This gives the provider standardized, automated production processes and enables the desired services to be delivered to the customer quickly and flexibly.

In the context of outsourcing, this form of industrialization yields its full potential when providers and users have a close, two-way relationship with corresponding connectivity. This enables businesses to play an active part in production (ICT supply chain), tailoring ICT services to their changing needs. However, the technology that supports this relationship must be based on standards. Cloud computing promises to make switching to a different provider quick and easy, but that is only possible if users are careful to avoid provider

[bookmark: page600]lock-in.

[bookmark: page601]IMPORTANCE OF QUALITY AND SECURITY IN	CLOUDS

Quality (End-to-End SLAs)

If consumers’ Internet or ICT services are unavailable, or data access is slow, the consequences are rarely serious. But in business, the nonavailability of a service can have a grave knock-on effect on entire mission-critical processes— bringing production to a standstill, or preventing orders from being processed. In such instances, quality is of the essence. The user is aware of the performance of systems as a whole, including network connectivity. In complex software applications, comprising multiple services and technical components, each individual element poses a potential risk to the smooth running of processes. Cloud-service providers therefore have to offer end-to-end avail-ability, backed by clearly defined SLAs.

The specific quality requirements are determined by weighing up risk against cost. The importance of a particular process and the corresponding IT solution are assessed. The findings are then compared with the service levels on offer. As a rule, higher service levels come at a higher price. Where a process is not critical, businesses are often willing to accept relatively low availability to minimize costs. But if a process is critical, they will opt for a higher service level, with a corresponding price tag. So the quality question is not about combining the highest service levels, but about selecting the right levels for each service.

Compliance and Security

Compliance and security are increasingly important for cloud-computing providers. Security has been the subject of extensive media coverage and debate. And surveys consistently pinpoint it as the greatest obstacle to cloud computing. In a 2008 cio.com study, IT decision-makers cited security and loss of control over data as the key drawbacks of cloud computing.

However, for businesses looking to deploy a form of cloud computing, legal issues (e.g., privacy and liability) are considerably more important. And this is why cloud providers have to find ways of enabling customers to meet statutory requirements.

Consumer Cloud Versus Enterprise Cloud. The Internet has given rise tonew forms of behavior, even when concluding contracts on-line. When presented with general terms and conditions, many consumers simply check the relevant box and click “OK,” often not realizing that they are entering into a legally binding agreement. Standard contracts are now commonly used for consumer services offered from the cloud. However, this does not meet the demands of businesses.

Cloud computing raises no new legal issues, but it makes existing ones more complex. This increased complexity is due to two factors. On the one hand, cloud computing means that data no longer have to reside in a single location.

[bookmark: page602]
On the other hand, business scenarios involving multiple partners are now conceivable. It is therefore often impossible to say exactly where data are stored and what national legislation applies. And where data are handled by multiple providers from different countries (sometimes on the basis of poorly structured contracts), the issue of liability becomes correspondingly complex.

Cloud Computing from an Enterprise Perspective. With this in mind,businesses should insist on comprehensive, watertight contracts that include provisions for the recovery and return of their data, even in the event of provider bankruptcy. Moreover, they should establish the country where servers and storage systems are located. Cloud principles notwithstanding, services still have to be performed and data stored at specific physical locations. Where data are located determines whose law applies and also determines which government agencies can access it. In addition to these “hard” factors, enterprises have to consider that data-privacy cultures differ from country to country.

Having the legal basis for liability claims is one thing; successfully prosecuting them is quite another. This is why it is important to know the contractually agreed legal venue. Moreover, it is useful to have a single end-to-end service level agreement defining availability across all services.

Even stricter statutory requirements apply where data are of a personal nature (e.g., employee details in an HR system). Financial data are also subject to stringent restrictions. In many parts of Europe, personal data enjoys special protection. But even encryption cannot guarantee total security. Solutions that process and store data in encrypted form go a long way toward meeting statutory data-protection requirements. However, they are prohibited in some countries. As a result, there are limits to secure data encryption in the cloud.

Companies listed on the U.S. stock exchange are subject to the Sarbanes— Oxley Act (SOX), requiring complete data transparency and audit trails. This poses particular challenges for cloud providers. To comply with SOX 404, CEOs, CFOs, and external auditors have to report annually on the adequacy of internal control systems for financial reporting. ICT service providers are responsible for demonstrating the transparency of financial transactions. However, providing this evidence is especially difficult, if not impossible, in a cloud environment. This is a challenge that cloud providers must master—if necessary, by departing from cloud principles.

Service providers also have to ensure that data are not lost and do not fall into the wrong hands. The EU has data-security regulations that apply for all European companies. For example, personal details may only be disclosed to third parties with the consent of the individual involved. Moreover, publicsector organizations generally insist on having sensitive data processed in their home country. This is a particularly thorny issue when it comes to patents, since attitudes to intellectual property differ greatly around the world.

Moreover, some industries and markets have their own statutory requirements. It is therefore essential that customers discuss their specific needs with

[bookmark: page603]
the provider. And the provider should be familiar with industry-specific practices and acquire appropriate certification.

Providers also have to safeguard data against loss, and businesses that use cloud services should seek a detailed breakdown of disaster-recovery and business-continuity plans.

Other legal issues may arise directly from the technology behind cloud computing. On the one hand, conventional software licensing (based on CPUs) can run counter to cloud-computing business models. On the other hand, licenses are sometimes subject to geographical restrictions, making it difficult to deploy them across borders.

What Enterprises Need. Cloud computing and applicable ICT legislation arebased on diametrically opposed principles. The former is founded on liberalism and unfettered development—in this case, of technical opportunities. The latter imposes tight constraints on the handling of data and services, as well as on the relationship between customers and providers. And it seems unlikely that these two perspectives will be reconciled in the near future.

Cloud providers have to meet the requirements of the law and of customers alike. As a rule, this leads them to abandon some principles of “pure” cloud computing—and to adopt only those elements that can be aligned with applicable legislation and without risk. However, deployment scenarios involving services from a public cloud are not inconceivable. So providers have to critically adapt cloud principles.

Furthermore, providers working for major corporations have to be dependable in the long term, particularly where they deliver made-to-measure solutions for particular business processes. This is true whether the process is critical or not. If a provider goes out of business, companies can expect to be without the service for a long time. So before selecting a cloud provider, customers should take a long hard look at candidates’ services, ability to deliver on promises, and, above all, how well SLAs meet their needs .

DYNAMIC	DATA	CENTER—PRODUCING	BUSINESS-READY,

DYNAMIC ICT SERVICES

Flexibility Across All Modules

Agility at the infrastructure level alone is not enough to provide fast, flexible ICT services. Other dynamic levels and layers are also required (Figure 11.2) . Ultimately, what matters to the user is the flexibility of the system or service as a whole. So service quality is determined by the slowest component.

Adaptable processing and storage resources at the computing level must be supported by agile LAN and WAN infrastructures. Flexibility is also important when it comes to application delivery, scalability, and extensibility via

[bookmark: page604]functional modules. Management processes must allow for manual intervention,

[bookmark: page605][image:]

BBuusisnineesssspprroocceesses

[image:][image:][image:][image:][image:][image:][image:]Application management services/staff

	…
	SAP
	Lotus
	Oracle
	Desktop
	Web
	Archiv-
	Voice
	Ex-
	…

	
	
	
	
	
	services
	ing
	
	
	

	SLAs
	
	
	
	
	
	
	
	
	SLAs

	
	
	Processing power (computing, data, storage, archive)
	
	

	Endto E----nd
	
	
	
	End-to End--

	
	
	
	
	Networks (LAN, WAN)
	
	
	

	
	
	
	
	
	
	
	

	Standardize
	
	Consolidate
	
	Virtualize
	
	Automate

FIGURE 11.2. Flexibility at all levels is a basic requirement for cloud computing.

where necessary, and automatically link the various layers. These factors enable the creation of end-to-end SLAs across all components.

Every dynamic ICT service is based on a resource pool from which computing, data, and storage services can be delivered as required. Dynamic network and application services are also available. Moreover, the (business) applications are optimized for deployment with pooled resources.

When customers opt for a dynamic service, they require an SLA that covers not only individual components, but also the service as a whole, including any WAN elements.

[bookmark: page606]
Toward Dynamic, Flexible ICT Services. The first step is to standardize thecustomer’s existing environment. IT systems running different software releases have to be migrated, often to a single operating system. Hardware also has to be standardized—for example, by bringing systems onto a specific processor generation (such as x86). Eliminating disparate operating systems and hardware platforms at this stage makes it considerably easier to automate further down the line.

The second step is technical consolidation. This not only reduces the number of physical servers, but also slims down data storage. Identical backup and restore mechanisms are introduced at this stage; and small, uneconomical data centers are closed.

The third step involves separating the logical from the physical. Virtualization means that services no longer depend on specific hardware. This has particular benefits in terms of maintenance. Moreover, virtualization enables server resources to be subdivided and allocated to different tasks.

[bookmark: page607]
Process automation is more than just another component—it is key to meeting the rising demand for IT services. What’s more, it slashes costs, improves efficiency (for example, by preventing errors), and accelerates standard procedures. Providers’ ability to offer cloud-computing services will largely depend on whether they can implement mechanisms for automatic management, allocation, and invoicing of resources.

In the business world, automation must also support seamless integration of financial, accounting, and ordering systems.

T-Systems’ Core Cloud Modules: Computing,	Storage

Computing. The computing pool is based on server farms located in differentdata centers. Logical server systems are created automatically at these farms. The server systems comply with predefined standards. They are equipped with the network interface cards required for communications and integration with storage systems. No internal hard drives or direct-attached storage systems are deployed.

The configuration management database (CMDB) plays a key role in computing resource pools (Figure 11.3). This selects and configures the required physical server (1). Once a server has been selected from the pool, virtualization technology is selected in line with the relevant application and the demands it has to meet (2). At the same time, the configuration requirements are sent to the network configuration management system (3) and to the storage configuration management system (4). Once all the necessary elements are in place, the storage systems are mounted on the servers, after which the operating-system images are booted (5).

[bookmark: page608]
	
	
	
	
	5

	4
	
	Virtualization
	

	
	VMWare
	Solaris LDOM
	Integrity VM
	IBM Power 5 LPAR

	
	Storage, data
	
	
	Network

	
	2
	Configuration management
	3

	1
	DC1
	
	
	DC2

	
	
	
	
	

DWDM

FIGURE 11.3. Provision of computing resources.

	[bookmark: page609]11.5 DYNAMIC DATA CENTER—PRODUCING BUSINESS-READY, DYNAMIC ICT SERVICES
	311

Cloud computing enables a customer’s application to be switched from server to server within a defined group at virtually any interval (from minutes to hours or days). This means that the configuration database must be updated automatically to accurately reflect the current state of systems and configurations at all times.

The CMDB also supports other tasks that are not required in conventional ICT environments. These include enhanced monitoring and reporting, quality management, and corresponding resource planning. Moreover, an ongoing inventory of systems and their configurations is essential for rapid troubleshooting.

Operating systems are provided in the form of images stored on a central storage system. These are in read-only mode to ensure rapid startup. To limit the number of operating systems and releases—and minimize related administrative effort—only one version of each operating system is maintained. This is employed to configure and boot the servers. This high degree of standardization significantly reduces administration overhead.

Applications Are Also Virtualized. Speed is of the essence for cloud-computingproviders. Decoupling operating systems from applications plays a key role here, because it reduces both initial and subsequent application-provisioning time (following a failure, for example). Making applications available is simply a matter of mounting them. This approach has other advantages: Applications can quickly be moved from one server to another, and updates can be managed independently of operating systems.

However, the full benefits can only be realized if there is a high degree of automation and standardization in the IT infrastructure and the applications themselves.

Storage. The necessary storage is provided and configured in much the sameway as the computing resources. IP-based storage systems are deployed. To reduce hardware-configuration effort, the computing systems use neither SAN nor direct-attached storage.

Using fiber-channel (FC) cards in the servers and deploying an FC network increases overall system complexity substantially. The IP storage systems are linked via Gbit Ethernet. Storage is automatically allocated to the server systems that require it.

Storage resources are located in different fire zones as well as in different data centers, preventing data loss in the event of a disaster. The storage system handles replication of data between data centers and fire zones, so computing resources are not needed for this purpose (Figure 11.4).

Backup-Integrated Storage. In addition to storage resources, backups arenecessary to safeguard against data loss. For this reason, and in the interests of automation, the Dynamic Data Center model directly couples backup to

	[bookmark: page610]11.5 DYNAMIC DATA CENTER—PRODUCING BUSINESS-READY, DYNAMIC ICT SERVICES
	311

	
	Backup
	
	

	Data
	Integrated
	OS
	Archive

	
	Application
	
	

	
	Data, backup and configuration management
	

	
	Backup
	Backup
	

	DC 1
	Snapshot
	
	DC 2

	
	DWDM
	
	

Mirror

FIGURE 11.4. Storage resources: backup-integrated, read-only, and archive storage.

storage; in other words, backup-integrated storage (BIS) is provided, along with full management functionality.

To accelerate backup and reduce the volume of data transferred, data are backed up on hard disks within the storage system by means of snapshotting. This simplifies the structure of the computing systems (as no backup LAN is necessary) and minimizes the potential for temporal bottlenecks.

Storage systems normally provide for a 35-day storage period. Usually, the last three days are accessible on-line, with the rest being accessible from a remote site.

Archive and Other Storage. Archive systems are also available for long-termdata storage. Like BIS, these are hard-disk-based and linked via IP to the respective systems. Data for archiving is replicated within the archive system and in a separate fire zone, as well as at a remote data center. Replication is handled by the archive system itself.

Archive storage can be managed in two ways. Archiving can be initiated either from the applications themselves, which then handle administration of all data, or via a document management system.

Some systems require a hard-disk cache. This is not worth backing up via BIS, since data in a cache change rapidly, and the original data are stored and backed up elsewhere in the system.

	[bookmark: page611]11.5 DYNAMIC DATA CENTER—PRODUCING BUSINESS-READY, DYNAMIC ICT SERVICES
	311

Communications. The computing and storage modules are integrated via anautomatically configured LAN or corresponding virtual networks (VPNs). The

[bookmark: page612]
servers deployed in the computing module are equipped with multiple network cards as standard. Depending on requirements, these are grouped to form the necessary networks.

Networks are segregated from each other by means of VPN technology. Backup-integrated storage eliminates the need for a separate backup network.

Customer Network. Access for customers is provided via Internet/VPNconnections. Services are assigned to companies by means of unique IP addresses. As standard, access to Dynamic Data Centers is protected via redundant, clustered firewalls. Various versions are available to cater to a range of different customer and application requirements. Virtual firewalls are configured automatically. Due to the high level of standardization, access is entirely

IP-based.

Storage and Administration Network. A separate storage network is providedfor accessing operating-system images, applications, and customer and archive data. Configuration is handled automatically. An additional network, segregated from the others, is available for managing IT components. Used purely for systems configuration and other administration tasks, this network has no access to the customer’s data or content.

Dynamic Services—A Brief Overview

The Dynamic Data Center concept underlies all T-Systems Dynamic Services. All the resources required by a given service are automatically provided by the data center. This lays the foundations for a portfolio of solutions aimed at business customers.

Dynamic Applications for Enterprises. Enterprises require applicationsthat support specific processes. This applies both to traditional outsourcing and to business relationships in the cloud. T-Systems has tailored its portfolio to fulfill these requirements.

Communications and Collaboration. These are key components for anycompany. Work on projects often entails frequent changes in user numbers. As a result, enterprises need flexible means of handling

communications and collaboration. T-Systems offers the two leading e-mail systems, Microsoft Exchange and IBM Lotus Domino via Dynamic Services, ensuring their rapid integration into existing environments.

ERP and CRM. Dynamic systems are available to support core ERP andCRM processes. T-Systems offers SAP and Navision solutions in this space.

[bookmark: page613]Development and Testing. Software developers often need access—at shortnotice and for limited periods of time—to server systems running a variety of operating system versions and releases. Dynamic Services offer the

[bookmark: page614]
flexibility needed to meet these demands. Configured systems that are not currently required can be locked and mothballed. So when computing resources are no longer needed, no further costs are incurred. That is the advantage of Dynamic Services for developers.

Middleware. When it comes to middleware, Dynamic Services can lay thefoundation for further (more complex) services. In addition, businesses can deploy them directly and integrate them into their own infrastructure.

The common term for offerings of this type is platform-as-a-service (PaaS). T-Systems’ middleware portfolio includes dynamic databases, Web servers, portals, and archiving components.

Front-Ends and Devices. Not only business applications, but alsousers’PCsystems, can be provided via the cloud. These systems, including office applications, can be made available to users via Dynamic Desktop Services.

Introducing New Services in a Dynamic Data Center. Cloud computing isdeveloping at a rapid pace. This means that providers have to continuously review and extend their offerings. Here, too, a standardized approach is key to ensuring that the services delivered meet business customers’ requirements.

First, automatic mechanisms have to be developed for standardizing the installation of typical combinations of operating system, database, and application software. These mechanisms must also support automated procedures for starting and stopping applications. The software components and their automatic management functions are subject to release and patch management procedures agreed with the vendors.

Deploying the combination of version and patches authorized by the vendor enables a provider to assume end-to-end responsibility for a service. Automatic monitoring and monthly reports are put in place for each service. An operating manual is developed and its recommendations tested in a pilot installation before the production environment goes live. The operating manual includes automatic data backup procedures.

Next, a variety of quality options are developed. These can include redundant resources across multiple fire zones. A concept for segregating applications from each other is also created. This must include provisions for selectively enabling communications with other applications via defined interfaces, implemented in line with customer wishes. Only after EU legislation (particularly regarding liability) has been reviewed is the application rolled out to data centers worldwide.

Dynamic Data Centers Across the	Globe

T-Systems delivers Dynamic Services from multiple data centers around the world (Figure 11.5). These are mostly designed as twin-core facilities; in other words, each location has two identical data centers several kilometers apart.

[bookmark: page615]

	Dynamic Services
	All legal requirements

	Cost
	

	
	

	monitoring
	(German, EU and US) for

	
	

	with cockpit
	Establishment

	functionality-
	

	with daily
	

[image:]
	First customer
	
	of first
	
	Deutsche
	

	
	
	international
	
	
	

	
	
	
	Dynamic Data
	
	
	

	on the dynamic
	
	
	Europe’s largest
	Telekom/DKK
	

	
	
	
	DDC Jackson-
	
	project
	

	
	
	
	SAP Pinnacle
	
	
	

	
	
	
	ville/USA
	
	Migrated one of the

	
	
	
	1,000th
	
	world’s largest SAP

	15
	
	
	
	systems to a
	

	
	
	DDC
	
	
	

	
	
	
	
	
	dynamic platform.

	Dynamic Data
	
	
	
	

	
	
	DDC Munich
	
	9 TB database
	

	
	
	
	
	
	
	Run SAP

	
	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	
	

	2004 . . .
	2006
	2007
	2008
	2009
	2010

FIGURE 11.5. The development of Dynamic Services.

All Dynamic Data Centers are based on the original concept used for the first data center of this kind in Frankfurt. There are currently facilities in the United States, Brazil, Germany, Singapore, and Malaysia.

CASE STUDIES

The industrialization of outsourcing not only impacts costs, it also affects customers’ business processes and sourcing strategies. In terms of sourcing, the effects depend on the company’s current ICT and on the size of the enterprise.

This is particularly obvious in the case of startups or businesses with an existing

[bookmark: page616]ICT infrastructure.

Dynamic ICT Services for Startups. Startups often have no ICT infrastructureand lack the knowledge required to establish and operate one. However, to put their business concepts into practice, companies of this kind need rapid access to reliable, fully functional ICT services. And because it is difficult to predict how a startup will grow, its ICT has to offer maximum scalability and flexibility, thereby enabling the company to meet market requirements. Moreover, few venture capitalists are prepared to invest in inflexible hardware and software that has to be depreciated over a number of years.

By deploying dynamic ICT services, a startup can find its feet in those early, uncertain stages—without maintaining in-house ICT. And if demand falls, the company does not have to foot the bill for unneeded resources. Instead, it can quickly and easily scale down—and invest more capital in core tasks.

Dynamic ICT Services at Companies with Existing ICT Infrastructures. Incomparison to startups, most large companies already have established ICT

[bookmark: page617]
departments, with the skills needed to deliver the desired services. These inhouse units often focus on ICT security rather than flexibility. After all, a company’s knowledge and expertise resides to a large extent in its data. These data must be secure and available at all times—because it is often a businesscritical asset, the loss of which could jeopardize the company’s future.

In addition to cost savings, companies that use Dynamic Services benefit from greater transparency—it is clear at all times which resources are available and which are currently being used.

The opportunity to source ICT as a service opens up a wide range of new options. For example, an international player with a complex legacy environment can introduce Dynamic Services for SAP Solutions for a specific business segment by adding resources to its German company and then rolling these out to its other national subsidiaries. This kind of dynamic ICT provisioning also enables fast, flexible penetration of new markets, without the need for advance planning and long-term operation of additional ICT resources. And seasonal fluctuations in business can be dealt with even more easily.

Figure 11.6 shows the flexible and dynamic provisioning of resources. Provisioning starts during the implementation phase, with a development and test environment over a one-month period. This is followed by go-live of the production environment. Additional development and training resources can be accessed rapidly, if and when required.

Example: Dynamic Infrastructure Services

A mid-sized furniture manufacturer with over 800 employees leverages dynamic infrastructure services. Within the scope of make-to-order manufacturing, the company produces couches and armchairs in line with customers’ specific needs. On average, it makes some 1500 couches and armchairs daily. During the

Performance upgrades for quaterly reports
[image:]

	
	
	2 weeks
	

	
	
	1 month
	

	Performance
	
	test
	

	
	3 month
	
	

	
	
	
	

	
	development
	
	

	
	2006
	2007
	2008

[bookmark: page618]available on a day-by-day base

FIGURE 11.6. Flexible ICT provisioning for dynamic markets.

[bookmark: page619]
summer months, this figure is almost halved—and use of the company’s in-house IT falls accordingly. In June 2005, the IT department outsourced data backup and provisioning of mainframe resources to T-Systems. The service provider now provides these as services, on a pay-per-use basis. As a result, the furniture manufacturer no longer has to maintain in-house IT resources sized for peak loads. Instead, its IT infrastructure is provided as a service [infrastructure as a service (IaaS)].

If the data volume or number of users suddenly rises or falls, the company can scale its resources up or down—and costs increase or decrease accordingly. At the same time, it benefits from a solution that is always at the leading edge of technology, without having to invest in that technology itself. Through regular reporting, the customer also gains new transparency into the services it uses. Around-the-clock monitoring provides maximum protection against system failure and downtime. And the service provider backs up data from production planning, on-line sales, transactions, e-mails, and the ERP system at one of its data centers.

Example: Dynamic Services for SAP

Infrastructure services like these enable the delivery of more complex services. In this context, T-Systems specializes in business-critical applications supported by SAP. So far about 100 European-based companies use Dynamic Services from T-Systems. Among them are Shell, Philips, Linde, and MAN.

In this case a global group with a workforce of almost 500,000 in 60 countries operates in various business segments. However, its core business is direct sales: The enterprise sells its products via sales partners, who process 110,000 orders each week using the central SAP system. If these orders are not processed, payment will not be received; as a result, system failure could significantly impact the company. Furthermore, around one million calls (in Germany alone) are handled each year in the CRM module, as are tasks ranging from a simple change of address to changes in financing arrangements.

The group’s IT strategy is therefore focused on ensuring efficient, effective IT support for its international direct sales.

Due to weekly commissions for sales employees and the unpredictable nature of call-center activities, system-sizing estimates can vary by up to

500%. In addition, the rapid development of the company’s SAP R/3 solution, in conjunction with an international rollout, has significantly increased IT resource requirements. Because it was virtually impossible to quantify these factors in advance, the company decided to migrate to a dynamic platform for future delivery of its SAP services. The entire application was transferred to T-Systems’ data center, where it has been operated using a Dynamic Services model since January 2006.

With the move, the group has implemented a standardization strategy that enables flexible adaptation of business processes and makes for more straightforward and transparent group-wide reporting. With a conventional

[bookmark: page620]
infrastructure sized for peak loads, SAP R/3 operating costs would have been twice as high as with the current dynamic solution. Furthermore, the company now has the opportunity to scale its resources up or down by 50% within a single day.

DKK: Europe’s Largest SAP Installation Is Run in a Private Cloud

Many simple applications and small-scale, non-core systems already run in the cloud. And now, some enterprises are having larger-scale, mission-critical apps delivered in this way, or via their own secure clouds. For example, Deutsche Telekom currently utilizes ICT services from a private cloud for some of its business-critical processes.

This move was motivated by the desire to establish a highly scalable, ondemand system for processing invoicing and payments and for managing customer accounts and receivables. Deutsche Telekom’s revenue management system, DKK, handles more than 1.5 million payments a day from approximately 30 million customers, making it one of the largest SAP installations in the world (Figure 11.5).

T-Systems migrated the legacy server environment, comprising two monolithic systems with a capacity of some 50,000 SAPS, to a highly standardized, rapidly scalable solution based on Dynamic Services for SAP. Performance improved by more than 20%, while costs sank by 30%.

The customer can freely scale ICT resources up or down. Furthermore, a disaster recovery solution was established at a second, remote data center for failure protection. The system currently handles nine terabytes of data.

The significant cost reductions are the result of vendor-independent standardizationofhardwarewithclustereddeploymentofcommoditycomponents, backupintegrated storage, and extensively standardized processes and procedures.

Quantifiable improvements, in technical terms, include a 45% drop in server response times and a 40% reduction in batch-job processing times. Even client response times have shrunk by close to 10%. This means that the new platform significantly exceeds the targeted 20% improvement in overall system performance. The dynamic cloud solution has proved more cost-effective, and delivers better performance, than an environment operated on traditional lines. The transition tothe new platform did notinvolve modifications tothe customdeveloped SAP ABAP programs. Returning to a conventional environment would be even more straightforward, since no changes to the operating system

would be required, and the application’s business logic would not be affected.

Migrating Globally Distributed SAP Systems to a

Dynamic Platform

Even	experienced	ICT	providers	with	a	successful	track	record	in

[bookmark: page621]transformation projects have to perform risk analysis, including fallback scenarios. To

[bookmark: page622]
reduce the risk of migrations (in both directions), cloud providers that serve large enterprises require skills in both conventional operations and cloud computing.

In one transformation engagement, when the contract was signed, the customer was operating 232 SAP systems worldwide, with a total capacity of 1.2 million SAPS. Initially, T-Systems assumed responsibility for the systems within the scope of a conventional outsourcing agreement, without changing the mode of operation. The original environment was then gradually replaced by a commercial cloud solution (managed private cloud). This approach has since become established practice for the T-Systems. Within the agreed timeframe of 18 months, 80% of the systems were migrated. This major project involved not only SAP software, but also non-SAP systems, which were brought onto the new platform via dedicated interfaces.

Projects on this scale have a lasting influence on a service provider’s datacenter infrastructure, and they drive IT industrialization. In this particular engagement, the most compelling arguments for the customer were (a) the security and reliability of the provider’s data centers and (b) the smooth interaction between the SAP interfaces. Transparency throughout the entire systems landscape, lower costs, and greater responsiveness to changing requirements were the key customer benefits.

11.7	SUMMARY: CLOUD COMPUTING OFFERS MUCH

MORE THAN TRADITIONAL OUTSOURCING

Cloud computing is an established concept from the private world that is gaining ground in the business world. This trend can help large corporations master some of their current challenges—for example, cost and market pressures that call for increased productivity. While conventional outsourcing can help enterprises cut costs, it cannot deliver the flexibility they need. And greater flexibility brings even greater savings. Cloud computing poses a challenge to traditional outsourcing models. If the paradigm shift becomes a reality, IT users will have even more choice when it comes to selecting a provider—and cloud computing will become a further alternative to existing sourcing options.

Cloud computing makes for a more straightforward and flexible relationship between providers and their customers. Contracts can be concluded more rapidly, and resources are available on demand. What’s more, users benefit from end-to-end services delivered dynamically in line with their specific business requirements. And companies only pay for the services they actually use, significantly lowering IT investment. In a nutshell, cloud computing means that IT services are available as and when they are needed—helping pare back costs.

When it comes to selecting a sourcing model, cost and flexibility are only two of the many factors that have to be taken into account. Further important

[bookmark: page623]REFERENCES	319

aspects are data privacy, security, compliance with applicable legislation, and quality of service. The public cloud cannot offer a solution to these issues, which is why private clouds are well worth considering.

Providers of cloud computing for large corporations need to be able to intelligently combine their offerings with customer-specific IT systems and services. In some cases, they can also leverage resources and services from the public cloud.

But first, companies must consider which services and resources can be outsourced to the cloud, and they must also define how important each one is for the organization. Services that are not mission critical do not require robust service levels and can be delivered via the public cloud. But business-critical IT processes call for clearly defined SLAs, which, in turn, pushes up costs. Private clouds are an effective way of meeting these requirements.

In both cloud-computing models, services are delivered on a standardized basis. This reflects a general trend toward the industrialization of IT. Provision of services via a private cloud requires higher standards of quality than via the public cloud. By means of industrialization, cloud-computing providers enable more efficient use of their IT infrastructures, thereby increasing productivity. This not only cuts production costs, it also reduces the environmental footprint of businesses’ IT.

Case studies show that the general principles of cloud computing have already been successfully adapted and employed for business-critical applications hosted in a private cloud. However, enterprises must carefully weigh up the pros and cons of each model and decide which resources can be provided via the public cloud and which require a private cloud.

[bookmark: page624]

[bookmark: page625]
CHAPTER 12

WORKFLOW ENGINE FOR CLOUDS

SURAJ	PANDEY,	DILEBAN	KARUNAMOORTHY,

and RAJKUMAR BUYYA

INTRODUCTION

A workflow models a process as consisting of a series of steps that simplifies the complexity of execution and management of applications. Scientific workflows in domains such as high-energy physics and life sciences utilize distributed resources in order to access, manage, and process a large amount of data from a higher level. Processing and managing such large amounts of data require the use of a distributed collection of computation and storage facilities. These resources are often limited in supply and are shared among many competing users. The recent progress in virtualization technologies and the rapid growth of cloud computing services have opened a new paradigm in distributed computing for utilizing existing (and often cheaper) resource pools for ondemand and scalable scientific computing. Scientific Workflow Management Systems (WfMS) need to adapt to this new paradigm in order to leverage the benefits of cloud services.

Cloud services vary in the levels of abstraction and hence the type of service they present to application users. Infrastructure virtualization enables providers such as Amazon1 to offer virtual hardware for use in computeand dataintensive workflow applications. Platform-as-a-Service (PaaS) clouds expose a higher-level development and runtime environment for building and deploying workflow applications on cloud infrastructures. Such services may also expose

[bookmark: page626]domain-specific concepts for rapid-application development. Further up in the cloud stack are Software-as-a-Service providers who offer end users with

1http://aws.amazon.com

Cloud Computing: Principles and Paradigms, Edited by Rajkumar Buyya, James Broberg andAndrzej Goscinski Copyright r 2011 John Wiley & Sons, Inc.

321

[bookmark: page627]
standardized software solutions that could be integrated into existing workflows.

This chapter presents workflow engines and its integration with the cloud computing paradigm. We start by reviewing existing solutions for workflow applications and their limitations with respect to scalability and on-demand access. We then discuss some of the key benefits that cloud services offer workflow applications, compared to traditional grid environments. Next, we give a brief introduction to workflow management systems in order to highlight components that will become an essential part of the discussions in this chapter. We discuss strategies for utilizing cloud resources in workflow applications next, along with architectural changes, useful tools, and services. We then present a case study on the use of cloud services for a scientific workflow application and finally end the chapter with a discussion on visionary thoughts and the key challenges to realize them. In order to aid our discussions, we refer to the workflow management system and cloud middleware developed at CLOUDS Lab, University of Melbourne. These tools, referred to as Cloudbus toolkit [1], henceforth, are mature platforms arising from years of research and development.

BACKGROUND

Over the recent past, a considerable body of work has been done on the use of workflow systems for scientific applications. Yu and Buyya provide a comprehensive taxonomy of workflow management systems based on workflow design, workflow scheduling, fault management, and data movement. They characterize and classify different approaches for building and executing workflows on Grids. They also study existing grid workflow systems highlighting key features and differences.

Some of the popular workflow systems for scientific applications include DAGMan (Directed Acyclic Graph MANager) [3, 4], Pegasus , Kepler , and Taverna workbench . DAGMan is a workflow engine under the Pegasus workflow management system. Pegasus uses DAGMan to run the executable workflow. Kepler provides support for Web-service-based workflows. It uses an actor-oriented design approach for composing and executing scientific application workflows. The computational components are called actors, and they are linked together to form a workflow. The Taverna workbench enables the automation of experimental methods through the integration of various services, including WSDL-based single operation Web services, into workflows. For a detailed description of these systems, we refer you to Yu and Buyya . Scientific workflows are commonly executed on shared infrastructure such as Tera-Grid,2 Open Science Grid,3 and dedicated clusters . Existing workflow systems tend to utilize these global Grid resources that are made available

[bookmark: page628]
through prior agreements and typically at no cost. The notion of leveraging virtualized resources was new, and the idea of using resources as a utility [9, 10] was limited to academic papers and was not implemented in practice. With the advent of cloud computing paradigm, economy-based utility computing is gaining widespread adoption in the industry.

Deelman et al. presented a simulation-based study on the costs involved when executing scientific application workflows using cloud services. They studied the cost performance trade-offs of different execution and resource provisioning plans, and they also studied the storage and communication fees of Amazon S3 in the context of an astronomy application known as Montage [5, 10]. They conclude that cloud computing is a cost-effective solution for dataintensive applications.

The Cloudbus toolkit [1] is our initiative toward providing viable solutions for using cloud infrastructures. We propose a wider vision that incorporates an inter-cloud architecture and a market-oriented utility computing model. The Cloudbus workflow engine , presented in the sections to follow, is a step toward scaling workflow applications on clouds using market-oriented computing.

WORKFLOW MANAGEMENT SYSTEMS AND	CLOUDS

The primary benefit of moving to clouds is application scalability. Unlike grids, scalability of cloud resources allows real-time provisioning of resources to meet application requirements at runtime or prior to execution. The elastic nature of clouds facilitates changing of resource quantities and characteristics to vary at runtime, thus dynamically scaling up when there is a greater need for additional resources and scaling down when the demand is low. This enables workflow management systems to readily meet quality-of-service (QoS) requirements of applications, as opposed to the traditional approach that required advance reservation of resources in global multi-user grid environments. With most cloud computing services coming from large commercial organizations, servicelevel agreements (SLAs) have been an important concern to both the service providers and consumers. Due to competitions within emerging service providers, greater care is being taken in designing SLAs that seek to offer (a) better QoS guarantees to customers and (b) clear terms for compensation in the event of violation. This allows workflow management systems to provide better end-to-end guarantees when meeting the service requirements of users by mapping them to service providers based on characteristics of SLAs. Economically motivated, commercial cloud providers strive to provide better services guarantees compared to grid service providers. Cloud providers also take advantage of economies of scale, providing compute, storage, and bandwidth resources at substantially lower costs. Thus utilizing public cloud services could be economical and a cheaper alternative (or add-on) to the more expensive dedicated resources. One of the benefits of using virtualized

[bookmark: page629]resources for workflow execution, as opposed to having direct access to the physical machine, is the reduced need for securing the physical resource from malicious code using techniques such as sandboxing. However, the long-term effect of using virtualized resources in clouds that effectively share a “slice” of the physical machine, as opposed to using dedicated resources for high-performance applications, is an interesting research question.

Architectural Overview

Figure 12.1 presents a high-level architectural view of a Workflow Management System (WfMS) utilizing cloud resources to drive the execution of a scientific

Workflow Management System – schedules jobs in workflow to remote resources based on user-specified QoS requirements and SLA-based negotiation with remote resources capable of meeting those demands.
[image:]

A storage service such as FTP or Amazon S3 for temporary storage of application components, such as executable and data files, and output (result) files.
[image:]

	
	
	
	
	
	
	
	
	
	
	
	
	Storage
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	File Transfer

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	Workflow Engine
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	Job C1
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	Job C2
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	B1
	Job C3
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	Job B2
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Executor
	
	Persistence
	
	
	
	
	
	
	
	Services

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	Storage
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	Resource Broker
	
	
	
	
	
	AnekaWeb
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	EC2
	Aneka
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	Plugin
	
	
	
	
	
	
	
	
	

	
	
	
	
	Plugin
	
	
	
	
	
	
	
	
	
	
	

	
	Storage
	
	
	
	REST
	
	
	
	

[image:][image:][image:][image:][image:]

Executor

	Scheduler
	Executor

	
	

[bookmark: page630]Aneka Enterprise

Cloud Platform

Workstation

Workstation

Switch	Workstation
[image:]

Workstation	Workstation

Local cluster with fixed number of resources

	REST
	Aneka Cloud

	
	

Amazon Web Services

EC2 Instance

EC2 Instance

EC2 Instance

EC2 Instance

Amazon EC2 instances

to augment to the local cluster

FIGURE 12.1. Workflow engine in the cloud.

[bookmark: page631]
workflow application. The workflow system comprises the workflow engine, a resource broker , and plug-ins for communicating with various technological platforms, such as Aneka [14] and Amazon EC2. A detailed architecture describing the components of a WfMS is given in Section 12.4.

User applications could only use cloud services or use cloud together with existing grid/cluster-based solutions. Figure 12.1 depicts two scenarios, one where the Aneka platform is used in its entirety to complete the workflow, and the other where Amazon EC2 is used to supplement a local cluster when there are insufficient resources to meet the QoS requirements of the application. Aneka , described in further detail in Section 12.5, is a PaaS cloud and can be run on a corporate network or a dedicated cluster or can be hosted entirely on an IaaS cloud. Given limited resources in local networks, Aneka is capable of transparently provisioning additional resources by acquiring new resources in third-party cloud services such as Amazon EC2 to meet application demands. This relieves the WfMS from the responsibility of managing and allocating resources directly, to simply negotiating the required resources with Aneka.

Aneka also provides a set of Web services for service negotiation, job submission, and job monitoring. The WfMS would orchestrate the workflow execution by scheduling jobs in the right sequence to the Aneka Web Services. The typical flow of events when executing an application workflow on Aneka would begin with the WfMS staging in all required data for each job onto a remote storage resource, such as Amazon S3 or an FTP server. In this case, the data would take the form of a set of files, including the application binaries. These data can be uploaded by the user prior to execution, and they can be stored in storage facilities offered by cloud services for future use. The

WfMS then forwards workflow tasks to Aneka’s scheduler via the Web service interface. These tasks are subsequently examined for required files, and the storage service is instructed to stage them in from the remote storage server, so that they are accessible by the internal network of execution nodes. The execution begins by scheduling tasks to available execution nodes (also known as worker nodes). The workers download any required files for each task they execute from the storage server, execute the application, and upload all output files as a result of the execution back to the storage server. These files are then staged out to the remote storage server so that they are accessible by other tasks in the workflow managed by the WfMS. This process continues until the workflow application is complete.

The second scenario describes a situation in which the WfMS has greater control over the compute resources and provisioning policies for executing workflow applications. Based on user-specified QoS requirements, the WfMS schedules workflow tasks to resources that are located at the local cluster and in the cloud. Typical parameters that drive the scheduling decisions in such a scenario include deadline (time) and budget (cost) [15, 16]. For instance,

	a policy for scheduling an
	application
	workflow at
	minimum
	execution

	cost would utilize local resources and
	then
	augment
	them
	with
	cheaper

	cloud resources, if needed,
	rather than
	using
	high-end
	but
	more expensive

[bookmark: page632]
cloud resources. On the contrary, a policy that scheduled workflows to achieve minimum execution time would always use high-end cluster and cloud resources, irrespective of costs. The resource provisioning policy determines the extent of additional resources to be provisioned on the public clouds. In this second scenario, the WfMS interacts directly with the resources provisioned. When using Aneka, however, all interaction takes place via the Web service interface.

The following sections focuses on the integration of workflow management systems and clouds and describes in detail practical issues involved in using clouds for scientific workflow applications.

ARCHITECTURE OF WORKFLOW MANAGEMENT SYSTEMS

Scientific applications are typically modeled as workflows, consisting of tasks, data elements, control sequences and data dependencies. Workflowmanagement systems are responsible for managing and executing theseworkflows. According to Raicu et al. [17], scientific workflow management systems are engaged and applied to the following aspects of scientific computations: (1) describing complex scientific procedures (using GUI tools, workflow specific languages), (2) automating data derivation processes (data transfer components), (3) high-performance computing (HPC) to improve throughput and performance (distributed resources and their coordination), and

(4) provenance management and query (persistence components). The Cloudbus Workflow Management System consists of components that are responsible for handling tasks, data and resources taking into account users’

QoS requirements. Its architecture is depicted in Figure 12.2. The architecture consists of three major parts: (a) the user interface, (b) the core, and (c) plug - ins. The user interface allows end users to work with workflow composition, workflow execution planning, submission, and monitoring. These features are delivered through a Web portal or through a stand-alone application that is installed at the user’s end. Workflow composition is done using an XML-based Workflow Language (xWFL). Users define task properties and link them based on their data dependencies. Multiple tasks can be constructed using copy-paste functions present in most GUIs.

The components within the core are responsible for managing the execution of workflows. They facilitate in the translation of high-level workflow descriptions (defined at the user interface using XML) to task and data objects. These objects are then used by the execution subsystem. The scheduling component applies user-selected scheduling policies and plans to the workflows at various stages in their execution. The tasks and data dispatchers interact with the resource interface plug-ins to continuously submit and monitor tasks in the workflow. These components form the core part of the workflow engine.

The plug-ins support workflow executions on different environments and

[bookmark: page633]platforms. Our system has plug-ins for querying task and data characteristics

[bookmark: page634]Workflow Management System
[image:]

	Workflow
	
	Application

	Planner
	
	Composition

	
	
	

Workflow Description and Qos

Engine

	
	UserInterface

	
	Web Portal
	

	
	
	

Resource Discovery

Workflow Submission Handler

Workflow	Language	Parser
(XWFL, BPEL …)

	Tasks
	Parameters
	Dependencies

	Sources
	Conditions
	Exceptions

Catalogs
MDS

Replica
Catalog

Grid
Market
Directory

Storage and
Replication

Storage
Broker

Planner

Replication
Service

	
	
	
	
	Workflow
	
	
	Task Manager
	
	

	
	
	
	
	Coordinator
	
	
	Factory
	
	

	
	
	
	HTTP
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	Event
	
	
	
	Task Manager
	

	
	
	
	
	
	
	
	
	
	

	Other
	
	
	Service
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Workflow Scheduler
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	Data Providence

	
	
	Tasks Dispatcher
	Manager

	
	
	
	
	
	
	
	

Data Movement

FTP

GridFTP

Monitoring Interface

GUI	Text

	Plug-in components

	
	
	
	Resource Plug-in
	Measurements
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	Energy Consumption

	
	
	
	
	
	
	

	Gridbus
	
	Web

	
	
	
	Globus
	Resource Utilization

	
	
	
	
	

	Market Maker
	
	Scalable Application
	
	InterCloud

	
	
	
	
	

	
	
	
	
	

[bookmark: page635]

CLOUD

FIGURE 12.2. Architecture of Workflow Management	System.

[bookmark: page636]
(e.g., querying metadata services, reading from trace files), transferring data to and from resources (e.g., transfer protocol implementations, and storage and replication services), monitoring the execution status of tasks and applications (e.g., real-time monitoring GUIs, logs of execution, and the scheduled retrieval of task status), and measuring energy consumption.

The resources are at the bottom layer of the architecture and include clusters, global grids, and clouds. The WfMS has plug-in components for interacting with various resource management systems present at the front end of distributed resources. Currently, the Cloudbus WfMS supports Aneka, Pbs, Globus, and fork-based middleware. The resource managers may communicate with the market maker, scalable application manager, and InterCloud services for global resource management [18].

UTILIZING CLOUDS FOR WORKFLOW	EXECUTION

Taking the leap to utilizing cloud services for scientific workflow applications requires an understanding of the types of clouds services available, the required component changes in workflow systems for interacting with cloud services, the set of tools available to support development and deployment efforts, the steps involved in deploying workflow systems and services on the cloud, and an appreciation of the key benefits and challenges involved. In the sections to follow, we take a closer look at some of these issues. We begin by introducing the reader to the Aneka Enterprise Cloud service. We do this for two reasons. First, Aneka serves as a useful tool for utilizing clouds, including platform abstraction and dynamic provisioning. Second, we describe later in the chapter a case study detailing the use of Aneka to execute a scientific workflow application on clouds.

Aneka

Aneka is a distributed middleware for deploying platform-as-a-service (PaaS) offerings (Figure 12.3). Developed at CLOUDS Lab, University of Melbourne, Aneka is the result of years of research on cluster, grid, and cloud computing for high-performance computing (HPC) applications. Aneka, which is both a development and runtime environment, is available for public use (for a cost),4 can be installed on corporate networks, or dedicated clusters, or can be hosted on infrastructure clouds like Amazon EC2. In comparison, similar PaaS services such as Google AppEngine [19] and Windows Azure [20] are in-house platforms hosted on infrastructures owned by the respective companies. Aneka was developed on Microsoft’s.NET Framework 2.0 and is compatible with other implementations of the ECMA 335 standard [21], such as Mono. Aneka

[bookmark: page637]

[bookmark: page638]
Aneka

Storage

	Work units
	Executor

	
	

	Client
	Infrastructure

	
	

	
	Executor

	Scheduler
	

	Work units
	

	Internet
	Workers

	Scheduler
	

	
	Executor

	Client
	

	Client
	

FIGURE 12.3. A deployment of Aneka Enterprise	Cloud.

can run on popular platforms such as Microsoft Windows, Linux, and Mac OS X, harnessing the collective computing power of a heterogeneous network.

The runtime environment consists of a collection of Aneka containers running on physical or virtualized nodes. Each of these containers can be configured to play a specific role such as scheduling or execution. The Aneka distribution also provides a set of tools for administrating the cloud, reconfiguring nodes, managing users, and monitoring the execution of applications. The Aneka service stack provides services for infrastructure management, application execution management, accounting, licensing, and security. For more information we refer you to Vecchiola et al. [14].

Aneka’s Dynamic Resource Provisioning service enables horizontal scaling depending on the overall load in the cloud. The platform is thus elastic in nature and can provision additional resources on-demand from external physical or virtualized resource pools, in order to meet the QoS requirements of applications. In a typical scenario, Aneka would acquire new virtualized resources from external clouds such as Amazon EC2, in order to meet the minimum waiting time of applications submitted to Aneka. Such a scenario would arise when the current load in the cloud is high, and there is a lack of available resources to timely process all jobs.

The development environment provides a rich set of APIs for developing

[bookmark: page639]applications that can utilize free resources of the underlying infrastructure. These APIs expose different programming abstractions, such as the task model, thread model, and MapReduce [22]. The task programming model is of particular

[bookmark: page640]
importance to the current discussion. It models “independent bag of tasks” (BoT) applications that are composed of a collection of work units independent of each other, and it may be executed in any given order. One of the benefits of the task programming model is its simplicity, making it easy to run legacy applications on the cloud. An application using the task model composes one or more task instances and forwards them as work units to the scheduler. The scheduling service currently supports the First-In-First-Out, First-In-First-Outwith Backfilling, Clock-Rate Priority, and Preemption-Based Priority Queue scheduling algorithms. The runtime environment also provides two specialized services to support this model: the task scheduling service and the task executionservice.

The storage service provides a temporary repository for application files— that is, input files that are required for task execution, and output files that are he result of execution. Prior to dispatching work units, any files required are staged-in to the storage service from the remote location. This remote location can be either the client machine, a remote FTP server, or a cloud storage service such as Amazon S3. The work units are then dispatched to executors, which download the files before execution. Any output files produced as a result of the execution are uploaded back to the storage service. From here they are staged-out to the remote storage location.

Aneka Web Services

Aneka exposes three SOAP Web services for service negotiation, reservation, and task submission, as depicted in Figure 12.4. The negotiation and reservation services work in concert, and they provide interfaces for negotiating

SOAP Request
[image:][image:]

Task Submission Service

Negotiation Service

Reservation Service
[image:]

AnekaWeb Services [image:][image:][image:]

Aneka

Platform as a Service

[bookmark: page641]SOAP Response

FIGURE 12.4. Aneka Web services interface.

[bookmark: page642]
resource use and reserving them in Aneka for predetermined timeslots. As such, these services are only useful when Aneka has limited resources to work with and no opportunities for provisioning additional resources. The task Webservice provides a SOAP interface for executing jobs on Aneka. Based on the task programming model, this service allows remote clients to submit jobs,monitor their status, and abort jobs.

General Approach

Traditional WfMSs were designed with a centralized architecture and were thus tied to a single machine. Moving workflow engines to clouds requires (a) architectural changes and (b) integration of cloud management tools.

Architectural Changes. Most components of a WfMS can be separated fromthe core engine so that they can be executed on different cloud services. Each separated component could communicate with a centralized or replicated workflow engine using events. The manager is responsible for coordinating the distribution of load to its subcomponents, such as the Web server, persistence, monitoring units, and so forth.

In our WfMS, we have separated the components that form the architecture into the following: user interface, core, and plug-ins. The user interface can now be coupled with a Web server running on a “large” instance of cloud that can handle increasing number of users. The Web request from users accessing the WfMS via a portal is thus offloaded to a different set of resources.

Similarly, the core and plug-in components can be hosted on different types of instances separately. Depending on the size of the workload from users, these components could be migrated or replicated to other resources, or reinforced with additional resources to satisfy the increased load. Thus, employing distributed modules of the WfMS on the basis of application requirements helps scale the architecture.

Integration of Cloud Management Tools. As the WfMS is broken downinto components to be hosted across multiple cloud resources, we need a mechanism to (a) access, transfer, and store data and (b) enable and monitor executions that can utilize this approach of scalable distribution of components.

The cloud service provider may provide APIs and tools for discovering the

VM instances that are associated to a user’s account. Because various types of instances can be dynamically created, their characteristics such as CPU capacity and amount of available memory are a part of the cloud service provider’s specifications. Similarly, for data storage and access, a cloud may provide data sharing, data movement, and access rights management capabilities to user’s applications. Cloud measurement tools may be in place to account for the amount of data and computing power used, so that users are charged on the pay-per-use basis. A WfMS now needs to access these tools

	[bookmark: page643]12.5 UTILIZING CLOUDS FOR WORKFLOW EXECUTION
	333

to discover and characterize the resources available in the cloud. It also needs to interpret the access rights (e.g., access control lists provided by Amazon), use the data movement APIs, and share mechanisms between VMs to fully utilize the benefits of moving to clouds. In other words, traditional catalog services such as the Globus Monitoring and Discovery Service (MDS) [23], Replica Location Services, Storage Resource Brokers, Network Weather Service [24], and so on could be easily replaced by more user-friendly and scalable tools and APIs associated with a cloud service provider. We describe some of these tools in the following section.

Tools for Utilizing Clouds in WfMS

The range of tools and services offered by cloud providers play an important role in integrating WfMSs with clouds (Figure 12.5). Such services can facilitate in the deployment, scaling, execution, and monitoring of workflow systems. This section discusses some of the tools and services offered by various service providers that can complement and support WfMSs.

A WfMS manages dynamic provisioning of compute and storage resources in the cloud with the help of tools and APIs provided by service providers. The provisioning is required to dynamically scale up/down according to application requirements. For instance, data-intensive workflow applications may require
[image:][image:]
	[bookmark: page644]12.5 UTILIZING CLOUDS FOR WORKFLOW EXECUTION
	333

Aneka ASP.Net

Azure Storage Service

Web Requests

Other Aneka Client

	
	Workflow Engine
	

	
	Aneka Enterprise Cloud
	Amazon S3

	Usage Data
	Resource Monitoring
	

	
	
	

	
	IaaS (e.g. Amazon EC2, GoGrid)
	

	
	Resource
	

	Usage Accounts
	monitoring and
	Workflow Web App

	
	
	

[image:][image:]

SaaS

Big Table

FIGURE 12.5. A workflow utilizing multiple cloud services.

	[bookmark: page645]12.5 UTILIZING CLOUDS FOR WORKFLOW EXECUTION
	333

large amount of disk space for storage. A WfMS could provision dynamic volumes of large capacity that could be shared across all instances of VMs (similar to snapshots and volumes provided by Amazon). Similarly, for compute-intensive tasks in an workflow, a WfMS could provision specific instances that would help accelerate the execution of these compute-intensive tasks.

A WfMS implements scheduling policies to assign tasks to resources based on applications’ objectives. This task-resource mapping is dependent on several factors: compute resource capacity, application requirements, user’s QoS, and so forth. Based on these objectives, a WfMS could also direct a VM provisioning system to consolidate data center loads by migrating VMs so that it could make scheduling decisions based on locality of data and compute resources.

A persistence mechanism is often important in workflow management systems and for managing metadata such as available resources, job queues, job status, and user data including large input and output files. Technologies such as Amazon S3, Google’s BigTable, and the Windows Azure Storage

Services can support most storage requirements for workflow systems, while also being scalable, reliable, and secure. If large quantities of user data are being dealt with, such as a large number of brain images used in functional magnetic resonance imaging (fMRI) studies , transferring them online can be both expensive and time-consuming. In such cases, traditional post can prove to be cheaper and faster. Amazon’s AWS Import/Export5 is one such service that aims to speed up data movement by transferring large amounts of data in portable storage devices. The data are shipped to/from Amazon and offloaded into/from S3 buckets using Amazon’s high-speed internal network. The cost savings can be significant when transferring data on the order of terabytes.

Most cloud providers also offer services and APIs for tracking resource usage and the costs incurred. This can complement workflow systems that support budget-based scheduling by utilizing real-time data on the resources used, the duration, and the expenditure. This information can be used both for making scheduling decisions on subsequent jobs and for billing the user at the completion of the workflow application.6

Cloud services such as Google App Engine and Windows Azure provide platforms for building scalable interactive Web applications. This makes it relatively easy to port the graphical components of a workflow management system to such platforms while benefiting from their inherent scalability and reduced administration. For instance, such components deployed on Google App Engine can utilize the same scalable systems that drive Google applications, including technologies such as BigTable [25] and GFS [26].

http://aws.amazon.com/importexport/

http://aws.amazon.com/devpay/

[bookmark: page646]

	Download from Wow! eBook <www.wowebook.com>

	12.5 UTILIZING CLOUDS FOR WORKFLOW EXECUTION
	333

CASE	STUDY:	EVOLUTIONARY	MULTIOBJECTIVE

OPTIMIZATIONS

This section presents a scientific application workflow based on an iterative technique for optimizing multiple search objectives, known as evolutionary multiobjective optimization (EMO) [27]. EMO is a technique based on genetic algorithms. Genetic algorithms are search algorithms used for finding optimal solutions in a large space where deterministic or functional approaches are not viable. Genetic algorithms use heuristics to find an optimal solution that is acceptable within a reasonable amount of time. In the presence of many variables and complex heuristic functions, the time consumed in finding even an acceptable solution can be too large. However, when multiple instances are run in parallel in a distributed setting using different variables, the required time for computation can be drastically reduced.

Objectives

The following are the objectives for modeling and executing an EMO workflow on clouds:

●	Design an execution model for EMO, expressed in the form of a workflow, such that multiple distributed resources can be utilized.

Parallelize the execution of EMO tasks for reducing the total completion time.

Dynamically provision compute resources needed for timely completion

of the application when the number of tasks	increase.

● Repeatedly carry out similar experiments as and when	required.

Manage application execution, handle faults, and store the final results for analysis.

Workflow Solution

In order to parallelize the execution of EMO, we construct a workflow model for systematically executing the tasks. A typical workflow structure is depicted in Figure 12.6.

In our case study, the EMO application consists of five different topologies, upon which the iteration is done. These topologies are defined in five different binary files. Each file becomes the input files for the top level tasks (A0emo1, A0emo, . . .). We create a separate branch for each topology file. In Figure 12.6, there are two branches, which get merged on level 6. The tasks at the root level operate on the topologies to create new population, which is then merged by the task named “emomerge.” In Figure 12.6, we see two “emomerge” tasks in the 2nd level, one task in the 6th level that merges two branches and then

	[bookmark: page647]12.5 UTILIZING CLOUDS FOR WORKFLOW EXECUTION
	333

splits the population to two branches again, two tasks on the 8th and 10th

[bookmark: page648][image:]
Topology 1	Topology 2
[image:][image:]

	A0e…
	A0e…
	A1e…
	A1e…

	
	A0e…
	A1e…
	

	A0e…
	A0e…
	A1e…
	A1e…

	
	A0e…
	A1e…
	

	A0e…
	A0e…
	A1e…
	A1e…

	
	
	Aem…
	

	B0e…
	B0e…
	B1e…
	B1e…

[image:]

	
	
	
	B0e…
	
	B1e…
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	B0e…
	
	B0e…
	
	B1e…
	
	B1e…

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	B0e…
	
	B1e…
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	B0e…
	
	B0e…
	
	B1e…
	
	B1e…

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	Bem…
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	Iteration 1

[image:]

	Iteration 2

FIGURE 12.6. EMO workflow structure (boxes represent task, arrows represent datadependencies between tasks).

[bookmark: page649]
levels, and the final task on the 12th level. In the example figure, each topology is iterated two times in a branch before getting merged. The merged population is then split. This split is done two times in the figure. The tasks labeled B0e and B1e (depicted as darker shade in Figure 12.6) is the start of second iteration.

Deployment and Results

EMO Application. We use ZDT2 [27] as a test function for the objectivefunction. The workflow for this problem is depicted in Figure 12.6.

In our experiments, we carry out 10 iterations within a branch for 5 different topologies. We merge and split the results of each of these branches 10 times. For this scenario, the workflow constituted of a total of 6010 tasks. We varied the tasks by changing the number of merges from 5 to 10. In doing so, the structure and the characteristics of the tasks in the workflow would remain unchanged. This is necessary for comparing the execution time when the number of task increases from 1600 to 6000 when we alter the number of merges from 5 to 10.

Compute Resource. We used 40 Amazon EC2 compute resources forexecuting the EMO application. Twenty resources were instantiated at USeast - 1a, and 20 were instantiated at US-east-1d. Among these resources, one was used for the workflow engine, one was used for Aneka’s master node and the rest were worker nodes. The characteristics of these resources are listed in Table 12.1.

The workflow engine, along with a database for persistence, the IBM TSpace [28] based coordination server, and the Tomcat Web container, was instantiated on a medium instance VM.

Output of EMO Application. After running the EMO workflow, we expect tosee optimized values for the two objectives given by the ZDT2 test function. Figure 12.7 depicts the graph that plots the front obtained after iterating the EMO workflow depicted in Figure 12.6. The front at Level 2 is not the optimal. After first iteration, the front is optimized. Iteration 2 does not significantly change the front, hence the overlapping of the data for Iteration 1 and 2.

Experimental Results When Using Clouds. Because the EMO workflow isan iterative approach, increasing the number of iterations would increase the quality of optimization in the results. Analogously, the greater the number of tasks completing in the workflow, the greater the number of iterations, hence the better the optimization.

Because the iterations can be carried out for an arbitrarily large number of times, it is usually a best practice to limit the time for the overall calculation. Thus, in our experiment we set the deadline to be 95 minutes. We then analyze the number of tasks completing within the first 95 minutes in two classes of

[bookmark: page650]experiments.

[bookmark: page651]
TABLE 12.1. Characteristics of Amazon Compute Resources (EC2) Used

	
	in Our Experiment
	
	
	
	
	

	
	Characteristics
	Aneka
	Master/Worker
	Workflow Engine

	
	
	
	
	
	
	

	
	Platform
	Windows
	2000
	Server
	Linux

	
	CPU (type)
	1 EC2 Compute
	Unitsa
	5 EC2 Compute Unitsb

	
	
	(small)
	
	
	(medium)

	
	Memory
	1.7 GB
	
	
	1.7 GB

	
	Instance storage
	160 GB
	
	
	350GB

	
	Instance location
	US-east-1a (19)
	
	US-east-1a

	
	
	US-east-1b(20)
	
	
	

	
	Number of instances
	39
	
	
	1
	

	
	Price per hour
	$US 0.12
	
	
	$US 0.17

a Small instance (default) 1.7 GB of memory, 1 EC2 compute unit (1 virtual core with 1 EC2 compute unit), 160 GB of instance storage, 32-bit platform.

b High-CPU medium instance 1.7 GB of memory, 5 EC2 compute units (2 virtual cores with 2.5 EC2 compute units each), 350 GB of instance storage, 32-bit platform.

Source: Amazon.

Experiment 1: Seven Additional EC2 Instances Were Added. In thisexperiment, we started executing the tasks in the EMO workflow initially using 20 EC2 compute resources (one node for workflow engine, one node for Aneka master, 18 Aneka worker nodes). We instantiate seven more small instances to increase the total number of resources to 25. They were available for use after 25 minutes of execution. At the end of 95 minutes, a total of 1612 tasks were completed.

Experiment 2: Twenty Additional EC2 Instances Were Added. In thisexperiment, we started executing the tasks in the EMO workflow using 20

	
	1

	
	0.9

	1.2
	0.8

	
	

	1.1
	0.7

	
	

	[bookmark: page652]0.6

	0.5
	Evolutionary Multi-objective Optimization 2 Objectives

	0.4
	

	0.3
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Level = 2, Iteration = 0
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Level = 6, Iteration = 1
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	0.2
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[image:][image:][image:][image:]
0	0.05	0.1	0.15	0.2	0.25	0.3

FIGURE 12.7. A graph that plots the pareto-front obtained after executing EMO for ZTD2 test problem.

[bookmark: page653]
EC2 compute resources, similar to Experiment 1. We instantiated 20 more EC2 instances after noticing the linear increase in task completion rate. These instances however were available for use after 40 minutes of execution. At the end of 95 minutes, a total of 3221 tasks were completed.

Analysis of the Results. In both experiments, the initial task completion rateincreased linearly until we started more instances, as depicted in Figure 12.8. As the number of resources was increased, the rate of task completing increased drastically. This is due to the submission of queued tasks in Aneka to the newly available resources, which would have remained queued if resources were not added.

In the figure, the completion rate curve rises up to a point until all the queued tasks are submitted. The curve then rises gradually because the EMO application is a workflow. Tasks in the workflow get submitted gradually as their parents finish executions. Hence, the completion rate has similar slope

	Iterations represented by the number of tasks completing

Dynamic scaling of EC2 Compute resources
[image:]

[image:][image:] Experiment 1 [image:] Experiment 2

3600	1400

3400	1200

3200	1000

3000 800

2800 600

	2600 400
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	2400
	200
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	20 VMs were added

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	2200 0
	
	
	
	
	
	
	
	
	
	
	7 VMs were added

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	2000
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	1800
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

1600

[bookmark: page654]

	0
	5
	10

	15
	20
	25

	30
	35
	40

	45
	50
	

55	60	65	70	75	80	85	90 95

[bookmark: page655]Timeline for the deadline of the application (minutes)

FIGURE 12.8. Number of tasks completing in time as the number of compute resources provisioned were increased at runtime.

[bookmark: page656]
as the initial rate, even after increasing the number of resources (30 to 45 minutes for Experiment 1; 45 to 70 minutes for Experiment 2). When more tasks began completing as a result of adding new resources, the workflow engine was able to submit additional tasks for execution. As a result, tasks started competing for resources and hence were being queued by Aneka.

Because of this queuing at Aneka’s scheduler, the curve flattens after 45 minutes for Experiment 1 and after 70 minutes for Experiment 2.

The most important benefit of increasing the resources dynamically at runtime is the increase in the total number of tasks completing, and hence the quality of final result. This is evident from the two graphs depicted in Figure 12.8. If a total of 25 resources were used, Experiment 1 would complete 1612 tasks by the end of the 95-minute deadline, whereas Experiment 2 would complete executing nearly 3300 tasks within the same deadline if 20 additional resources were added. The quality of results would be twice as good for Experiment 2 as for Experiment 1. However, if a user wants to have the same quality of output as in Experiment 1 but in much shorter time, he should increase the number of resources used well before the deadline. A line just above 1600 in Figure 12.8 depicts the cutoff point where the user could terminate all the VM instances and obtain the same quality of results as Experiment 1 would have obtained by running for 95 minutes. It took B45 minutes less time for Experiment 2 to execute the same number of tasks as Experiment 1. This drastic reduction in time was seen even when both experiments initially started with the same number of resources. In terms of cost of provisioning additional resources, Experiment 2 is cheaper because there are fewer overheads in time spent queuing and managing task submissions, since the tasks would be submitted as soon as they arrive at

Aneka’s master node. If Amazon were to charge EC2 usage cost per minute rather than per hour, Experiment 2 would save 45 minutes of execution time at the cost of 20 more resources.

We also analyzed the utilization of instantiated compute resources by Aneka, as depicted in Figure 12.9. At the time of recording the graph, there were 21 worker nodes in the Aneka cloud, with a combined power of 42 GHz.
[image:]
[bookmark: page657]FIGURE 12.9. Distributed compute resource utilized by Aneka	network.

[bookmark: page658]
The graph shows a steep rise in the system utilization (labeled as usage in the figure) as tasks were submitted for execution. The compute power available (labeled as available) decreased to 4% with 80.8% memory available. This decrease in utilization was due to the use of all the available resources for execution of tasks submitted to Aneka by the workflow engine executing EMO workflow.

VISIONARY THOUGHTS FOR PRACTITIONERS

The cloud computing paradigm is emerging and is being adopted at a rapid rate. Gartner ranks it at the top of the hype cycle for the year 2010 [29]. As the technology is being adopted by practitioners industry-wide, there are numerous challenges to overcome. Moreover, these challenges could be addressed via a realistic vision of the cloud computing models of the near future. This section discusses some of them.

Software and service giants such as Google, Amazon, and Microsoft own large data centers for providing a variety of cloud services to customers. These independent and disparate initiatives would eventually lead to an interconnection model where users can choose a combination of services from different providers in their applications. Our vision provides an entity responsible for brokerage of resources across different cloud providers, termed the market maker [16]. These inter-cloud environments would then facilitate executions of workflow applications at distributed data centers. Large scientific experiments would then be able to use inter-cloud resources, brokered through the market maker.

The essence of using cloud services is to be able to dynamically scale the applications running on top of it. Automating resource provisioning and VM instance management in clouds based on multiobjectives (cost, time, and other QoS parameters) can help achieve this goal. The automation process should be transparent to the end users who would just be interested in running workflow applications under their time and budget constraints. Users would specify either flexible or tight deadline for the cost they pay for using cloud services. It becomes the responsibility of the workflow engine running in the cloud to dynamically scale the application to satisfy multiple users0 request.
In order to facilitate fair but competitive use of cloud resources for workflow applications, a service negotiation module must be in place. This entity would negotiate with multiple service providers to match users0 requirements to a service provider’s capabilities. Once a match is found, required resources can then be allocated to the user application. A cloud market directory service is needed to maintain a catalog of services from various cloud service providers. Data and their communication play a vital role in any data-intensive workflow application. When running such applications on clouds, storage and transfer costs need to be taken into account in addition to the execution cost. The right choice of compute location and storage service provider would result in

[bookmark: page659]
minimizing the total cost billed to a user. A cloud market maker could handle these task and communication issues at the time of negotiation between various cloud service providers.

FUTURE RESEARCH DIRECTIONS

In Section 12.7, we described some visions and inherent difficulties faced by practitioners when using various cloud services. Drawing upon these visions, we list below some future research directions in the form of broad research directions:

●	How to facilitate inter-cloud operations in terms of coherent data exchange, task migration, and load balancing for workflow application.

When and where to provision cloud resources so that workflow applications can meet their deadline constraints and also remain within their budget.

How to balance the use of cloud and local resources so that workflow applications can meet their objectives.

How to match workflow application requirements to any service provider’s capabilities when there are numerous vendors with similar capabilities in a cloud.

1.	.

[bookmark: page660]
CHAPTER 13

UNDERSTANDING SCIENTIFIC
APPLICATIONS	FOR	CLOUD
ENVIRONMENTS

SHANTENU JHA, DANIEL S. KATZ, ANDRE LUCKOW, ANDRE MERZKY, and KATERINA STAMOU

INTRODUCTION

Distributed systems and their specific incarnations have evolved significantly over the years. Most often, these evolutionary steps have been a consequence of external technology trends, such as the significant increase in network/bandwidth capabilities that have occurred. It can be argued that the single most important driver for cloud computing environments is the advance in virtualization technology that has taken place. But what implications does this advance, leading to today’s cloud environments, have for scientific applications? The aim of this chapter is to explore how clouds can support scientific applications.

Before we can address this important issue, it is imperative to (a) provide a working model and definition of clouds and (b) understand how they differ from other computational platforms such as grids and clusters. At a high level, cloud computing is defined by Mell and Grance [1] as a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal

[bookmark: page661]management effort or service provider interaction.

We view clouds not as a monolithic isolated platform but as part of a large distributed ecosystem. But are clouds a natural evolution of distributed systems, or are they a fundamental new paradigm? Prima facie, cloud concepts are derived from other systems, such as the implicit model of clusters as static

Cloud Computing: Principles and Paradigms, Edited by Rajkumar Buyya, James Broberg andAndrzej Goscinski Copyright r 2011 John Wiley & Sons, Inc.

345

[bookmark: page662]13.1	INTRODUCTION 3 4 6 347

bounded sets of resources, which leads to batch-queue extensions to virtualization. Another example is provided by ideas prevalent in grids to address dynamic application requirements and resource capabilities, such as pilot jobs, that are being redesigned and modified for clouds. In either case, clouds are an outgrowth of the systems and ideas that have come before them, and we want to consciously consider our underlying assumptions, to make sure we are not blindly carrying over assumptions about previous types of parallel and distributed computing.

We believe that there is novelty in the resource management and capacity planning capabilities for clouds. Thanks to their ability to provide an illusion of unlimited and/or immediately available resources, as currently provisioned, clouds in conjunction with traditional HPC and HTC grids provide a balanced infrastructure supporting scale-out and scale-up, as well as capability (HPC) and quick turn-around (HTC) computing for a range of application (model) sizes and requirements. The novelty in resource management and capacity planning capabilities is likely to influence changes in the usage mode, as well deployment and execution management/planning. The ability to exploit these attributes could lead to applications with new and interesting usage modes and dynamic execution on clouds and therefore new application capabilities. Additionally, clouds are suitable infrastructure for dynamic applications—that is, those with execution time resource requirements that cannot be determined exactly in advance, either due to changes in runtime requirements or due to interesting changes in application structure (e.g., different solver with different resource requirement). Clouds will have a broad impact on legacy scientific applications, because we anticipate that many existing legacy applications will adapt to and take advantage of new capabilities. However, it is unclear if clouds as currently presented are likely to change (many of) the fundamental reformulation of the development of scientific applications. In this chapter, we will thus focus on scientific applications that can benefit from a dynamic execution model that we believe can be facilitated by clouds. Not surprisingly, and in common with many distributed applications, coarse-grained or task-level parallelism is going to be the basis of many programming models aimed at data-intensive science executing in cloud environments. However, even for common programming approaches such as MapReduce (based on task-level parallelism), the ability to incorporate dynamic resource placement and management as well as dynamic datasets is an important requirement with concomitant performance advantages. For example, the Map and Reduce phases involve different computations, thus different loads and resources; dynamical formulations of applications are better suited to supporting such load-balancing. Clouds are thus emerging as an important class of distributed computational resource, for both data-intensive and compute-intensive applications.

There are novel usage modes that can be supported when grids and clouds are used concurrently. For example, the usage of clouds as the computational equivalent of a heat bath establishes determinism—that is, well-bounded timeto-completion with concomitant advantages that will accrue as a consequence.

[bookmark: page663]13.1	INTRODUCTION 3 4 7 347

But to support such advanced usage modes, there is a requirement for programming systems, models, and abstractions that enable application developers to express decompositions and which support dynamic execution. Many early cloud applications employ ad hoc solutions, which results in a lack of generality and the inability of programs to be extensible and independent of infrastructure details. The IDEAS design objectives—Interoperability, Distributed scale-out, Extensibility, Adaptivity, and Simplicity—summarize the design goals for distributed applications. In this chapter we demonstrate several examples of how these objectives can be accomplished using several cloud applications that use SAGA.

Fundamental Issues

In this chapter, we want to consider a set of fundamental questions about scientific applications on clouds, such as: What kind of scientific applications are suitable for clouds? Are there assumptions that were made in developing applications for grids that should consciously be thrown out, when develop ing applications for clouds? In other words, from an application’s perspective, how is a cloud different from a traditional grid? What kind of scientific applications can utilize both clouds and grids, and under what conditions? The issue of how applications and environments are developed is a chickenand-egg situation. One might ask which applications are suitable for a given environment. Similarly, one might ask which environment can support a given application. Applications are developed to run in specific environments, while environments are developed to run specific applications. This coupling is a Zen-like paradox.

Clouds as a Type of Distributed Infrastructure. Before we can analyze ifthere is a fundamentally different class of applications that can be supported on cloud systems, it is imperative to ask, What is the difference between clouds and other distributed infrastructure?

To structure the differences between grid and cloud applications, if any, let us use the three phases of an applications life cycle: (i) development, (ii) deployment, and (iii) execution . In development, if we think of the three vectors (execution unit, communication, and coordination) aiding our analysis, then neither resource management or scheduling influence the above three vector values. In deployment, clouds can be clearly differentiated from clusters and grids. Specifically, the runtime environment [as defined by the virtual machine (VM)] is controlled by the user/application and can be set up as such; this is in contrast to traditional computational environments. By providing simplicity and ease of management, it is hoped that the changes at the execution level may feed back to the application development level.

Some uncertainty lies in the fact that there are some things we understand, while there are some things that are dependent on evolving technologies and are thus unclear. For example, at the execution level, clouds differ from clusters/

[bookmark: page664]13.1	INTRODUCTION 3 4 8 347

grids in at least a couple of different ways. In cloud environments, user-level jobs are not typically exposed to a scheduling system; a user-level job consists of requesting the instantiation of a VM. Virtual machines are either assigned to the user or not (this is an important attribute that provides the illusion of infinite resources). The assignment of a job to a VM must be done by the user (or a middleware layer). In contrast, user-level jobs on grids and clusters are exposed to a scheduling system and are assigned to execute at a later stage. Also a description of a grid/cluster job typically contains an explicit workload description. In contrast, for clouds, a user-level job typically contains the container (a description of the resource requested) but does not necessarily contain the workload itself. In other words, the physical resources are not provisioned to the workload but are provisioned to the container. This model is quite similar to resource reservations where one can obtain a “container” of resources to which jobs can be later be bound. Interestingly, at this level of formulation, pilot jobs can be considered to provide a model of resource provisioning similar to the one that clouds natively provide.

An additional issue is compositional and deployment flexibility. A number of applications are difficult to build, due to runtime dependencies or complicated nonportable build systems. There is often a need to control the runtime environment at a fine-grained level, which is often difficult with grids; this often provides a rationale for using cloud environments. Clouds offer an opportunity to build virtual machines once, then to load them on various systems, working around issues related to portability on the physical systems, because the VM images can be static, while real systems (both hardware and software) are often changing.

A third issue is scheduling flexibility. Clouds offer the ability to create usage modes for applications to support the situation where, when the set of resources needed to run an application changes (perhaps rapidly), the resources can actually be changed (new resources can be added, or existing resources can be removed from the pool used by the job).

Scientific Cloud Applications as Distributed Applications. We havepreviously introduced the concept of Distributed Application Vectors to structure the analysis and understanding of the main characteristics with a view to understanding the primary design requirements and constraints. Specifically, we determined that understanding the execution units, communication requirements, coordination mechanisms, and execution environment of a distributed application was a necessary (minimally complete) set of requirements. We will argue that both the vectors and the abstractions (patterns) for cloud-based applications are essentially the same as those for grid-based applications, further lending credibility to the claim that cloud-based applications are of the broader distributed applications class.

Most applications have been modified to utilize clouds. Usually, the modifications have not been at the application level, but more at the point at which the application uses the infrastructure. It appears that there is not a

[bookmark: page665]13.1	INTRODUCTION 3 4 9 347

major distinction between a classic grid application or a scientific cloud application; they are both incarnations of distributed applications —with the same development concerns and requirements, but with different deployment and execution contexts. In other words: Cloud applications are essentially a type of distributed applications, but with different infrastructure usage than grid applications. Due to a better control on the software environment, there is the ability to do some things better on clouds; thus, some types of applications are better suited/adapted to clouds. Programming models, such as MapReduce, that support data-intensive applications are not exclusively cloud-based, but due to the programming systems and tools as well as other elements of the ecosystem, they are likely to find increased utilization. Thus, at this level, there are no fundamental new development paradigms for cloud-based applications apriori.

We also formally characterized patterns that can be used to capture aspects of distributed coordination, communication, and execution. Specifically, we identified three important elements (“vectors”) influencing the overall development of distributed applications, coordination, communication, and execution and showed how these and data access patterns can be associated with a primary distributed application concern (reproduced and extended in Table 13.1).

We will discuss how using cloud capabilities will enable applications to exploit new scenarios, for example, the dynamic adjustment of application parameters (such as the accuracy) or the dynamic addition of new resources to an application. In order to motivate and structure these applications and their usage modes, we will provide a brief overview of a classification of scientific cloud applications in the next section. We will then discuss SAGA, which is an API for distributed applications as a viable programming system for clouds. We establish this with three distinct applications that have been developed for clouds using SAGA, further bolstering the connection between cloud applications and distributed applications. We end this chapter with a discussion of issues of relevance to scientific applications on clouds—including design objectives, interoperability with grids, and application performance considerations.

TABLE 13.1. A Classification of Some Commonly Occurring Patterns in Distributed Computing.a

	Coordination
	Communication
	Deployment
	Data Access

	
	
	
	

	Client-server
	Pub-sub
	Replication
	Co-access

	P2P
	Stream
	At-home
	One-to-one

	Master-worker (TF, BoT)
	Point-to-point
	Brokering
	One-to-many

	Consensus
	Broadcast
	Co-allocation
	Scatter-gather

	Data processing pipeline
	
	
	All-to-all

a The patterns are placed into a category that represents the predominant context in which they appear and address; this is not to imply that each pattern addresses only one issue exclusively. Source: Adapted from Jha et al. .

[bookmark: page666]
A	CLASSIFICATION	OF	SCIENTIFIC	APPLICATIONS

AND SERVICES IN THE CLOUD

Common models of clouds [1,3,4] introduce composite hierarchies of different layers, each implementing a different service model (see Figure 13.1). The services of each layer can be composed from the services of the layer underneath, and each layer may include one or more services that share the same or equivalent levels of abstraction. The proposed layers consist of the following: the Software as a Service (SaaS) layer, the platform as a service (PaaS) layer, and the Infrastructure as a Service (IaaS) layer. The IaaS layer can be further divided into the computational resources, storage, and communications sublayers, the software kernel layer, and the hardware/firmware layer that consists of the actual physical system components. As shown in Figure 13.1, clouds can also be classified according to their deployment model into public and private clouds. A public cloud is generally available on pay-per-use basis. Several infrastructures have emerged that enable the creation of so-called private clouds—that is, clouds that are only accessible from within an organization.

Based on the proposed service layers, we will derive a classification from the application’s perspective, with our aim to provide suggestions and raise further discussions on how scientific applications could possibly foster in the cloud

Google Apps

	SaaS
	
	
	Portal
	

	
	
	
	
	

	Salesforce
	
	
	TG Science

	
	
	
	

	Google
	Windows
	Hadoop
	

	
	Azure
	
	

	Amazon Elastic
	Drug Disc.
	
	

	
	
	Dryad
	

	
	
	
	
	

	Bio
	
	Montage
	
	

	
	
	
	Eucalyptus
	

	PaaS
	Amazon EC2
	SAGA
	
	

	
	
	
	
	

	
	
	Bio
	Montage
	SAGA

	
	
	
	
	

	
	Amazon S3
	
	Nimbus
	

[bookmark: page667]

IaaS

Private	Clouds/
Cloud-like Infrastructure
Public

FIGURE 13.1. Cloud taxonomy and application examples: Clouds provide services at different levels (IaaS, PaaS, SaaS). The amount of control available to users and developers decreases with the level of abstraction. According to their deployment model, clouds can be categorized into public and private clouds.

[bookmark: page668]
environment. Although our taxonomy is targeted toward specific cloud environments, we strongly believe that a scientific application should and must remain interoperable regardless of the execution backend or the initial development infrastructure.

The identification of how cloud application services fit into the layers may allow software developers to better comprehend the nature of parameters introduced in each layer. Such an assumption could lead into easier and more efficient implementation of cloud-operable scientific applications. Research work from the traditional cluster/grid era systems has already determined important features like scalability, extensibility, and high availability that should play an integral role in a distributed application’s core functionality.

Before we discuss scientific cloud applications in Section 13.3, here we will explain the details of the layers in the cloud model.

Software as a Service (SaaS) Layer

The software as a service layer is the highest layer in the proposed model. SaaS provides ready-to-run services that are deployed and configured for the user. In general, the user has no control over the underlying cloud infrastructure with the exception of limited configuration settings. Regarding scientific applications, such a layer may represent an access point for the end user to reach a service, like a portal or a visualization tool. Scientific portals have been used by many grid services.

A strong characteristic of SaaS services is that there is no client side software requirement. All data manipulated in such systems are held in remote infrastructures where all the processing takes place. One of the most prominent advantages of applications that are presented in this layer is universal accessibility regardless of the client system’s software availability. This scheme provides flexibility to the end user and transparency of any complex mechanism involved. Some widely used examples of services that belong to this category are Google Apps and Salesforce. A prominent example from the science community is the TeraGrid Science Gateways .

These gateways provide among other things several domain specific web portals, which can be used to access computational and data services.

Platform as a Service (PaaS) Layer

The Platform as a Service (PaaS) layer provides the capability to deploy custom applications on the cloud providers infrastructure. These applications are developed using the programming languages and APIs defined by the cloud provider. Similar to SaaS, the user has only limited control over the underlying cloud infrastructures: He can deploy and configure applications created using the vendor’s programming environment. The process of implementing and deploying a cloud application becomes more accessible while allowing the programmer to focus on important issues like the formulation of the scientific

[bookmark: page669]13.2	A CLASSIFICATION OF SCIENTIFIC APPLICATIONS AND SERVICES IN THE CLOUD	3 5 2 353

algorithm. A developer does not have to worry about complex programming details, scalability, load balancing, or other system issues that may hinder the overall process of building an application. All such criteria are already specified

by the given API that abstracts underlying architectural	parameters.

A	well-known	PaaS	example	is	the	Google	App	Engine	that	equips

developers with a Python and Java API and runtime environment for the

implementation of web applications. Windows Azure	is Microsoft’s PaaS

platform and offers different types of runtime environments and storage services for applications. While, in particular, Google App Engine is primarily geared toward Web applications (such as science portals), Windows Azure is also well-suited for computeand data-intensive applications. Watson et al. use Windows Azure—in particular the data storage and VM execution environment—to conduct data mining for computational drug discovery.

Another PaaS abstraction that is used for parallel processing of large amounts of data is MapReduce (MR) . The framework solely requires the user to define two functions: the map and the reduce function. Both functions operate on key/value pairs: The map function transforms an input key/value pair representing a data row to an output key/value pair; the reduce function is used to merge all outputs of the map functions. Generally, the MapReduce framework handles all complexities and orchestrates the distribution of the the data as well as of the map and reduce tasks. Hadoop is a wellknown

example	of	an	open-source	MapReduce	framework.	Amazon’s	Elastic

MapReduce provides a hosted MapReduce	service.

Another	example	of	an	environment	for	data-intensive	computing	is

Microsoft Dryad . The framework allows the programmer to efficiently	use

resources for running data parallel applications. In Dryad a computation	has

the form of a directed graph (DAG), where the program instances that compose the computation are represented as graph vertices and the one-way communication channels between the instances are represented as graph edges.

The Dryad infrastructure includes computational frameworks like Google’s

MapReduce. A port of Dryad to Windows Azure is planned, but at the time of writing is not available.

PaaS clouds provider higher-level abstractions for cloud applications, which usually simplifies the application development process and removes the need to manage the underlying software and hardware infrastructure. PaaS offers automatic scalability, load balancing, and failure tolerance. However, the benefits are also associated with some drawbacks: Generally, PaaS services usually provide highly proprietary environments with only limited standard support. App Engine, for example, supports parts of the Java Enterprise API, but uses a custom BigTable-based data store.

Infrastructure-as-a-Service Layer

The infrastructure-as-a-service (Iaas) layer provides low-level, virtualized resources, such as storage, networks, and other fundamental computing

[bookmark: page670]13.2	A CLASSIFICATION OF SCIENTIFIC APPLICATIONS AND SERVICES IN THE CLOUD	3 5 3 353

resources via self-services to the user. In general, the user can deploy and run arbitrary software, which usually includes operating systems as well as applications. However, the user has no knowledge of the exact location and specifics of the underlying physical resources. Cloud providers usually offer instant elasticity; that is, new resources can be rapidly and elastically provisioned to scale-up or scale-out applications dynamically.

Computational cloud resources are represented through virtual machine instances (VMs), where the user is usually granted full administrative access and has the ability to build and deploy any kind of service infrastructure. Such VMs usually come with an OS already installed. The developer may choose a VM to rent that has the OS she wants. Amazon EC2 [14] is the prime example of such a service and currently offers a variety of VM images, where one may choose to work on a Windows platform or on some Linux-based platforms. The developer can further configure and add extra libraries to the selected OS to accommodate an application. Rackspace [15] and GoGrid [16] provide similar services. Eucalyptus [17] and Nimbus [18] offer EC2 compatible infrastructures, which can be deployed in-house in a private cloud. Several scientific clouds utilize these frameworks—for example, Science Cloud [19] and Future Grid [20].

VMs are provided to the user under SLAs, where the cloud provider guarantees a certain level of system’s performance to their clients. They usually involve fees on behalf of the user utilizing the leased computational resources, while open source/research cloud infrastructures don’t include any financial requirement. When a team of scientists rents some virtual resources to run their experiments, they usually also lease data storage to store their data/results remotely and access them within the time limits of their agreement with the service provider. Examples of public cloud storage service are Amazon S3 [21] and Rackspace Cloud Files [22]. Walrus [23] is a S3 interface compatible service, which can be deployed on private cloud infrastructures. Another common cloud-like infrastructure is distributed file systems, such as the Google File System (GFS) [24] and the Hadoop File System (HDFS) [25]. Both systems are optimized for storing and retrieving large amounts of data.

Discussion of Cloud Models

Several scientific applications from different domains (e.g., life sciences, highenergy physics, astrophysics, computational chemistry) have been ported to cloud environments (see references 26—28 for examples). The majority of these applications rely on IaaS cloud services and solely utilize static execution modes: A scientist leases some virtual resources in order to deploy their testing services. One may select different number of instances to run their tests on. An instance of a VM is perceived as a node or a processing unit. There can be a multiple number of instances under the same VM, depending on the SLA one has agreed on. Once the service is deployed, a scientist can begin testing on the virtual nodes; this is similar to how one would use a traditional set of local clusters.

[bookmark: page671]13.2	A CLASSIFICATION OF SCIENTIFIC APPLICATIONS AND SERVICES IN THE CLOUD	3 5 4 353

Furthermore, most of this research has solely attempted to manually customize legacy scientific applications in order to accommodate them into a cloud infrastructure. Benchmark tests on both EC2 virtual instances and conventional computational clusters indicated no significant difference in the results with respect to total running time (wall clock) and number of processors used. So far, there hasn’t been much discussions on implementing scientific applications targeted to a cloud infrastructure. Such first-principle applications require programatic access to cloud capabilities as dynamic provisioning in an infrastructure-independent way to support dynamic execution modes.

In summary, clouds provide services at different levels (IaaS, PaaS, SaaS). In general, the amount of control available to users and developers decreases with the level of abstraction. Only IaaS provides sufficient programmatic control to express decompositions and dynamic execution modes, which seems central to many scientific applications.

13.3	SAGA-BASED SCIENTIFIC APPLICATIONS

THAT UTILIZE CLOUDS

In this chapter we take the scope of “cloud applications” to be those distributed applications that are able to explicitly benefit from the cloud’s inherent elasticity—where elasticity is a kind of dynamic execution mode—and from the usage modes provided by clouds. This excludes those applications that are trivially mapped to a small static set of small resources, which can of course be provided by clouds but do not really capture the predominant advantages and features of clouds.

Earlier work of the chapter authors [28] has shown that the Simple API for Grid Applications (SAGA) [29] provides a means to implement first-principle distributed applications. Both the SAGA standard [30] and the various SAGA implementations [31,32] ultimately strive to provide higher-level programming abstractions to developers, while at the same time shielding them from the heterogeneity and dynamics of the underlying infrastructure. The low-level decomposition of distributed applications can thus be expressed via the relatively high-level SAGA API.

SAGA has been used to develop scientific applications that can utilize an ever-increasing set of infrastructure, ranging from vanilla clouds such as EC2, to “open source” clouds based upon Eucalyptus, to regular HPC and HTC grids, as well to a proposed set of emerging “special-purpose” clouds. SAGA has also been used in conjunction with multiple VM management systems such as OpenNebula (work in progress) and Condor (established). In those cases where the application decomposition properties can be well-mapped to the respective underlying cloud and its usage usage modes (as discussed before), the resulting applications are fit to utilize cloud environments. In other words, if clouds can be defined as elastic distributed systems that support specific usage modes, then it seems viable to expect explicit application level support for those

[bookmark: page672]

	Download from Wow! eBook <www.wowebook.com>

13.3	SAGA-BASED SCIENTIFIC APPLICATIONS THAT UTILIZE CLOUDS 355355

usage modes, in order to allow applications to express that usage mode in the first place.

If we now consider the variety of scientific applications (see reference 2), it seems clear that (i) no single usage mode will be able to accommodate them all and (ii) no single programming abstraction will be able to cover their full scope. Instead, we see a continuum of requirements and solutions that try to map the application structure to the specific distributed runtime environment. This is exactly where SAGA tries to contribute: It provides a framework for implementing higher-level programming abstractions (where it does not provide those abstractions itself), each expressing or demanding a certain usage mode. The SAGA layer allows to abstract the specific way in which that usage mode is provided—either implicitly by adding additional structure to the distributed environment, or explicitly by exploiting support for that usage mode, for example, the elasticity in a specific cloud.

This section will discuss several SAGA-based scientific cloud applications, but we assert that the discussion holds just as well for applications that express their decomposition in other ways programatically. We do not claim that SAGA is the ultimate approach to develop cloud applications, but given our experience so far, it at least seems to be a viable approach that allows applications to directly benefit from the features that clouds, as specific distributed environments, provide: (a) support for specific usage modes and

(b) elasticity of resources. Below we will present a number of examples that illustrate and verify that approach.

MapReduce

As discussed in Section 13.2, MapReduce (MR) is a prominent example for a PaaS: The MR framework allows users to (a) define their own specific map and reduce algorithms and (b) utilize the respective PaaS infrastructure with its MR supporting usage modes (elasticity, communication, etc.). With the emergence of the currently observed broad spectrum of cloud infrastructures, it became, however, necessary to implement the MR framework for each of them. Furthermore, MR has traditionally not been heavily used by the scientific computation community, so that efficient implementations on the “legacy” grid and cluster platforms have been largely missing, which raises the barrier for adoption of MR for scientific applications.

The SAGA MapReduce [33] provides a MR development and runtime environment that is implemented using the SAGA. The main advantage of a SAGA-based approach is that it is infrastructure-independent while still providing a maximum of control over the deployment, distribution, and runtime decomposition. In particular, the ability to control the distribution and placement of the computation units (workers) is critical in order to implement the ability to move computational work to the data. This is required to keep data network transfer low and, in the case of commercial clouds, the monetary cost of computing the solution low.

[bookmark: page673]13.3	SAGA-BASED SCIENTIFIC APPLICATIONS THAT UTILIZE CLOUDS 356355
[image:][image:]

	SAGA

	Job Package

	SAGA-based MapReduce
	
	
	
	
	

	
	
	GRAM
	
	
	

	MapReduce
	Install and
	Condor
	
	Map
	Reduce

	
	
	
	
	
	

	
	
	
	
	
	

	Description
	Launch
	
	
	
	

	
	
	
	Config.
	
	Remote (Slave) Jobs

	
	Master
	
	
	Data
	

	
	
	Advert Package
	
	
	File Package

	
	
	
	
	
	

	Input data
	Register
	SAGA
	
	
	SAGA

	
	
	
	
	
	

	
	
	PostgreSQL...
	HBase
	GridFTP
	... Hadoop

[image:][image:]

FIGURE 13.2. SAGA MapReduce framework. A master-worker paradigm is used to implement the MapReduce pattern. The diagram shows several different infrastructure options that can be utilized by the application.

Figure 13.2 show the architecture of the SAGA MR framework. Several SAGA adaptors have been developed to utilize SAGA MapReduce seamlessly on different grid and cloud infrastructures [28]. For this purpose, adaptors for the SAGA job and file package are provided. The SAGA job API is used to orchestrate mapping and reduction tasks, while the file API is utilized to access data. In addition to the local adaptors for testing, we use the Globus adaptors for grids and the AWS adaptors for cloud environments. Furthermore, we provide various adaptors for cloud-like infrastructure, such as different opensource distributed file systems (e.g., HDFS [25] and CloudStore [34]), and key/ value stores (e.g., HBase [35]).

Tables 13.2 and 13.3 show some selected performance data for SAGA

[bookmark: page674]13.3	SAGA-BASED SCIENTIFIC APPLICATIONS THAT UTILIZE CLOUDS 357355

MapReduce; further details can be found in references 28 and 33. These tests established interoperability across a range of distinct infrastructure concurrently. Ongoing work is currently adding dynamic resource placement and job management to the framework, and it is also experimenting with automated data/compute colocation. The SAGA-based MapReduce implementation has shown to be easily applicable to sequence search applications, which in turn can make excellent use of the MapReduce algorithm and of a variety of middleware backends.

SAGA Montage

Montage [36, 37], an astronomical image mosaicking application that is also one of the most commonly studied workflow applications, has also been studied [38] with SAGA. Montage is designed to take multiple astronomical

[bookmark: page675]13.3	SAGA-BASED SCIENTIFIC APPLICATIONS THAT UTILIZE CLOUDS 358355

TABLE 13.2. Performance Data for Different Configurations of Worker Placementsa

	
	Number
	of workers
	Data
	
	
	

	
	
	
	
	
	
	

	
	TeraGrid
	AWS
	Size (MB)
	(sec)TS
	T(sec)Spawn
	TSpawnT 2(sec)

	
	
	
	
	
	
	

	
	4
	—
	10
	8.8
	6.8
	2.0

	
	—
	1
	10
	4.3
	2.8
	1.5

	
	—
	2
	10
	7.8
	5.3
	2.5

	
	—
	3
	10
	8.7
	7.7
	1.0

	
	—
	4
	10
	13.0
	10.3
	2.7

	
	—
	4 (1)
	10
	11.3
	8.6
	2.7

	
	—
	4 (2)
	10
	11.6
	9.5
	2.1

	
	—
	2
	100
	7.9
	5.3
	2.6

	
	—
	4
	100
	12.4
	9.2
	3.2

	
	—
	10
	100
	29.0
	25.1
	3.9

	
	—
	4 (1)
	100
	16.2
	8.7
	7.5

	
	—
	4 (2)
	100
	12.3
	8.5
	3.8

	
	—
	6 (3)
	100
	18.7
	13.5
	5.2

	
	—
	8 (1)
	100
	31.1
	18.3
	12.8

	
	—
	8 (2)
	100
	27.9
	19.8
	8.1

	
	—
	8 (4)
	100
	27.4
	19.9
	7.5

	
	
	
	
	
	
	

a The master places the workers either on clouds or on the TeraGrid (TG). The configurations, separated by horizontal lines, are classified as either all workers on the TG or having all workers on EC2. For the latter, unless otherwise explicitly indicated by a number in parentheses, every worker is assigned to a unique VM. In the final set of rows, the number in parentheses indicates the number of VMs used. It is interesting to note the significant spawning times, and its dependence on the number of VM, which typically increase with the number of VMs. TSpawn does not include instantiation of the VM.

[bookmark: page676]13.3	SAGA-BASED SCIENTIFIC APPLICATIONS THAT UTILIZE CLOUDS 359355

TABLE 13.3.	Performance Data for Different Configurations of Worker Placements on

TG, Eucalyptus—Cloud, and EC2.a

Number of Workers
	Size
	TS
	
	
	
	TSpawn
	TS2

	
	
	
	
	
	
	
	

	
	
	TG
	AWS
	Eucalyptus
	(MB)
	(sec)
	(sec)
	TSpawn(sec)

	
	
	
	
	
	
	
	
	
	

	
	
	—
	1
	1
	10
	5.3
	3.8
	1.5
	

	
	
	—
	2
	2
	10
	10.7
	8.8
	1.9
	

	
	
	—
	1
	1
	100
	6.7
	3.8
	2.9
	

	
	
	—
	2
	2
	100
	10.3
	7.3
	3.0
	

	1
	—
	1
	10
	4.7
	3.3
	1.4
	

	1
	—
	1
	100
	6.4
	3.4
	3.0
	

	2
	2
	—
	10
	7.4
	5.9
	1.5
	

	3
	3
	—
	10
	11.6
	10.3
	1.6
	

	4
	4
	—
	10
	13.7
	11.6
	2.1
	

	5
	5
	—
	10
	33.2
	29.4
	3.8
	

	10
	10
	—
	10
	33.2
	28.8
	2.4
	

	
	
	
	
	
	
	
	
	
	

[image:]

a The first set of data establishes cloud—cloud interoperability. The second set (rows 5—11) shows interoperability between grids and clouds (EC2). The experimental conditions and measurements are similar to those in Table 13.2.

[bookmark: page677]13.3	SAGA-BASED SCIENTIFIC APPLICATIONS THAT UTILIZE CLOUDS 360355

images (from telescopes or other instruments) and stitch them together into a mosaic that appears to be from a single instrument.

Montage initially focused on being scientifically accurate and useful to astronomers, without being concerned about computational efficiency, and it is being used by many production science instruments and astronomy projects [39]. Montage was envisioned to be customizable, so that different astronomers could choose to use all, much, or some of the functionality, and so that they could add their own code if so desired. For this reason, Montage is a set of modules or tools, each an executable program, that can run on a single computer, a parallel system, or a distributed system. The first version of Montage used a script to run a series of these modules on a single processor, with some modules being executed multiple times on different data. A Montage run is a set of tasks, each having input and output data, and many of the tasks are the same executable run on different data, referred to as a stage.

Later Montage releases delivered two new execution modes, suitable for grid and also cloud environments [40], in addition to sequentially execution. First, each stage can be wrapped by an MPI executable that calls the tasks in that stage in a round-robin manner across the available processors. Second, the Montage workflow can be described as a directed acyclic graph (DAG), and this DAG can be executed on a grid. In the released version of Montage, this is done by mDAG, a Montage module that produces an abstract DAG (or A-DAG, where abstract means that no specific resources are assigned to execute the DAG), Pegasus [41, 42], which communicates with grid information systems and maps the abstract DAG to a concrete resource assignment, creating a concrete DAG (or C-DAG), and DAGMan [43], which executes C-DAG nodes on their internally specified resources.

The generality of Montage as a workflow application has led it to become an exemplar for those in the computer science workflow community, such as those working on: Pegasus, ASKALON [44], quality-of-service (QoS)-enabled GridFTP [45], SWIFT [46], SCALEA-G [47], VGrADS [48], and so on.

A lot of interesting work has been done around the accommodation of workflow and generally data-intensive applications into the cloud. Such applications have a large amount and number of data dependencies, which are usually represented using a DAG to define the sequence of those dependencies. Different approaches have been used to test how well a traditional application like Montage could fit in and utilize virtual resources without compromising any of its functionality or performance [49], including a SAGA-based

workflow system, called “digedag,” has been developed. This allows one to run

Montage applications on a heterogeneous set of backends, with acceptable performance penalties [38]. Individual nodes of Montage workflows are usually sequential (i.e., nonparallel) computations, with moderate data input and output rates. Those nodes thus map very well to resources that are usually available in today’s IaaS clouds, such as AWS/EC2 or Eucalyptus. SAGA-based Mont age workflows can thus seamlessly scale out, and simultaneously span grid, cloud, and cluster environments. It must be noted that workflows with other

[bookmark: page678]13.3	SAGA-BASED SCIENTIFIC APPLICATIONS THAT UTILIZE CLOUDS 361355

TABLE 13.4. Execution Measurements

	
	
	
	
	
	Standard
	Difference

	Walltime
	
	
	Deviation
	from

	#
	Resources
	Middleware
	(sec)
	(sec)
	Local (sec)

	
	
	
	
	
	
	

	1
	L
	F
	68.7
	9.4
	—

	2
	L
	S
	131.3
	8.7
	62.6

	3
	L
	C
	155.0
	16.6
	86.3

	4
	L
	F, S
	89.8
	5.7
	21.1

	5
	L
	F, C
	117.7
	17.7
	49.0

	6
	L
	F, C
	133.5
	32.5
	64.8

	7
	L
	F, S, C
	144.8
	18.3
	76.1

	8
	Q
	S
	491.6
	50.6
	422.9

	9
	E
	A
	354.2
	23.3
	285.5

	10
	E, Q
	S, A
	363.6
	60.9
	294.0

	11
	L, Q, E
	F, S, A
	409.6
	60.9
	340.9

	12
	L
	D
	168.8
	5.3
	100.1

	13
	P
	D
	309.7
	41.5
	241.0

Resources: L, local; P, Purdue; Q, Queen Bee; E,	AWS/EC2

Middleware: F, FORK/SAGA; S, SSH/SAGA; A, AWS/SAGA; C, Condor/SAGA; D, Condor/ DAGMan.

compute/data characteristics could not be mapped onto cloud resources prevalent today: The usage modes supported by AWS/EC2 and the like do not, at the moment, cover massive parallel applications, low-latency pipeline, and so on.

Table 13.4 gives the results (mean 1 standard deviation) for several SAGA Montage experiments. The AWS/EC2 times (#9, #10, #11) are cleared of the EC2 startup times—those are discussed in detail in reference 28. If multiple resources are specified, the individual DAG nodes are mapped to the respective resources in round-robin fashion. Note that the table also gives the times for the traditional DAGMan execution to a local and a remote Condor pool (#12, #13).

Ensemble of Biomolecular Simulations

Several classes of applications are well-suited for distributed environments. Probably the best-known and most powerful examples are those that involve an ensemble of decoupled tasks, such as simple parameter sweep applications [50]. In the following we investigate an ensemble of (parallel HPC) MD simulations.

[bookmark: page679]13.3	SAGA-BASED SCIENTIFIC APPLICATIONS THAT UTILIZE CLOUDS 362355

Ensemble-based approaches represent an important and promising attempt to overcome the general limitations of insufficient timescales, as well as specific limitations of inadequate conformational sampling arising from kinetic trappings. The fact that one single long-running simulation can be substituted for an ensemble of simulations makes these ideal candidates for distributed environments. This provides an important general motivation for researching

[bookmark: page680]
ways to support scale-out and thus enhance sampling and to thereby increase

“effective” timescales studied.

The physical system we investigate is the HCV internal ribosome entry site and is recognized specifically by the small ribosomal subunit and eukaryotic initiation factor 3 (eIF3) before viral translation initiation. This makes it a good candidate for new drugs targeting HCV. The initial conformation of the RNA is taken from the NMR structure (PDB ID: 1PK7). By using multiple replicas, the aim is to enhance the sampling of the conformational flexibility of the molecule as well as the equilibrium energetics.

To efficiently execute the ensemble of batch jobs without the necessity to queue each individual job, the application utilizes the SAGA BigJob framework [51]. BigJob is a Pilot Job framework that provides the user a uniform abstraction to grids and clouds independent of any particular cloud or grid provider that can be instantiated dynamically. Pilot Jobs are an execution abstraction that have been used by many communities to increase the predictability and time-to-solution of such applications. Pilot Jobs have been used to (i) improve the utilization of resources, (ii) reduce the net wait time of a collection of tasks, (iii) facilitate bulk or high-throughput simulations where multiple jobs need to be submitted which would otherwise saturate the queuing system, and (iv) implement application-specific scheduling decisions and policy decisions.

	As
	shown in Figure 13.3, BigJob currently provides
	an abstraction
	to

	grids,
	Condor pools, and clouds. Using the same API,
	applications
	can

	
	Distributed Application
	

	
	SAGA BigJob API
	

	BigJob Cloud
	BigJob TG
	BigJob Condor

	Application Layer
	
	

	Physical Resource Layer
	TeraGrid (Globus)
	TeraGrid (Condor-G)

	
	
	

	
	Front Node
	Front Node

	VM n
	Node n
	Node n

	
	BJ Agent
	Condor

[bookmark: page681]FIGURE 13.3. An overview of the SAGA-based Pilot Job: The SAGA Pilot-Job API is currently implemented by three different back-ends: one for grids, one for Condor, and one for clouds.

[bookmark: page682]
dynamically allocate resources via the big-job interface and bind sub-jobs to these resources.

In the following, we use an ensemble of MD simulations to investigate different BigJob usage modes and analyze the time-to-completion, TC, in different scenarios.

Scenario A: TC for Workload for Different Resource Configurations.In

this scenario and as proof of scale-out capabilities, we use SAGA BigJob to run replicas across different types of infrastructures. At the beginning of the experiment a particular set of Pilot Jobs is started in each environment. Once a Pilot Job becomes active, the application assigns replicas to this job. We measure TC for different resource configurations using a workload of eight replicas each running on eight cores. The following setups have been used:

Scenario A1: Resource I and III—Clouds and GT2-based grids. Scenario A2: Resource II and III—Clouds and Condor grids. Scenario A3: Resource I, II, and III—Clouds, GT2, and Condor grids.

For this experiment, the LONI clusters Poseidon and Oliver are used as grid and Condor resources, and Nimbus is used as a cloud resource.

Figure 13.4 shows the results. For the first three bars, only one infrastructure was used to complete the eight-replica workload. Running the whole scenario in the Science Cloud resulted in a quite poor but predictable performance; the standard deviation for this scenario is very low. The LONI resources are about three times faster than the Science Cloud, which corresponds to our earlier findings. The performance of the Condor and grid BigJob is similar, which can be expected since the underlying physical LONI resources are the same. Solely, a slightly higher startup overhead can be observed in the Condor runtimes.

In the next set of three experiments, multiple resources were used. For Scenario A1 (the fourth bar from left), two replicas were executed on the Science Cloud. The offloading of two replicas to an additional cloud resource resulted in a light improvement of TC compared to using just LONI resources. Thus, the usage of cloud resources must be carefully considered since TC is determined by the slowest resource, that is, Nimbus. As described earlier, the startup time for Nimbus images is, particularly for such short runs, significant. Also, NAMD performs significantly worse in the Nimbus cloud than on Poseidon or Oliver. Since the startup time on Nimbus averages to 357 sec and each eight-core replica runs for about 363 sec, at least 720 sec must be allowed for running a single replica on Nimbus. Thus, it can be concluded that if resources in the grids or Condor pool are instantly available, it is not reasonable to start additional cloud resources. However, it must be noted that there are virtual machines types with a better performance available—for example, in the Amazon cloud. These VMs are usually associated with higher costs (up to $2.40 per CPU hour) than the Science Cloud VMs. For a further

[bookmark: page683]
	
	3.500
	
	
	
	
	
	
	
	

	
	3.000
	
	
	
	
	
	
	
	

	
	2.500
	
	
	
	
	
	
	
	

	sec)
	2.000
	
	
	
	
	
	
	
	

	Runtime (in
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	1.500
	
	
	
	
	
	
	
	

	
	1.000
	
	
	
	
	
	
	
	

	
	500
	
	
	
	
	
	
	
	

	0
	
	
	
	
	
	
	
	
	

	
	Science Cloud
	
	
	
	
	
	
	
	

	
	8cr/8rp
	LONI 8cr/8rp
	Condor Pool
	LONI
	8cr/6rp
	LONI 8cr/4rp
	LONI
	8cr/4rp

	
	
	
	
	
	
	
	
	

	
	
	
	8cr/8rp
	Science Cloud
	Condor
	P.
	Condor
	P. 8cr/3rp

	
	
	
	
	8cr/2rp
	
	8cr/4rp
	
	Sci. Cloud 8cr/1rp

Resource #cores/#replicas

FIGURE 13.4. Collective usage of grid, Condor, and cloud resources for workload of eight replicas. The experiments showed that if the grid and Condor resource Poseidon has only a light load, no benefits for using additional cloud resources exist. However, the introduction of an additional Condor or grid resource significantly decreases TC.

discussion of cost trade-offs for scientific computations in clouds, see Deelman et al. [52].

[bookmark: page684]Scenario B: TC for Workload for Different Resource Configurations.

Given that clouds provide the illusion of infinite capacity, or at least queue wait-times are nonexistent, it is likely that when using multiple resource types and with loaded grids/clusters (e.g., TeraGrid is currently over-subscribed and typical queue wait-times often exceed 24 hours), most sub-jobs will end up on the cloud infrastructure. Thus, in Scenario B, the resource assignment algorithm we use is as follows: We submit tasks to non-cloud resources first and periodically monitor the progress of the tasks. If insufficient jobs have finished when time equal to TX has elapsed (determined per criteria outlined below), then we move the workload to utilize clouds. The underlying basis is that clouds have an explicit cost associated with them; and if jobs can be completed on the TeraGrid/Condor-pool while preserving the performance constraints, we opt for such a solution. However, if queue loads prevent the performance requirements from being met, we move the jobs to a cloud resource, which we have shown has less fluctuation in TC of the workload.

For this experiment we integrated a progress manager that implements the described algorithm into the replica application. The user has the possibility to

[bookmark: page685]
TABLE 13.5. Usage of Cloud Pilot Jobs to Ensure Deadline

	
	
	
	Number
	of
	Average TC

	
	Result
	Occurrences
	
	(minutes)

	
	
	
	
	

	
	No VM started
	6
	
	7.8

	
	1
	VM started
	1
	
	36.4

	
	2
	VMs started
	1
	
	47.3

	
	3
	VMs started
	2
	
	44.2

	
	
	
	
	
	

specify a maximum runtime and a check interval. At the beginning of each check interval, the progress manager compares the number of jobs done with the total number of jobs and estimates the total number of jobs that can be completed within the requested timeframe. If the total number of jobs is higher than this estimate, the progress monitor instantiates another BigJob object request additional cloud resources for a single replica. In this scenario, each time an intermediate target is not met, four additional Nimbus VMs sufficient for running another eight core replica are instantiated. Table 13.5 summarizes the results.

In the investigated scenario, we configured a maximum runtime of 45 min and a progress check interval of 4 min. We repeated the same experiment 10 times at different times of the day. In 6 out of 10 cases the scenario was completed in about 8 minutes. However, the fluctuation in particular in the waiting time on typical grid resources can be very high. Thus, in four cases, it was necessary to start additional VMs to meet the application deadline. In two cases, three Pilot Jobs each with eight cores had to be started, and in one case a single Pilot Job was sufficient. In a single case the deadline was missed solely because not enough cloud resources were available; that is, we were only able to start two instead of three Pilot Jobs.

DISCUSSION

It is still unclear what the predominant usage mode of cloud infrastructures will be. As shown, there are a large number of applications that are able to utilize clouds, including both data-intensive applications (i.e., those that require datacompute affinity) and compute-intensive applications. While clouds can support different compute-intensive usage modes (e.g., distributed, tightly coupled and loosely coupled applications), tightly coupled applications are less well suited for clouds because current cloud infrastructures lack high-end, lowlatency interconnects. Another interesting type of application includes

[bookmark: page686]programs that are able to utilize clouds in addition to traditional grids in a hybrid mode. Using dynamic and adaptive execution modes, the time-to-solution for many applications can be reduced and exceptional runtime situations (e.g., failures or scheduling delays) can be handled.

[bookmark: page687]
Developing and running applications on dynamic computational infrastructures such as clouds presents new and significant challenges. This includes the need for programming systems such as SAGA, which is able to express the different usage modes, associated runtime trade-offs, and adaptations. Other issues include: decomposing applications, components and workflows; determining and provisioning the appropriate mix of grid/cloud resources, and dynamically scheduling them across the hybrid execution environment while satisfying/balancing multiple possibly changing objectives for performance, resilience, budgets, and so on.

IDEAS Revisited

In computational science applications that utilize distributed infrastructure (such as computational grids and clouds), dealing with heterogeneity and scale of the underlying infrastructure remains a challenge. As shown in Table 13.6, SAGA and SAGA-based abstractions help to advance the IDEAS design objectives: Interoperability, Distributed scale-out, Extensibilty, Adaptivity and Simplicity:

Interoperability. In all three examples, application-level interoperability is provided by the SAGA programming system. SAGA decouples applications from the underlying physical resources and provides infrastructureindependent control over the application deployment, decomposition, and runtime execution.

Distributed Scale-Out. SAGA-based applications and frameworks, such as SAGA BigJob and Digedag, support the distributed scale-out of applications to multiple and possibly heterogeneous infrastructures —for example, different types of clouds and grids.

Extensibility. The example clouds applications are extensible in several directions; new functionality and usage modes can simply be incorporated

using SAGA. Additional distributed cloud and grid infrastructures can be included by configuration using a different middleware adaptor.

TABLE 13.6. Design objectives addressed by the different applications: Interoperability, infrastructure independence; Distributed Scale-Out, ability to use multiple distributed resources concurrently; Extensibility, extensibility and general purpose uptake; Adaptivity, ability to respond to changes; and Simplicity, greater simplicity without

sacrificing functionality and performance.

Distr.

Application	Interoperability Scale-Out Extensibility Adaptivity Simplicity

	[bookmark: page688]SAGA MapReduce
	Y
	Y
	Y
	
	Y

	SAGA Montage
	Y
	Y
	Y
	
	Y

	Biomolecular Ensemble
	Y
	Y
	Y
	Y
	Y

	
	
	
	
	
	

[bookmark: page689]
Adaptivity. Distributed applications that utilize SAGA are able to explicitly benefit from the cloud properties such as elasticity and to pursue dynamic execution modes. Examples of such usage mode include the

usage of additional resources to meet a deadline or to meet an increased resource demand due to a certain runtime condition.

Simplicity. SAGA provides a simple, high-level programming abstraction to express core distributed functionality. Simplicity arises from the fact that the API is very focused and reduced to the most essential functionalities.

Interoperability of Scientific Applications across Clouds and HPC/Grids

It is still unclear what kind of programming models and programming systems will emerge for clouds. It has been shown that traditional distributed applications can be easily ported to IaaS environments. The nature of applications as well as the provided system-level interfaces will play an important role for interoperability. While several technical infrastructure features, as well as economical policies, influence the design of programming models for the cloud era, it is important for effective scientific application development that any such system should not be constrained to a specific infrastructure—that is, it should support infrastructure interoperability at the application-level.

The SAGA programming system provides a standard interface and can support powerful programming models. SAGA allows application developers to implement common and basic distributed functionality, such as application decomposition, distributed job submission, and distributed file movement/ management, independently of the underlying infrastructure. The SAGA cloud adaptors provide the foundation for accessing cloud storage and compute resource via the SAGA API. The ability to design and develop applications in an infrastructure-independent way leads to new kinds of application, such as dynamic applications. Such applications have dynamic runtime requirements and are able to adapt to changing runtime environments and resource availabilities. SAGA provides developers with new capability while introducing a new set of challenges and trade-offs. Application developers are, for example, able to utilize new execution modes in conjunction with “traditional” distributed applications but must, however, consider new trade-offs, for example, when selecting a resource.

The MapReduce programming model has exemplified a novel way to construct distributed applications for the cloud. It has been perceived as a programming pattern to lead the implementation of some future scientific applications. There has been a lot of testing on simple applications performing map and reduce computations on VMs as well as on traditional local clusters in order to first verify the scalability of performance that the proposed model successfully offers and then, most importantly, guarantee interoperability

[bookmark: page690]
between VMs and local clusters for a given application. As shown, SAGA MapReduce is able to run across different cloud and cloud-like back-end infrastructures.

As highlighted earlier, SAGA provides the basis for dynamic applications. Such applications greatly benefit from the ability of clouds to dynamically provision resources. The biomolecular ensemble application, for example, easily scales out to cloud and grid infrastructures and is able to utilize additional cloud resources to ensure the progress toward a deadline. Furthermore, SAGA enables applications and higher-level frameworks such as BigJob to deploy dynamic schedulers that determine the appropriate mix of cloud/grid resources and are able to adaptively respond to special runtime situations, such as faults.

Similarly, the development of workflow applications such as SAGA Montage can be both simple and efficient using the right tools. While SAGA Montage can easily be run across grid and clouds, the current version follows a traditional static execution model. In the future, the decision of where to run Montage components should be made at runtime, taking into account the current system and network utilization. Furthermore, capabilities, such as the ability to dynamically reschedule tasks, should be considered.

Application Performance Considerations

Undoubtedly, the most important characteristic for the establishment of a scientific application is its overall performance. There are proposals on including HPC tools and scientific libraries in EC2 AMIs and have them ready to run on request. This might lead to re-implementing some HPC tools and deploying public images on Amazon or other vendors specifically for scientific purposes (e.g., the SGI Cyclone Cloud [53]). Still, in order to include ready-touse MPI clusters on EC2, there are several challenges to be met: The machine images must be manually prepared, which involves setting up the operating system, the application’s software environment and the security credentials.

However, this step is only initially required and comparable with moving an application to a new grid resource. Furthermore, the virtual machines must be started and managed by the application. As shown, several middleware frameworks, such as BigJob, are already able to utilize and manage cloud resources taking the burden off the application. Depending on the cloud infrastructure used, the spawning of VMs usually involves some overhead for resource allocation and for staging the VM to the target machine. At the end of the run, the results must be obtained and stored persistently, and the cluster must be terminated.

Another concern that scientists have to deal with in a cloud environment are different computational overheads as well as high and sometimes unpredictable communication latencies and limited bandwidths. For applications that are HPC applications, where the coupling of communication and computation is

[bookmark: page691]
relatively tight and where there is relatively frequent communication including global communication, clouds can be used, but with added performance overhead, at least on today’s clouds. These overheads have various sources, some of which can be reduced. How much of this overhead must exist and will exist in the future is unclear.

There are two types of overhead: (i) added computational overhead of a VM and (ii) communication overhead when communicating between VMs. The first type of overhead results from the use of VMs and the fact that the underlying hardware is shared. While clouds nowadays deploy highly efficient virtualization solutions that impose very low overheads on applications (see reference 51), unanticipated load increases on the cloud providers infrastructure can affect the runtime of scientific applications. The communication overhead mainly results from the fact that most clouds do not use networking hardware that is as low-overhead as that of dedicated HPC systems. There are at least two routes to parallelism in VMs. The first is a single VM across multiple cores; the second is parallelism across VMs. The latter type is especially affected from these communication overheads; that is, tightly coupled workloads (e.g., MPI jobs) are likely to see a degraded performance if they run across multiple VMs. Also, the common perception of clouds does not include the ability to co-locate different parts of a single application on a single physical cluster. Again, some of this network-related overhead can be reduced. At the time of writing this chapter, it is unclear to the authors if there is community consensus on what the performance of HPC applications on clouds is expected to be compared to bare-metal, whether the future model is that of a single VM over multiple-cores, or if there will be an aggregation of multiple VMs to form a single application, and thus importantly it is unclear what the current limitations on performance are. Additionally, there is also work in progress to develop pass-through communication and I/O, where the VM would not add overhead, though this is not yet mature.

THE MAPREDUCE PROGRAMMING
MODEL AND IMPLEMENTATIONS

[bookmark: page692]

INTRODUCTION

Recently the computing world has been undergoing a significant transformation from the traditional noncentralized distributed system architecture, typified by distributed data and computation on different

	geographic areas,
	to a centralized cloud computing architecture, where the

	computations and
	data are operated somewhere in the “cloud” —that is, data

centers owned and maintained by third party.

The interest in cloud computing has been motivated by many factors [1] such as the low cost of system hardware, the increase in computing power and storage capacity(e.g., themoderndatacenterconsistsofhundredofthousandofcoresand petascale storage), and the massive growth in data size generated by digital media (images/audio/video), Web authoring, scientific instruments, physical simulations, andsoon. Tothisend, stillthemainchallengeinthecloudishowtoeffectively store, query, analyze, and utilize these immense datasets. The traditional dataintensivesystem(datatocomputingparadigm) is notefficient forcloudcomputing due to the bottleneck of the Internet when transferring large amounts of data to a distant CPU . New paradigms should be adopted, where computing and data resources are co-located, thus minimizing the communication cost and benefiting from the large improvements in IO speeds using local disks, as shown in Figure 14.1. Alex Szalay and Jim Gray stated in a commentary on 2020 computing :

In the future, working with large data sets will typically mean sending computations to data rather than copying the data to your work station.

Cloud Computing: Principles and Paradigms, Edited by Rajkumar Buyya, James Broberg andAndrzej Goscinski Copyright r 2011 John Wiley & Sons, Inc.

373

[bookmark: page693]

	Infrastructure

MAPREDUCE PROGRAMMING MODEL 3 7 4 375

Conventional Supercomputing

(Data To Computing)

Computing To Data

System	System

Skinny Pipe

Data

Computing	Data	Computing

System collects and maintains data (Shared, active data set)	Data stored in separate repository (no support for collection or

management)

Data Brought into system for computation (Time consuming and limits

	Computation colocated with storage (Faster access)
	interactivity)

	
	

	Programming Model

	Application
	Application

	Programs
	Programs

Machine-Dependent

Programming Models

Machine-Dependent

Programming Models

Application programs written in terms of high-level	Programs	described	at	very	low	level	specify	detailed	control	of

operations on data	processing and communications

Runtime system controls scheduling, load balancing, .	. .	Rely on small number of software packages (Written by	specialists,

limits classes of problems and solution methods)

[bookmark: page694][image:]14.2	MAPREDUCE PROGRAMMING MODEL 3 7 5 375

FIGURE 14.1. Traditional Data-to-Computing Paradigm versus Computing-to-Data Paradigm .

Google has successfully implemented and practiced the new data-intensive paradigm in their Google MapReduce System (e.g., Google uses its MapReduce framework to process 20 petabytes of data per day). The MapReduce system runs on top of the Google File System (GFS) , within which data are loaded, partitioned into chunks, and each chunk is replicated. Data processing is co-located with data storage: When a file needs to be processed, the job scheduler consults a storage metadata service to get the host node for each chunk and then schedules a “map” process on that node, so that data locality is exploited efficiently.

At the time of writing, due to its remarkable features including simplicity, fault tolerance, and scalability, MapReduce is by far the most powerful realization of data-intensive cloud computing programming. It is often advocated as an easier-to-use, efficient and reliable replacement for the traditional dataintensive programming model for cloud computing. More significantly, MapReduce has been proposed to form the basis of the data-center software stack .

[bookmark: page695]14.2	MAPREDUCE PROGRAMMING MODEL 3 7 6 375

MapReduce has been widely applied in various fields including data and compute-intensive applications, machine learning, graphic programming, multi-core programming, and so on. Moreover, many implementations have been developed in different languages for different purposes.

Its popular open-source implementation, Hadoop , was developed primarily by Yahoo!, where it processes hundreds of terabytes of data on at least 10,000 cores , and is now used by other companies, including Facebook, Amazon, Last.fm, and the New York Times . Research groups from the enterprise and academia are starting to study the MapReduce model for better fit for the cloud, and they explore the possibilities of adapting it for more applications.

MAPREDUCE PROGRAMMING MODEL

MapReduce is a software framework for solving many large-scale computing problems. The MapReduce abstraction is inspired by the Map and Reduce functions, which are commonly used in functional languages such as Lisp . The MapReduce system allows users to easily express their computation as map and reduce functions (more details can be found in Dean and Ghemawat):

The map function, written by the user, processes a key/value pair to generate a set of intermediate key/value pairs:

map (key1, value1) list (key2, value2)

The reduce function, also written by the user, merges all intermediate values associated with the same intermediate key:

reduce (key2, list (value2)) list (value2)

The Wordcount Example

As a simple illustration of the Map and Reduce functions, Figure 14.2 shows the pseudo-code and the algorithm and illustrates the process steps using the widely used “Wordcount” example. The Wordcount application counts the number of occurrences of each word in a large collection of documents.

[bookmark: page696]14.2	MAPREDUCE PROGRAMMING MODEL 3 7 7 375

The steps of the process are briefly described as follows: The input is read (typically from a distributed file system) and broken up into key/value pairs (e.g., the Map function emits a word and its associated count of occurrence, which is just “1”). The pairs are partitioned into groups for processing, and they are sorted according to their key as they arrive for reduction. Finally, the key/value pairs are reduced, once for each unique key in the sorted list, to

[bookmark: page697]14.2	MAPREDUCE PROGRAMMING MODEL 3 7 8 375

	Algorithm Pseudo-Code

	map(String key, String value):
	reduce(String key, Iterator values):

	// key: document name
	// key: a word

	// value: document contents
	// values: a list of counts

	
	int result = 0;

	Map (Document Name, Content) → For each (Word)
	For each (Word)

	Example

	
	(A.txt = to be or) (B.txt = not to be) (C.txt = to be)

	
	
	(to,1)
	
	(be,1)

	A
	
	
	
	

	
	Map
	
	
	

	
	
	
	
	(be,1)

	
	
	(be,1)
	
	

	
	
	
	Partation
	

	B
	
	(not,1)
	
	(not,1)

	
	
	
	
	

	
	Map
	
	
	

	
	
	
	
	

	
	
	(to,1)
	
	(or,1)

	C
	Map
	(to,1)
	
	(to,1)

	
	
	
	
	

	
	
	
	
	

(to,1)

Reduce	(be,3)

Reduce	(not,1)

Reduce	(or,1)

Reduce	(to,3)

FIGURE 14.2. The Wordcount	example.

produce a combined result (e.g., the Reduce function sums all the counts emitted for a particular word).

[bookmark: page698]14.2	MAPREDUCE PROGRAMMING MODEL 3 7 9 375

Main Features

In this section we list the main features of MapReduce for data-intensive application:

Data-Aware. When the MapReduce-Master node is scheduling the Map tasks for a newly submitted job, it takes in consideration the data location information retrieved from the GFS-Master node.

Simplicity. As the MapReduce runtime is responsible for parallelization and concurrency control, this allows programmers to easily design parallel and distributed applications.

Manageability. In traditional data-intensive applications, where data are stored separately from the computation unit, we need two levels of

	management: (i) to manage the input
	data
	and
	then
	move these
	data

	and prepare them to be
	executed;
	(ii)
	to manage
	the
	output
	data.

	In contrast, in the Google
	MapReduce model,
	data
	and
	computation

are allocated, taking advantage of the GFS, and thus it is easier to manage the input and output data.

[bookmark: page699]14.2	MAPREDUCE PROGRAMMING MODEL 3 8 0 375

Scalability. Increasing the number of nodes (data nodes) in the system will increase the performance of the jobs with potentially only minor losses.

fault Tolerance and Reliability. The data in the GFS are distributed on clusters with thousands of nodes. Thus any nodes with hardware

failures can be handled by simply removing them and installing a new node in their place. Moreover, MapReduce, taking advantage of the replication in GFS, can achieve high reliability by (1) rerunning all the tasks (completed or in progress) when a host node is going off-line,

(2) rerunning failed tasks on another node, and (3) launching backup tasks when these tasks are slowing down and causing a bottleneck to the entire job.

Execution Overview

As shown in Figure 14.3, when the user program calls the MapReduce function, the following sequence of actions occurs. More details can be found in Dean and Ghemawat :

The MapReduce library in the user program first splits the input files into M pieces of typically 16 to 64 megabytes (MB) per piece. It then starts many copies

Output
file 0
Output

file 1

	[bookmark: page700][image:](2)
	(2)

	assign
	assign

	
	
	Worker
	14.2
	MAPREDUCE PROGRAMMING(6)writeMODEL3 8 1 375

	Split 0
	
	
	
	

	
	
	
	
	
	Worker
	

	
	
	
	
	
	
	

	Split 1
	(3) read
	
	(4) local write
	
	
	

	Split 2
	
	Worker
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	Split 3
	
	
	
	
	Worker
	

	
	
	
	
	
	
	

	Split 4
	
	
	
	
	
	

	
	
	Worker
	
	
	
	

	Input
	
	Map
	Intermediate files
	Reduce
	Output

	files
	
	phase
	(on local disks)
	phase
	files

FIGURE 14.3. MapReduce execution overview .

[bookmark: page701]14.2	MAPREDUCE PROGRAMMING MODEL 3 8 2 375

of the program on a cluster. One is the “master”	and the rest	are “workers.”

The master is responsible for scheduling (assigns the map and reduce tasks to the worker) and monitoring (monitors the task progress and the worker health).

When map tasks arise, the master assigns the task to an idle worker, taking into account the data locality. A worker reads the content of the corresponding input split and emits a key/value pairs to the user-defined Map function. The intermediate key/value pairs produced by the Map function are first buffered in memory and then periodically written to a local disk, partitioned into R sets by the partitioning function.

The master passes the location of these stored pairs to the reduce worker, which reads the buffered data from the map worker using remote procedure calls (RPC). It then sorts the intermediate keys so that all occurrences of the same key are grouped together. For each key, the worker passes the corresponding intermediate value for its entire occurrence to the Reduce function. Finally, the output is available in R output files (one per reduce task).

Spotlight on Google MapReduce Implementation

Google’s MapReduce implementation targets large clusters of Linux PCs connected through Ethernet switches . Tasks are forked using remote procedure calls. Buffering and communication occurs by reading and writing files on the GFS. The runtime library is written in C11 with interfaces in Python and Java . MapReduce jobs are spread across its massive computing clusters. For example, the average MapReduce job in September 2007 ran across approximately 400 machines, and the system delivered approximately 11,000 machine years in a single month as shown in Table 14.1 .

TABLE 14.1. MapReduce Statistics for Different Months

	
	Aug. ’04
	Mar. ’06
	Sep. ’07

	
	
	
	

	Number of jobs (1000s)
	29
	171
	2,217

	Avg. completion time (sec)
	634
	874
	395

	Machine years used
	217
	2,002
	11,081

	
	
	
	

	Map input data (TB)
	3,288
	52,254
	403,152

	Map output data (TB)
	758
	6,743
	34,774

	Reduce output data (TB)
	193
	2,970
	14,018

	[bookmark: page702]
	
	14.2
	MAPREDUCE PROGRAMMING MODEL 3 8 3 375

	
	Avg. machines per job
	157
	268
	394
	

	
	
	
	
	
	

	
	Unique implementations
	
	
	
	

	
	
	
	
	
	

	
	Map
	395
	1,958
	4,083
	

	
	Reduce
	269
	1,208
	2,418
	

	
	
	
	
	
	

	[bookmark: page703]14.3 MAJOR MAPREDUCE IMPLEMENTATIONS FOR THE CLOUD
	379

MAJOR MAPREDUCE IMPLEMENTATIONS FOR THE CLOUD

In the following sections, we will introduce some of the major MapReduce implementations around the world as shown in Table 14.2, and we will provide a comparison of these different implementations, considering their functionality, platform, the associated storage system, programming environment, and so on, as shown in Table 14.3.

Hadoop

Hadoop is a top-level Apache project, being built and used by a community of contributors from all over the world . It was advocated by industry’s premier

Web players—Google, Yahoo!, Microsoft, and Facebook—as the engine to power the cloud [14]. The Hadoop project is stated as a collection of various subprojects for reliable, scalable distributed computing . It is defined as follows

:

TABLE 14.2. MapReduce Cloud Implementations

	
	Imp Name
	Start
	Last
	Distribution

	Owner
	and Website
	Time
	Release
	Model

	
	
	
	
	

	Google
	Google
	2004
	—
	Internal use by

	
	MapReduce
	
	
	Google

	
	http://labs.google
	
	
	

	
	.com/papers/
	
	
	

	
	mapreduce.html
	
	
	

	Apache
	Hadoop
	2004
	Hadoop0.20.0
	Open source

	
	http://hadoop
	
	April 22, 2009
	

	
	.apache.org/
	
	
	

	GridGain
	GridGain
	2005
	GridGain 2.1.1
	Open source

	
	http://www
	
	February 26,
	

	
	.gridgain.com/
	
	2009
	

	Nokia
	Disco
	2008
	Disco 0.2.3
	Open source

	
	http://discoproject
	
	September 9,
	

	
	.org/
	
	2009
	

	Geni.com
	SkyNet
	2007
	Skynet0.9.3
	Open source

	
	http://skynet
	
	May 31, 2008
	

	
	.rubyforge.org
	
	
	

	[bookmark: page704]
	14.3 MAJOR MAPREDUCE IMPLEMENTATIONS FOR THE CLOUD
	379

	ManjrasoftMapReduce.net
	2008
	Aneka 1.0
	Commercial
	

	(Optional service
	
	March 27, 2009
	
	

	of
	Aneka)
	
	
	
	

	http://www
	
	
	
	

.manjrasoft.com/

products.html

[bookmark: page705]Download from Wow! eBook <www.wowebook.com>

	14.3 MAJOR MAPREDUCE IMPLEMENTATIONS FOR THE CLOUD
	379

	380

TABLE 14.3. Comparison of MapReduce Implementations

Google

MapReduce	Hadoop	Disco	MapReduce.NET	Skynet	GridGain

	Focus
	Data-intensive
	Data-intensive
	Data-intensive
	Data
	and
	Data-intensive
	Compute-

	
	
	
	
	
	
	
	comput
	
	

	
	
	
	
	
	
	
	eintensiv
	
	intensive

	
	
	
	
	
	
	
	e
	
	

	
	
	
	
	
	
	
	
	
	and data-intensive

	Architecture
	Master
	—Slave
	Master —Slave
	Master— slave
	Master— Slave
	P2P
	Master— slave

	Platform
	Linux
	
	Cross-platform
	
	Linux, Mac
	
	.Net Windows
	OS-independent
	Windows, Linux,

	
	
	
	
	
	OS X
	
	
	
	Mac OS X

	Storage System
	GFS
	
	HDFS,
	
	GlusterFS
	
	WinDFS, CIFS,
	Message
	Data grid

	
	
	
	CloudStore, S3
	
	
	
	and NTFS
	queuing:
	

	
	
	
	
	
	
	
	
	Tuplespace and
	

	
	
	
	
	
	
	
	
	MySQL
	

	Implementation
	C11
	
	JAVA
	
	Erlang
	
	C#
	Ruby
	Java

	Technology
	
	
	
	
	
	
	
	
	

Programming Environment

	[bookmark: page706]
	14.3 MAJOR MAPREDUCE IMPLEMENTATIONS FOR THE CLOUD
	379
	
	

	
	Java and
	JAVA, shell
	Python
	
	C#
	Ruby
	Java

	
	Python
	utilities
	
	
	
	
	
	

	
	
	using Hadoop
	
	
	
	
	

	
	
	streaming,
	
	
	
	
	

	
	
	C11
	Using
	
	
	
	
	

	
	
	Hadoop
	
	
	
	
	
	

	
	
	pipes
	
	
	
	
	
	

	Deployment
	Deployed
	Private
	and
	Private
	and
	Using Aneka, can be
	Web application
	Private and public

	
	on Google
	public
	
	public cloud
	deployed on private and
	(Rails)
	cloud

	
	clusters
	cloud (EC2)
	(EC2)
	
	public Cloud
	
	

	Some Users and
	Google
	Baidu [46],
	Nokia
	Research
	Vel Tech University [50]
	Geni.com [17]
	MedVoxel [51],

	Applications
	center [21]

	NetSeer [47],
	Pointloyalty [52],

	A9.com [48],
	Traficon [53], .. .

	Facebook [49] . . .
	

	
	

	[bookmark: page707]14.3 MAJOR MAPREDUCE IMPLEMENTATIONS FOR THE CLOUD
	381

The Apache Hadoop project develops open-source software for reliable, scalable, distributed computing. Hadoop includes these subprojects:

Hadoop Common: The common utilities that support the other Hadoop subprojects.

Avro: A data serialization system that provides dynamic integration with scripting languages.

● Chukwa: A data collection system for managing large distributed	systems.

HBase: A scalable, distributed database that supports structured data storage for large tables.

HDFS: A distributed file system that provides high throughput access to application data.

Hive: A data warehouse infrastructure that provides data summarization and ad hoc querying.

MapReduce: A software framework for distributed processing of large data sets on compute clusters.

Pig: A high-level data-flow language and execution framework for parallel computation.

ZooKeeper: A high-performance coordination service for distributed applications.

HadoopMapReduce Overview. The Hadoop common , formerly Hadoopcore, includes file System, RPC, and serialization libraries and provides the basic services for building a cloud computing environment with commodity hardware. The two fundamental subprojects are the MapReduce framework and the Hadoop Distributed File System (HDFS).

The Hadoop Distributed File System is a distributed file system designed to run on clusters of commodity machines. It is highly fault-tolerant and is appropriate for data-intensive applications as it provides high speed access the application data.

The Hadoop MapReduce framework is highly reliant on its shared file system (i.e., it comes with plug-ins for HDFS, CloudStore [15], and Amazon Simple Storage Service S3 [16]).

The Map/Reduce framework has master/slave architecture. The master, called JobTracker, is responsible for (a) querying the NameNode for the block locations, (b) scheduling the tasks on the slave which is hosting the task’s blocks, and (c) monitoring the successes and failures of the tasks. The slaves, called TaskTracker, execute the tasks as directed by the master.

Hadoop Communities. Yahoo! has been the largest contributor to theHadoop project . Yahoo! uses Hadoop extensively in its Web search and advertising businesses . For example, in 2009, Yahoo! launched, according to them, the world’s largest Hadoop production application, called

	[bookmark: page708]14.3 MAJOR MAPREDUCE IMPLEMENTATIONS FOR THE CLOUD
	381

Yahoo! Search Webmap. The Yahoo! Search Webmap runs on a more than 10,000 core Linux cluster and produces data that are now used in every Yahoo! Web search query .

Besides Yahoo!, many other vendors have introduced and developed their own solutions for the enterprise cloud; these include IBM Blue Cloud [17], Cloudera [18], Opensolaris Hadoop Live CD [19] by Sun Microsystems, and Amazon Elastic MapReduce [20], as shown in Table 14.4. Besides the

TABLE 14.4. Some Major Enterprise Solutions Based on Hadoop

Or	Name	Solution	and	Website	Brief Description

Yahoo!	Yahoo!

Distribution of Hadoop, http:// developer.yahoo

.com/hadoop/

distribution/

Cloudera	Cloudera Hadoop

Distribution, http://

www.cloudera

.com/

Amazon	Amazon	Elastic

MapReduce,

http://aws.amazon

.com/

elasticmapreduce/

	[bookmark: page709]14.3 MAJOR MAPREDUCE IMPLEMENTATIONS FOR THE CLOUD
	381

The Yahoo! distribution is based entirely on code found in the Apache Hadoop project. It includes code patches that Yahoo! has added to improve the stability and performance of their clusters. In all cases, these patches have already been contributed back to Apache.

Cloudera provides enterprise-level support to users of Apache Hadoop. The Cloudera Hadoop Distribution is an easy-to-install package of Hadoop software. It

Sun	Hadoop Live CD,

Microsy	http://opensolaris.

stems	org/os/project/

livehadoop/

IBM	Blue Cloud, http://

www-03.ibm.com/

press/us/en/

pressrelease/22613

.wss

includes everything you need to configure and deploy Hadoop using standard Linux system administration tools. In addition, Cloudera provides a training program aimed at producers and users of large volumes of data.

“Web service that enables businesses, researchers, data analysts, and developers to easily and cost-effectively process vast amounts of data. It utilizes a hosted Hadoop framework running on the web-scale infrastructure of Amazon Elastic Compute Cloud (Amazon EC2)[17] and Amazon Simple Storage Service (Amazon S3).”

This project’s initial CD development tool aims to provide users who are new to Hadoop with a fully functional Hadoop cluster that is easy to start up and use.

Targets clients who want to explore the extreme scale of cloud computing infrastructures quickly and easily. “Blue Cloud will include Xen and

PowerVM virtualized Linux operating system images and Hadoop parallel workload scheduling. It is supported by IBM Tivoli software that manages servers to ensure optimal performance based on demand.”

	[bookmark: page710]14.3 MAJOR MAPREDUCE IMPLEMENTATIONS FOR THE CLOUD
	383

[image:]

Public Data Center (Mostly Amazon)
[image:][image:][image:][image:]
	
	
	
	
	
	
	
	
	
	Powerset/Microsoft
	
	NetSeer

	
	
	
	
	
	
	
	A9.com
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	Adknowledge
	
	
	
	
	

	Rackspace
	
	
	
	
	Cornell University Web Lab
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Information Sciences Institute (ISI)
	
	
	Baidu
	
	
	
	
	

	
	WorldLingo
	
	
	
	FOX Audience Network
	
	
	
	
	

	
	
	
	IIIT,
	Hyderabad
	
	IBM & Google Uni
	
	
	
	
	

	
	Cooliris
	Hadoop Korean User
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	Lasr.fm
	Group
	
	
	Facebook
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	Yahoo!

	
	
	
	Gruter. Corp.
	
	
	
	

	
	
	
	
	
	The Lydia News
	

	
	
	
	
	
	
	
	
	
	
	

	
	ETH Zurich Systems Group
	
	
	
	
	
	
	

	
	
	
	Analysis Project
	
	
	
	
	

	
	
	
	Redpoll
	Rapleaf
	
	Neptune
	
	
	
	
	

	
	
	
	AOL
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	Quantcast
	
	
	
	
	

	
	Contextweb
	Deepdyve
	
	
	
	
	
	
	
	

	
	Adobe
	
	
	
	
	
	Search Wikia
	
	
	
	
	

	
	Alibaba
	University of Glasgow-
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	Terrier Team
	
	
	
	
	
	
	
	
	

	Private Data Center
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	Less than 100 Node
	100-1000
	
	More than 1000

	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[image:][image:][image:][image:][image:]
FIGURE 14.4. Organizations using Hadoop to run distributed applications, along with their cluster scale.

aforementioned vendors, many other organizations are using Hadoop solutions to run large distributed computations as shown in Figure 14.4 .

Disco

Disco is an open-source MapReduce implementation developed by Nokia [21]. The Disco core is written in Erlang, while users of Disco typically write jobs in Python. Disco was started at Nokia Research Center as a lightweight framework for rapid scripting of distributed data processing tasks. Furthermore, Disco has been successfully used, for instance, in parsing and reformatting data, data clustering, probabilistic modeling, data mining, full-text indexing, and log analysis with hundreds of gigabytes of real-world data.

Disco is based on the master-slave architecture as shown is Figure 14.5. When the Disco master receives jobs from clients, it adds them to the job queue, and runs them in the cluster when CPUs become available. On each node there

	[bookmark: page711]14.3 MAJOR MAPREDUCE IMPLEMENTATIONS FOR THE CLOUD
	383

is a Worker supervisor that is responsible for spawning and monitoring all the running Python worker processes within that node. The Python worker runs the assigned tasks and then sends the addresses of the resulting files to the master through their supervisor.

	[bookmark: page712]
	
	14.3
	MAJOR MAPREDUCE IMPLEMENTATIONS FOR THE CLOUD
	383

	
	
	Client Process 0
	
	Client Process ...
	
	Client Process Q
	

	
	
	
	
	Disco Master
	
	
	
	

	Server 0
	
	
	Server ...
	
	
	Server N
	
	

	
	Worker Supervisor
	
	Worker Supervisor
	
	
	Worker Supervisor
	

	CPU 0
	CPU ...
	CPU X
	CPU 0
	CPU ...
	CPU X
	CPU 0
	CPU ...
	CPU X

	Python
	Python
	Python
	Python
	Python
	Python
	Python
	Python
	

	
	Local Disk
	
	
	Local Disk
	
	
	Local Disk
	

	
	httpd
	
	
	httpd
	
	
	httpd
	

FIGURE 14.5. Architecture of Disco [21].

An “httpd” daemon (Web server) runs on each node which enables a remote

Python worker to access files from the local disk of that particular node.

Mapreduce.NET

Mapreduce.NET [22] is a realization of MapReduce for the.NET platform. It aims to provide support for a wider variety of data-intensive and computeintensive applications (e.g., MRPGA is an extension of MapReduce for GA applications based on MapReduce.NET [23]).

MapReduce.NET is designed for the Windows platform, with emphasis on reusing as many existing Windows components as possible. As shown in Figure 14.6, the MapReduce.Net runtime library is assisted by several components services from Aneka [24, 25] and runs on WinDFS.

Aneka is a.NET-based platform for enterprise and public cloud computing. It supports the development and deployment of.NET-based cloud applications in public cloud environments, such as Amazon EC2.

Besides Aneka, MapReduce.NET is using WinDFS, a distributed storage service over the.NET platform. WinDFS manages the stored data by providing an object-based interface with a flat name space. Moreover, MapReduce.NET can also work with the Common Internet File System (CIFS) or NTFS.

	[bookmark: page713]14.3 MAJOR MAPREDUCE IMPLEMENTATIONS FOR THE CLOUD
	383

Skynet

Skynet [17, 26] is a Ruby implementation of MapReduce, created by Geni. Skynetis “anadaptive, self-upgrading, fault-tolerant, andfully distributedsystem with no single point of failure” [17]. At the heart of Skynet is plug-in based message queue architecture, with the message queuing allowing workers to

	[bookmark: page714]Application
	Application

	Application

	
	
	
	

	
	MapReduce.NET
	

	WinDFS (Distributed File System)
	
	CIFS/NTFS

	
	Basic Distributed Services of Aneka
	

	Membership
	Failure Detector
	Configuration
	Deployment

	Windows Machine
	Windows Machine
	Windows Machine
	Windows Machine

FIGURE 14.6. Architecture of Mapreduce.NET	[22].

watch out for each other. If a worker fails, another worker will notice and pick up that task. Currently, there are two message queue implementations available: one built on Rinda [27] that uses Tuplespace [28] and one built on MySQL.

Skynet works by putting “tasks” on a message queue that are picked up by skynet workers. Skynet workers execute the tasks after loading the code at startup; Skynet tells the worker where all the needed code is. The workers put their results back on the message queue.

14.3.5	GridGain

GridGain [29] is an open cloud platform, developed in Java, for Java. GridGain enables users to develop and run applications on private or public clouds. The MapReduce paradigm is at core of what GridGain does. It defines the process of splitting an initial task into multiple subtasks, executing these subtasks in parallel and aggregating (reducing) results back to one final result. New features have been added in the GridGain MapReduce implementation such as: distributed task session, checkpoints for long running tasks, early and late load balancing, and affinity co-location with data grids.

MAPREDUCE IMPACTS AND RESEARCH DIRECTIONS

Since J. Dean and S. Ghemawat proposed the MapReduce model , it has received much attention from both industry and academia. Many projects are exploring ways to support MapReduce on various types of distributed

[bookmark: page715]architecture and for a wider range of applications as shown in Figure 14.7. For instance, QT Concurrent [30] is a C11 library for multi-threaded

application; it provides a MapReduce implementation for multi-core computers. Stanford’s Phoenix [31] is a MapReduce implementation that targets

[bookmark: page716]

	Hive
	Google MapReduce
	Mars on GPU

	
	
	
	

	CouchDB
	Hadoop
	Filemap
	GridGain

	
	Disco
	BashReduce
	

	
	
	
	

	GreenPlum
	Skynet
	MapSharp
	MapReduce.net

	
	
	
	

	Aster Data System
	The Holumbus Framework
	Data- and Compute-

	Relational Data
	
	
	Intensive

	
	Data-Intensive Applications
	

	
	
	

	
	
	Phoenix
	QT Concurrent

	MapReduce
	
	Multi-core Programming

	
	
	

FIGURE 14.7. MapReduce different	implementations.

shared memory architecture, while Kruijf and Sankaralingam implemented MapReduce for the Cell B.E. architecture [32]. Mars [33] is a MapReduce framework on graphic processors (GPUs). The Mars framework aims to provide a generic framework for developers to implement dataand computation-intensive tasks correctly, efficiently, and easily on the GPU.

Hadoop , Disco [21], Skynet [26], and GridGain [29] are open-source implementations of MapReduce for large-scale data processing. Map-ReduceMerge [34] is an extension on MapReduce. It adds to MapReduce a merge phase to easily process data relationships among heterogeneous datasets. Microsoft Dryad [35] is a distributed execution engine for coarse-grain data parallel applications. In Dryad, computation tasks are expressed as directed acyclic graph (DAG).

Other efforts [36, 37] focus on enabling MapReduce to support a wider range of applications. S. Chen and S. W. Schlosser from Intel are working on making MapReduce suitable for performing earthquake simulation, image processing and general machine learning computations [36]. MRPSO [38] utilizes Hadoop to parallelize a compute-intensive application, called Particle Swarm Optimization. Research groups from Cornell, Carnegie Mellon, University of Maryland, and PARC are also starting to use Hadoop for both Web data and non-data-mining applications, like seismic simulation and natural language processing [39].

At present, many research institutions are working to optimize the performance of MapReduce for the cloud. We can classify these works in two directions:

The first one is driven by the simplicity of the MapReduce scheduler. In

[bookmark: page717]Zaharia et al. [40] the authors introduced a new scheduling algorithm called the

[bookmark: page718]
Longest Approximate Time to End (LATE) to improve the performance of

Hadoop in a heterogeneous environment by running “speculative” tasks—that is, looking for tasks that are running slowly and might possibly fail—and replicating them on another node just in case they don’t perform. In LATE, the slow tasks are prioritized based on how much they hurt job response time, and the number of speculative tasks is capped to prevent thrashing.

The second one is driven by the increasing maturity of virtualization technology—for example, the successful adoption and use of virtual machines (VMs) in various distributed systems such as grid [41] and HPC applications [42, 43]. To this end, some efforts have been proposed to efficiently run MapReduce on VM-based cluster, as in Cloudlet [44] and Tashi [45].

UNIT – 4

MONITORING, MANAGEMENT AND
APPLICATIONS

AN ARCHITECTURE FOR FEDERATED CLOUD COMPUTING

Utility computing, a concept envisioned back in the 1960s, is finally becoming a reality. Just as we can power a variety of devices, ranging from a simple light bulb to complex machinery, by plugging them into the wall, today we can satisfy, by connecting to the Internet, many of our computing needs, ranging from full pledge productivity applications to raw compute power in the form of virtual machines. Cloud computing, in all its different forms, is rapidly gaining momentum as an alternative to traditional IT, and the reasons for this are clear: In principle, it allows individuals and companies to fulfill all their IT needs with minimal investment and controlled expenses (both capital and operational).

While cloud computing holds a lot of promise for enterprise computing there are a number of inherent deficiencies in current offerings such as:

Inherently Limited Scalability of Single-Provider Clouds. Although most infrastructure cloud providers today claim infinite scalability, in reality it is reasonable to assume that even the largest players may start facing scalability problems as cloud computing usage rate increases.

[bookmark: page719]Lack of Interoperability Among Cloud Providers. Contemporary cloud technologies have not been designed with interoperability in mind. This results in an inability to scale through business partnerships across clouds providers.

No Built-In Business Service Management Support. Business Service Management (BSM) is a management strategy that allows businesses to align their IT management with their high-level business goals.

To address these issues, we present in this chapter a model for business-driven federation of cloud computing providers, where each provider can buy and sell, on-demand, capacity from other providers (see Figure 4.1.1).

In this chapter we analyze the requirements for an enterprise-grade cloud computing offering and identify the main functional components that should be part of such offering. In addition, we develop from the requirement the basic principles that we believe are the cornerstone of future cloud computing offerings. The remainder of this chapter is organized as follows: In Section 4.1.2 we will present use cases and requirements, and in Section 4.1.3 we expand on the principles of cloud computing derived from these requirements. In Section 4.1.4 we will present a model for federated cloud computing infrastructure and provide definitions of the concepts used and in Section 4.1.5 we describe the seurity considerations for such system. We conclude with a summary in Section 4.1.6.

A TYPICAL USE CASE

As a representative of an enterprise-grade application, we have chosen to analyze SAPt systems and to derive from them general requirements that such application might have from a cloud computing provider.

[bookmark: page720]

(a)

	My Private Cloud

(b)

(c)

A Public Cloud

FIGURE 4.1.1. Model for federated cloud computing: (a) Different cloud providers collaborate by sharing their resources while keeping thick walls in between them; that is, each is an independent autonomous entity. (b) Applications running in this cloud of clouds should be unaware of location; that is, virtual local networks are needed for the inter-application components to communicate. (c) Cloud providers differentiate from each in terms of cost and trust level; for example, while a public cloud maybe cheap, companies will be reluctant to put in there sensitive services.

SAP Systems

SAP systems are used for a variety of business applications that differ by version and functionality [such as customer relationship management (CRM) and enterprise resource planning (ERP)].

An SAP system is a typical three-tier system (see Figure 4.1.2) as	follows:

● Requests are handled by the SAP Web	dispatcher.

In the middle tier, there are two types of components: multiple stateful dialog instances (DIs) and a single central instance (CI) that performs central services.

● A single database management system (DBMS) serves the SAP	system.

[bookmark: page721][image:]Presentation Layer

Web Dispatcher

	Application Layer
	
	
	
	
	
	
	
	
	
	

	
	
	
	DI
	
	CI
	
	DI

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

[image:]
	Database Layer
	DBMS

[image:]

Storage

FIGURE 4.1.2. Abstraction of an SAP	system.

The components can be arranged in a variety of configurations, from a minimal configuration where all components run on a single machine, to larger ones

where	there are several	DIs, each running on a	separate machine, and a

separate machine with the CI and the DBMS (see Figure	4.1.3)

The Virtualized Data Center Use Case

Consider a data center that consolidates the operation of different types of SAP applications and all their respective environments (e.g., test, production) using virtualization technology. The applications are offered as a service to external customers, or, alternatively, the data center is operated by the IT department of an enterprise for internal users (i.e., enterprise employees).

We briefly mention here a few aspects that are typical of virtualized data centers:

(a)
[image:][image:]
DI/CI	DI/CI	DI/CI

[bookmark: page722]

(b)
[image:]
CI

DI	DI

DBMS

Virtual Execution Environment Host

FIGURE 4.1.3. Sample SAP system deployments. (a) All components run in the same virtual execution environment (represented as rounded rectangles); (b) the large components (CI and DBMS) run each on a dedicated virtual execution environment. The virtual execution environment host refers to the set of components managing the virtual environments.

The infrastructure provider must manage the life cycle of the application for hundreds or thousands of tenants while keeping a very low total cost of ownership (TCO).

Setting up a new tenant in the SaaS for SMBs case is completely automated by a Web-based wizard.

[bookmark: page723]●	The customers are billed a fixed monthly subscription fee or a variable fee based on their usage of the application.

There are several well-known approaches to multi-tenancy of the same database schema .

In summary, the key challenges in all these use cases from the point of view of the infrastructure provider are:

Managing thousands of different service components that comprise a variety of service applications executed by thousands of virtual execution environments,.

Consolidating many applications on the same infrastructure, thereby increasing HW utilization and optimizing power consumption, while keeping the operational cost at minimum.

Guaranteeing the individual SLAs of the many customers of the data

center who face different and fluctuating	workloads.

Primary Requirements

From the use case discussed in the previous section, we derived the following main requirements from a cloud computing infrastructure:

Automated and Fast Deployment. The cloud should support automated provisioning of complex service applications based on a formal contract specifying theinfrastructure SLAs.

Dynamic Elasticity. The cloud should dynamically adjust resource allocation parameters .

Automated Continuous Optimization. The cloud should continuously optimize alignment of infrastructure resources management with the high-level business goals.

THE BASIC PRINCIPLES OF CLOUD COMPUTING

In this section we unravel a set of principles that enable Internet scale cloud computing services.

Federation

All cloud computing providers, regardless of how big they are, have a finite capacity. To grow beyond this capacity, cloud computing providers should be

[bookmark: page724]able to form federations of providers such that they can collaborate and share their resources.

Any federation of cloud computing providers should allow virtual application to be deployed across federated sites.

Independence

Just as in other utilities, where we get service	without knowing	the internals

of the utility provider and with standard equipment not specific to any provider

(e.g., telephones), for cloud computing services to really fulfill the computing as a utility vision, we need to offer cloud computing users full independence.

Isolation

Cloud computing services are, by definition, hosted by a provider that will simultaneously host applications from many different users. For these users to move their computing into the cloud, they need warranties from the cloud computing provider that their stuff is completely isolated from others.

Elasticity

One of the main advantages of cloud computing is the capability to provide, or release, resources on-demand.

The ability of users to grow their applications when facing an increase of real-life demand need to be complemented by the ability to scale

Business Orientation

Before enterprises move their mission critical applications to the cloud, cloud computing providers will need to develop the mechanisms to ensure quality of service (QoS) and proper support for service-level agreements (SLAs). Mechanisms to build and maintain trust between cloud computing consumers and cloud computing providers, as well as between cloud computing providers among themselves, are essential for the success of any cloud computing offering.

A MODEL FOR FEDERATED CLOUD COMPUTING

In our model for federated cloud computing we identify two major types of actors: Service Providers (SPs) are the entities that need computational resources to offer some service.

[bookmark: page725]To create the illusion of an infinite pool of resources, IPs shared their unused capacity with each other to create a federation cloud. A Framework Agreement

	SMI

	VMI

[bookmark: page726][image:]Infrastructure Provider (IP)

FIGURE 4.1.4. The RESERVOIR architecture: major components and interfaces.

We refer to the virtualized computational resources, alongside the virtualization layer and all the management enablement components, as the Virtual Execution enviroment Host (VEEH).

With these concepts in mind, we can proceed to define a reference architecture for federated cloud computing. The design and implementation of such architecure are the main goals of the RESERVOIR European research project.The rationale behind this particular layering is to keep a clear separation of concerns and responsibilities and to hide low-level infrastructure details and decisions from high-level management and service providers.

The Service Manager is the only component within an IP that interacts with SPs. It receives Service Manifests, negotiates pricing, and handles billing. Its two mostcomplex tasks are (1) deploying and provisioning VEEs based on the Service Manifest and (2) monitoring and enforcing SLA compliance by throttling a service application’s capacity.

The Virtual Execution Environment Manager (VEEM) is responsible for the optimal placement of VEEs into VEE Hosts subject to constraints determined by the Service Manager. The continuous optimization process is driven by a site-specific programmable utility function.

The Virtual Execution Environment Host (VEEH) is responsible for the basic control and monitoring of VEEs and their resources. Moreover, VEEHs must support transparent VEE migration to any compatible VEEH within the federated cloud, regardless of site location or network and storage configurations.

Features of Federation Types

Federations of clouds may be constructed in various ways, with disparate feature sets offered by the underlying implementation architecture. This section is devoted to present these differentiating features. Using these features as a base, a number of federation scenarios are defined, comprised of subsets of this feature set.

The first feature to consider is the framework agreement support: Framework agreements, as defined in the previous section, may either be supported by the architecture or not.

The ability to migrate machines across sites defines the federated migrationsupport. There are two types of migration: cold and hot (or live). In coldmigration, the VEE is suspended and experiences a certain amount of downtime while it is being transferred.

[bookmark: page727]Focusing on networks, there can be cross-site virtual network support: VEEs belonging to a service are potentially connected to virtual networks, should this be requested by the SP.

Information disclosure within the federation has also to be taken into account.The sites in the federation may provide information to different degrees

.Information regarding deployed VEEs will be primarily via the monitoring system, whereas some information may also potentially be exposed via the VMI as response to a VEE deployment request.

Federation Scenarios

In this section, a number of federation scenarios are presented, ranging from a baseline case to a full-featured federation. These scenarios have various requirements on the underlying architecture, and we use the features presented in previous section as the basis for differentiating among them.

The baseline federation scenario provides only the very basic required for supporting opportunistic placement of VEEs at a remote site. The basicfederation scenario includes a number of features that the baseline federationdoes not, such as framework agreements, cold migration, and retention of public IP addresses. Notably missing is (a) support for hot migration and (b) cross-site virtual network functionality.The fullfeatured federation scenario offers the most complete set of features, including hot migration of VEEs.

Layers Enhancement for	Federation

Taking into account the different types of federation, a summary of the features needed in the different layers of the RESERVOIR architecture to achieve federation is presented.

Service Manager. Thebaseline federationis the most basic federationscenario, but even here the SM must be allowed to specify placement restrictions when a service is deployed. Deployment restrictions are associated to an specific VEE and passed down to the VEEM along with any other specific VEE metadata when the VEE is issued for creation through VMI. Two kinds of deployment restrictions are envisioned: First, there are affinityrestrictions, related to the relations between VEEs; and second, there can be site restrictions, related to sites.

In the basic federation scenario, federation uses framework agreement (FA) between organizations to set the terms and conditions for federation. Framework agreements are negotiated and defined by individuals, but they are encoded at the end in the service manager (SM)—in particular, within the business information data base (BIDB). On the other hand, no additional functionality is needed from the service manager to implement the full-featured federation.

[bookmark: page728]Virtual Execution Environment Manager. Very little is needed in thebaseline federation scenario of the VEEM. Regarding advance resourcereservation support, the policy engine must be capable of reserving capacity in the physical infrastructure given a timeframe for certain VEEs. Therefore, the VEEM needs to correctly interface with the VAN and be able to express the virtual network characteristics in a VEEM-to-VEEM connection.

Virtual Execution Environment Host. The ability to monitor a federation isneeded. The RESERVOIR monitoring service supports the asynchronous monitoring of a cloud data centers0 VEEHs, their VEEs, and the applications running inside the VEEs. To support federation, the originating data center must be able to monitor VEEs and their applications running at a remote site.

No further functionality is required for the basic federation in the VEEH apart from the features described for the baseline scenario. On the other hand, for the advanced federation one, several features are needed.

Regarding the full-featured federation scenario, hot migration is the functionality that affects the most what is demanded from VEEH in this scenario. RESERVOIR’s separation principle requires that each RESERVOIR site be an autonomous entity. Site configuration, topology, and so on, are not shared between sites.

SECURITY CONSIDERATIONS

As previously reported, virtualized service-oriented infrastructures provide computing as a commodity for today’s competitive businesses. Besides costeffectiveness, .The higher stakes and broader scope of the security requirements of virtualization infrastructures require comprehensive security solutions because they are critical to ensure the anticipated adoption of virtualization solutions by their users and providers. The conception of a comprehensive security model requires a realistic threat model. Without such a threat model, security designers risk wasting time and effort implementing safeguards that do not address any realistic threat.

External Threats

Some threats, related to communication, can be classified as: menin-the-middle,TCP hijacking (spoofing), service manifest attacks (malicious manifest/SLA format injection), migration and security policies and identity theft/impersonation (SP or RESERVOIR site pretends to be someone else), andso on. The main goals of these threats are to gain unauthorized access to systems and to impersonate another entity on the network. These techniques allow the attackers to eavesdrop as well as to change, delete, or divert data. All the interfaces could be instead exposed to the following attacks: denial of service(DoS or distributed DoS), flooding, buffer overflow, p2p-attacks, and so on.

[bookmark: page729]Internal Threats

Each RESERVOIR site has a logical representation with three different layers, but these layers can be compounded by one or more hardware components. Figure 4.1.5 gives an overview of these entities and relative mapping with a simplified view of the hardware. It is possible to split the site in two different virtual zones: control and execution zone; in the control zone the components are: Service Manager (SM), VEEM (in bridge configuration between control

SP	SP
[image:]

[image:] VM image VM image [image:]

1 - SMI

2 - VMI	SITE: Control zone

S

Internet

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	Router
	
	
	
	
	
	Service

	
	Switch
	
	

	
	
	
	
	

	
	
	
	
	
	
	

	Manager
	VEE

	
	

Server

VH
HOST

VM image

Router

Switch

3- SI Interface for
User

VM image	VM image

HOST

[bookmark: page730]
SITE: Execution zone

FIGURE 4.1.5. RESERVOIR site: internal representation.

[bookmark: page731]
and execution zone), network components (router, switch, cable, etc.), SMI/ VMI interfaces, and VHI internal interface.

In the execution zone instead there are: VEEH, VEEM (in-bridge configuration between control and execution zone), VHI internal interface, network components (router, switch, cable, etc.), network storage (NAS, databases, etc.), and SI (user access interfaces).

The control zone can be considered a trusted area. Some threats can appear through the SMI and VEEM interfaces, since they fall into the same cases of external threats. The internal threats related to these phases can be classified as follows: (1) threats linked to authentication/communication of SPs and other RESERVOIR site;

(2) threats related to misbehavior of service resource allocation—to alter the agreement (manifest) during the translation between service manager and VEEM malicious component on SM; (3) data export control legislation—on an international cloud or between two clouds; (4) threats linked to fake command for placement of VEEs and compromising the data integrity of the distributed file system (NFS, SAMBA, CIFS); (5) storage data compromising (fake VEE image); (6) threats linked to compromise data privacy; (7) threats linked to the underlying hypervisor and OS (VEE could break hypervisor/ underlying OS security and access other VEE); and (8) data partitioning between VEE.

To avoid any fraudulent access, the VEEH has to verify authentication/communication of SPs and other RESERVOIR sites. Thus, the same behavior isanalyzed for all the communications in external threats.

Runtime isolation resolves all the security problems with the underlying OS.The hypervisor security mechanisms need to be used to provide the isolation.

Network isolation is addressed via the dynamic configuration of networkpolicies and via virtual circuits that involve routers and switches.

To avoid fake VEE image loading and do not compromise data privacy, storage isolation has to be performed and secure protocols has to be used.Protocols like NFS, SAMBA, and CIFS are not secure.

[bookmark: page732]
Virtual execution environment, downloaded from any generic SP, can expose the infrastructure toward back door threats, spoofing threats and malicious code execution (virus, worm, and Trojan horse). The RESERVOIR site administrator needs to know at any time the state of threats, with a strong monitoring of the execution zone, through the runtime intrusion detection.

4.2 SLA MANAGEMENT IN CLOUD COMPUTING: A

SERVICE PROVIDER’S PERSPECTIVE

In the early days of web-application deployment, performance of the applica-tion at peak load was a single important criterion for provisioning server resources. The capacity buildup was to cater to the estimated peak load experienced by the application. The activity of determining the number of servers and their capacity that could satisfactorily serve the application end-user requests at peak loads is called capacity planning .

An example scenario where two web applications, application A and application B, are hosted on a separate set of dedicated servers within the enterprise-owned server rooms is shown in Figure 4.2.1.These data centers

were	owned	and	managed	by	the	enterprises

themselves.

[bookmark: page733][image:]Enterprise Data Centre – Geographically Locked

Response with certain

Application Service

(Managed by Enterprise IT)

Application I

Application II

User
Application III

Enterprise Data Centre II

User

	Application Service
	Application I

	
	

Application II

Response with
certain
Application III

FIGURE 4.2.1.	Hosting of applications on servers within enterprise’s data centers.

Furthermore, over the course of time, the number of web applications and their complexity have grown. Accordingly, enterprises realized that it was economical to outsource the application hosting activity to third-party infrastructure providers because:

The enterprises need not invest in procuring expensive hardware upfront without knowing the viability of the business.

The hardware and application maintenance were non-core activities of their business.

As the number of web applications grew, the level of sophistication required to manage the data centers increased manyfold—hence the cost of maintaining them.

Enterprises developed the web applications and deployed on the infrastruc-ture of the third-party service providers. These providers get the required

[bookmark: page734]hardware and make it available for application hosting. Typically, the QoS parameters are related to the availability of the system CPU, data storage, and network for efficient execution of the application at peak loads. This legal agreement is known as the service-level agreement (SLA). For example, assume that application A is required to use more quantity of a resource than originally allocated to it for duration of time t. For that duration the amount of the same resource available to application B is decreased. This could adversely affect the performance of application B. Similarly, one application should not access and destroy the data

[bookmark: page735][image:]Application Service Provider(ASP)
[image:]
	Application Service
	Service-Level Agreement

	
	

Enterprise

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	User
	
	
	
	
	
	Enterprise I
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Enterprise II

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	User
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	Enterprise III

	
	
	
	
	
	
	
	

[image:]
	Response with certain
	
	Check for Infrastructure

	
	
	

FIGURE 4.2.2. Dedicated hosting of applications in third party data centers.

[bookmark: page736](a)
[image:]

	Resource[image:] Resource

(c)
[image:]

Time	Time

	
	(b)
	

	Resource
	Capacity
	Resource

	
	
	

[image:]

(d)
[image:]
Resource usage (App-B)

Resource usage (App-A)

[bookmark: page737]

Time	Time

FIGURE 4.2.3. Service consumer and service provider perspective before and after the MSP’s hosting platforms are

virtualized and cloud-enabled. (a) Service consumer perspective earlier. (b) Service consumer perspective now. (c) Service provider perspec- tive earlier. (d) Service provider perspective now.

and other information of co-located applications. Hence, appropriate measures are needed to guarantee security and performance isolation. These challenges prevented ASPs from fully realizing the benefits of co-hosting.

Adoption of virtualization technologies required ASPs to get more detailed insight into the application runtime characteristics with high accuracy. Based on these characteristics, ASPs can allocate system resources more efficiently to these applications on-demand, so that application-level metrics can be mon- itored and met effectively.

TRADITIONAL APPROACHES TO SLO	MANAGEMENT

Traditionally, load balancing techniques and admission control mechanisms have been used to provide guaranteed

[bookmark: page738]quality of service (QoS) for hosted web applications.

Load Balancing

The objective of a load balancing is to distribute the incoming requests onto a set of physical machines, each hosting a replica of an application.
[image:]
Application Service Provider(ASP)

Application Service

Service Level Agreement

App	App

Enterprise

	
	
	
	
	Virtualized
	

	
	
	
	
	
	
	
	
	
	
	Enterprise-I Enterprise-N

	User
	
	
	
	
	
	
	
	
	
	App
	App

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

Server-I

Virtualized

User

	Response with certain
	
	
	
	
	
	Check for Infrastructure

	
	
	
	
	
	
	

	
	
	
	
	
	
	

Server-N

FIGURE 4.2.4.	Shared hosting of applications on virtualized servers within ASP’s data centers.

[bookmark: page739]

Load Balancing Algorithms

Class-agnostic	Class-aware

Client-aware	Content-aware	Client plus

Content aware

FIGURE 4.2.5. General taxonomy of load-balancing algorithms.

load on the machines is equally distributed . Typically, the algorithm executing on the front-end node is agnostic to the nature of the request. This means that the front-end node is neither aware of the type of client from which the request originates nor aware of the category (e.g., browsing, selling, payment, etc.) to which the request belongs to. This category of load balancing algorithms is known as class-agnostic. There is a second category of load balancing algorithms that is known as class-aware.Figure 4.2.5 shows the general taxonomy of different load- balancing algorithms.

Admission Control

Admission control algorithms play an important role in deciding the set of requests that should be admitted into the application server when the server experiences “very” heavy loads [5, 6]. Figure 4.2.6 shows the general taxonomy of the admission control mechanisms. The algorithms proposed in the literature are broadly categorized

Admission Control Mechanisms

Request	Based	Session Based

[bookmark: page740]

	QoS Agnostic
	QoS Aware

	(Plain Vanilla)
	(Class Based)

FIGURE 4.2.6. General taxonomy for admission control	mechanisms.

into two types: (1) request-based algorithms and (2) session-based algorithms. Request-based admission control algorithms reject new requests if the servers are running to their capacity. The disadvantage with this approach is that a client’s session may consist of multiple requests that are not necessarily unrelated.

TYPES OF SLA

Service-level agreement provides a framework within which both seller and buyer of a service can pursue a profitable service business relationship. It outlines the broad understanding between the service provider and the service consumer for conducting business and forms the basis for maintaining a mutually beneficial relationship.

SLA can be modeled using web service-level agreement (WSLA) language specification . Although WSLA is intended for web-service-based applica-tions, it is equally applicable for hosting of applications. Service-level para-meter, metric, function, measurement directive, service-level objective, and penalty are some of the important components of WSLA and are described in Table 4.2.1.

[bookmark: page741]
	TABLE 4.2.1.
	Key Components of a Service-Level Agreement

	
	
	

	Service-Level
	Describes an observable property of a service whose value is

	Parameter
	measurable.

	Metrics
	These are definitions of values of service properties that are

	
	measured from a service-providing system or computed from other

	
	metrics and constants. Metrics are the key instrument to describe

	
	exactly what SLA parameters mean by specifying how to measure or

	
	compute the parameter values.

	Function
	A function specifies how to compute a metric’s value from the values

	
	of other metrics and constants. Functions are central to describing

	
	exactly how SLA parameters are computed from resource metrics.

	Measurement
	These specify how to measure a metric.

	directives
	
	

	
	
	

There are two types of SLAs from the perspective of application hosting. These are described in detail here.

Infrastructure SLA. The infrastructure provider manages and offers guaran-tees on availability of the infrastructure, namely, server machine, power, network connectivity, and so on. In such dedicated hosting environments, a practical example of service-level guarantees offered by infrastructure providers is shown in Table 4.2.2.

Application SLA. In the application co-location hosting model, the servercapacity is available to the applications based solely on their resource demands. Therefore, the service

TABLE 4.2.2. Key Contractual Elements of an Infrastructural SLA

Hardware	availability	● 99% uptime in a calendar month

Power	availability	● 99.99% of the time in a calendar	month

Data center network	Backbone network availability

availability

	[bookmark: page742]Service credit for
	● 99.99% of the time in a calendar
	month
	

	unavailability
	
	
	

	Outage notification
	
	
	

	guarantee
	● 99.999% of the time in a calendar
	month
	

	Internet latency
	
	
	

	guarantee
	● Refund of service credit prorated on downtime
	period

	
	
	

	
	● Notification of customer within 1 hr of complete
	downtime

	
	● When latency is measured at 5-min intervals to an upstream

	
	provider, the average doesn’t exceed 60 msec
	

	Packet loss guarantee
	● Shall not exceed 1% in a calendar month
	

[bookmark: page743]
TABLE 4.2.3. Key contractual components of an application SLA

	Service-level
	● Web site response time (e.g., max of 3.5 sec per user
	request)

	parameter metric
	
	
	

	
	● Latency of web server (WS) (e.g., max
	of 0.2 sec per
	request)

	
	● Latency of DB (e.g., max of 0.5 sec per
	query)
	

	Function
	● Average latency of WS = (latency of web server 1 + latency of

	
	web server 2) /2
	
	

	
	● Web site response time = Average latency of web server +

	
	latency of database
	
	

	Measurement
	● DB latency available via http://mgmtserver/em/latency

	directive
	
	
	

	
	● WS latency available via http://mgmtserver/ws/instanceno/

	
	latency
	
	

	
	● Service assurance
	
	

	Service-level
	
	
	

	objective
	● web site latency , 1 sec when concurrent connection , 1000

	
	

	Penalty
	● 1000 USD for every minute while the SLO was breached

providers are also responsible for ensuring to meet their customer’s application

SLOs. For example, an enterprise can have the following application SLA with a service provider for one of its application, as shown in Table 4.2.3.

However, from the SLA perspective there are multiple challenges for provisioning the infrastructure on demand. These challenges are as follows:

The application is a black box to the MSP and the MSP has virtually no knowledge about the application runtime characteristics.

The MSP needs to understand the performance bottlenecks and the scalability of the application.

The MSP analyzes the application before it goes on-live. However, subsequent operations/enhancements by the customer’s to their applica-

tions or auto updates beside others can impact the performance of the applications, thereby making the application SLA at risk.

The risk of capacity planning is with the service provider instead of the customer.

[bookmark: page744]
LIFE CYCLE OF SLA

Each SLA goes through a sequence of steps starting from identification of terms and conditions, activation and monitoring of the stated terms and conditions, and eventual termination of contract once the hosting relationship ceases to exist. Such a sequence of steps is called SLA life cycle and consists of the following five phases:

Contract definition

Publishing and discovery

Negotiation

Operationalization

De-commissioning

Here, we explain in detail each of these phases of SLA life	cycle.

Contract Definition. Generally, service providers define a set of service offerings andcorresponding SLAs using standard templates.

Publication and Discovery. Service provider advertises these base service offeringsthrough standard publication media, and the customers should be able to locate the service provider by searching the catalog.

Negotiation. Once the customer has discovered a service provider who can meet theirapplication hosting need, the SLA terms and conditions needs to be mutually agreed upon before signing the agreement for hosting the application.

Operationalization. SLA operation consists of SLA monitoring, SLA ac- counting, andSLA enforcement. SLA monitoring involves measuring parameter values and calculating the metrics defined as a part of SLA and determining the deviations.

De-commissioning. SLA decommissioning involves termination of all activ- itiesperformed under a particular SLA when the hosting relationship between the service provider and the service consumer has ended.

SLA MANAGEMENT IN	CLOUD

[bookmark: page745]SLA management of applications hosted on cloud platforms involves five phases.

Feasibility

On-boarding

Pre-production

Production

Termination

Different activities performed under each of these phases are shown in Figure 4.2.7. These activities are explained in detail in the following subsections.

Feasibility Analysis

MSP conducts the feasibility study of hosting an application on their cloud platforms. This study involves three kinds of feasibility: (1) technical feasibility, infrastructure feasibility, and (3) financial feasibility. The technical feasibility of an application implies determining the following:
[image:]

Application Lifecycle through Service Provider Platform

	Feasibility Analysis
	
	Perform Technical
	
	

	
	Obtain customer app
	feasibility
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	Decline application

	
	
	Perform financial
	
	

	
	
	feasibility
	
	

	
	Package application
	Performance analysis
	Estimate cost for each
	SLA

	
	
	
	
	

[bookmark: page746]
I d e n

b l e

SLA acceptable to customer?

t i f y

p o s s i

	Onboarding

S

L

A s

Cost is acceptable to

customer?
Choose different SLA?

Create/recreate policies (BP/

OP/PP) for each of the SLA

Validated policies wrt to

SLAs

	Pre-Production

Stage the app to pre-prod env

Customer validation of app against SLA

[bookmark: page747]

	Production

	Stage the app to prod env and
	SLA violation?
	
	Repeated SLA

	made live
	
	
	violation?

	
	
	
	

Customer request for new/ modification of SLA

[bookmark: page748]

	Cease

Rollback the app from	prod env	Transfer files to customer

Application cease

FIGURE 4.2.7. Flowchart of the SLA management in	cloud.

1. Ability of an application to scale	out.

Compatibility of the application with the cloud platform being used within the MSP’s data center.

The need and availability of a specific hardware and software required for hosting and running of the application.

Preliminary information about the application performance and whether they can be met by the MSP.

Performing the infrastructure feasibility involves determining the availability of infrastructural resources in sufficient quantity so that the projected demands of the application can be met.

On-Boarding of Application

Once the customer and the MSP agree in principle to host the application based on the findings of the feasibility study, the application is moved from the customer servers to the hosting platform.The application is accessible to its end users only after the on- boarding activity is completed.

On-boarding activity consists of the following	steps:

Packing of the application for deploying on physical or virtual environ-ments. Application packaging is the process of creating deployable components on the hosting platform (could be physical or virtual). Open Virtualization Format (OVF) standard is used for packaging the application for cloud platform .

The packaged application is executed directly on the physical servers to capture and analyze the application performance characteristics.

The application is executed on a virtualized platform and the application

performance characteristics are noted again.

[bookmark: page749]Based on the measured performance characteristics, different possible SLAs are identified. The resources required and the costs involved for each SLA are also computed.

Once the customer agrees to the set of SLOs and the cost, the MSP starts creating different policies required by the data center for automated management of the application.These policies are of three types: (1) business, (2) operational, and (3) provisioning. Business policies help prioritize access to the resources in case of contentions. Operational policies (OP) are represented in the following format:

OP 5 collection of hCondition, Actioni

Here the action could be workflow defining the sequence of actions to be undertaken. For example, one OP is

OP 5 haverage latency of web server . 0.8 sec, scale-out the web-server tieri

It means, if average latency of the web server is more than 0.8 sec then automatically scale out the web-server tier.

Scale-out, scale-in, start, stop, suspend, resume are some of the examples of provisioning actions. A provisioning policy (PP) is represented as

PP 5 collection of hRequest, Actioni

For example, a provisioning policy to start a web site consists of the following sequence: start database server, start web-server instance 1, followed by start the web-server instance 2, and so on.

Preproduction

Once the determination of policies is completed as discussed in previous phase, the application is hosted in a simulated production environment. Once both parties agree on the cost and the terms and conditions of the SLA, the customer sign-off is obtained. On successful completion of this phase the MSP allows the applica- tion to go on-live.

Production

In this phase, the application is made accessible to its end users under the agreed SLA. In the case of the former, on-boarding activity is repeated to analyze the application and its policies with respect to SLA fulfillment. In case of the latter, a new set of policies are formulated to meet the fresh terms and conditions of the SLA.

[bookmark: page750]Termination

When the customer wishes to withdraw the hosted application and does not wish to continue to avail the services of the MSP for managing the hosting of its application, the termination activity is initiated.

AUTOMATED POLICY-BASED MANAGEMENT

This section explains in detail the operationalization of the “Operational” and

“Provisioning” policies defined as part of the on-boarding activity. The policies specify the sequence of actions to be performed under different circumstances. Operational policies specify the functional relationship between the system-level infrastructural attributes and the business level SLA goals. attributes at various workloads, workload compositions, and operating conditions, so that the SLA goals are met. Figure 4.2.8 explains the importance of such a relationship. For example, consider a three-tier web application consisting of web server, application server, and database server. The effect of varying the system resources (such as CPU) on the SLO, which in this case is the average response time for customer requests, is shown in Figure 4.2.8.

	
	20
	

	Response Time (sec)
	15
	SLO

	
	
	

	
	
	

	Average
	10
	

	
	
	

5

[bookmark: page751]

20	50	90

Percentage of CPU assigned to Application Server

FIGURE 4.2.8.	Performance of a multi-tier application for varied CPU allocation.

[bookmark: page752]
Some of the parameters often used to prioritize action and perform resource contention resolution are:

The SLA class (Platinum, Gold, Silver, etc.) to which the application belongs to.

● The amount of penalty associated with SLA	breach.

● Whether the application is at the threshold of breaching the SLA.

● Whether the application has already breached the	SLA.

The number of applications belonging to the same customer that has breached SLA.

The number of applications belonging to the same customer about to breach SLA.

The type of action to be performed to rectify the situation.

Priority ranking algorithms use these parameters to derive scores. These scores are used to rank each of the actions that contend for the same resources. Actions having high scores get higher priority and hence, receive access to the contended resources.

Furthermore, automatic operationalization of these policies consists of a set of components as shown in Figure 4.2.9. The basic functionality of these components is described below:

Prioritization Engine. Requests from different customers’ web applica - tions contending for the same resource are identified, and accordingly their execution is prioritized.

Provisioning Engine. Every user request of an application will be enacted by the system.

Rules Engine. The operation policy defines a sequence of actions to be enacted under different conditions/trigger points.

Monitoring System. Monitoring system collects the defined metrics in SLA. These metrics are used for monitoring resource failures, evaluating

operational policies, and auditing and billing	purpose.

Auditing. The adherence to the predefined SLA needs to be monitored and recorded. It is essential to monitor the compliance of SLA because

[bookmark: page753]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	«subsystem»
	
	
	
	
	
	
	
	
	
	«subsystem»
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	Customer Access Layer
	
	
	
	
	
	System Administrator
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	«subsystem»
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	«subsystem»
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Authentication and
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Access Layer
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Authorization
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	«subsystem»
	
	
	
	«subsystem»

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Accounting/Billing

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Auditing
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	System

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	«subsystem»
	
	
	
	
	
	
	
	«subsystem»
	
	
	
	
	
	
	
	
	
	
	
	
	
	«subsystem»
	
	
	
	«subsystem»

	
	
	Prioritization
	
	
	
	
	
	
	
	
	Provisioning
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Rules Engine
	
	
	
	Monitoring System

	
	
	
	Engine
	
	
	
	
	
	
	
	
	
	
	
	
	Engine
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	«subsystem»
	
	
	
	«subsystem»
	
	
	
	
	«subsystem»
	
	
	
	
	
	
	
	
	«subsystem»
	
	
	
	
	
	

	
	
	
	
	
	Bare Metal
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	VM Provisioning
	
	
	
	
	
	
	Storage Manager
	
	
	
	
	
	
	
	
	NW Manager
	
	
	
	
	
	

	
	
	
	
	
	Provisioning
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[image:][image:][image:][image:][image:][image:][image:][image:][image:][image:][image:][image:][image:][image:][image:]
«subsystem» Data Center

FIGURE 4.2.9. Component diagram of policy-based automated management system.

any noncompliance leads to strict penalties. The audit report forms the basis for strategizing and long-term planning for the MSP.

Accounting/Billing System. Based on the payment model, chargebacks could be made based on the resource utilized by the process during the operation. The fixed cost and recurring costs are computed and billed accordingly.
	App1

The interactions among these components are shown in Figure 4.2.9 and described below.

Alternatively, the monitoring system can interact with the rules engine through an optimization engine, as shown in Figure 4.2.10. The following example highlights the importance of the optimization engine within a policy based management system .

Assume an initial assignment of seven virtual machines (VM) to the three

[bookmark: page754]physical machines (PM) at time t1 as shown in Figure 4.2.11.
[image:]

	
	
	
	
	
	Policy-Based System

	Provisioning
	
	Optimization
	Rules
	
	Monitoring

	Engine
	
	Engine
	
	Engine
	
	System

	App
	App
	App
	App
	
	App
	App

	1
	2
	1
	2
	
	1
	2

	VM0VM1
	VM0 VM1
	
	VM0VM1

	VMM
	VMM
	
	VMM

	PM0
	PM1
	
	PM3

	
	
	
	

	
	
	
	

FIGURE 4.2.10. Importance of optimization in the policy-based management system.

[bookmark: page755]
Similarly, at time t1 the CPU and memory requirements of VM4, VM5, and VM6 on PMB are 20, 10, 40 and 20, 40, 20, respectively. VM7 only consumes 20% of CPU and 20% of memory on PMC. Thus, PMB and PMC are underloaded but PMAis overloaded. Assume VM1is the cause of the overload situation in

PMA.

	
	
	A
	
	
	
	B
	
	
	
	C
	

	
	1
	2
	3
	
	4
	5
	6
	
	7
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	CPU
	40
	40
	20
	
	20
	10
	40
	
	20
	
	

	Mem
	20
	10
	40
	
	20
	40
	20
	
	20
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	A
	
	
	
	B
	
	
	
	C
	

	
	
	2
	3
	
	4
	5
	6
	
	7
	1
	

	
	
	
	
	
	
	
	
	
	
	
	

	CPU
	
	40
	20
	
	20
	10
	40
	
	20
	40
	

	Mem
	
	10
	40
	
	20
	40
	20
	
	20
	20
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	A
	
	
	
	B
	
	
	
	C
	

	
	
	2
	3
	
	4
	5
	6
	
	7
	1
	

	
	
	
	
	
	
	
	
	
	
	
	

	CPU
	
	40
	20
	
	20
	10
	40
	
	20
	40
	

	Mem
	
	10
	40
	
	20
	40
	20
	
	20
	20
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	A
	
	
	
	B
	
	
	
	C
	

	
	
	2
	3
	
	
	5
	6
	
	7
	1
	4

	
	
	
	
	
	
	
	
	
	
	
	

	CPU
	
	40
	20
	
	
	10
	40
	
	20
	40
	20

	Mem
	
	10
	40
	
	
	40
	20
	
	20
	20
	40

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	
	A
	
	
	
	B
	
	
	
	C
	

	
	1
	2
	3
	
	4
	5
	6
	
	7
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	CPU
	40
	40
	20
	
	20
	10
	40
	
	20
	
	

	Mem
	20
	10
	40
	
	20
	40
	20
	
	20
	
	

	
	
	
	
	
	
	
	
	
	
	
	

[bookmark: page756]FIGURE 4.2.11. (a) Initial configuration of the VMs and the PMs at time t1. (b) Configuration resulting from event-based migration of VM1 at time t1. (c) Resource requirement situation at time t2.t1. (d) Configuration resulting from “event-based” migration of VM4 at time t2.t1. (e) Alternate configuration resulting from optimiza-tion-based migration at time t2.t1.

[bookmark: page757]In the above scenario, event-based migration will result in migration of VM1out of PMAto PMC. Furthermore, consider that at time t2(t2. t1), PMBis overloaded as the memory requirement of VM4increases to 40.Consequently, an event-based scheme results in migration of VM4 to PMC. At time t3 (t3.t2), a new VM, VM8, with CPU and memory requirements of 70 each, needs to be allocated to one of the PMs; then a new PM, PMD, needs to be switched on for hosting it. In such a scenario, VM8 cannot be hosted on any of the three existing PMs: PMA, PMB, and PMC. However, assume that the duration of the time window t2 - t1 is such that the QoS and SLA violations due to the continued hosting of VM1 on PMA are well within the permissible limits. In such a case, the migration of both VMs—VM1 to PMB and VM4 to PMA— at time t2 ensures lesser number of PM are switched on. This results in a global resource assignment that may be better than local resource management.

4.3 PERFORMANCE PREDICTION FOR HPC ON CLOUDS

INTRODUCTION

High-performance computing (HPC) is one of the contexts in which the adoption of the cloud computing paradigm is debated.

As outlined in other chapters of this book, cloud computing may be exploited at three different levels: IaaS (Infrastructure as a Service), PaaS (Platform as a Service), and AaaS (Application as a Service). In one way or another, all of them can be useful for HPC. However, nowadays the most common solution is the adoption of the IaaS paradigm. IaaS lets users run applications on fast pay-per-use machines they don’t want to buy, to manage, or to maintain. Furthermore, the total computational power can be easily increased (by additional charge). For the sporadic HPC user, this solution is undoubtedly attractive: no investment in rapidly-obsolescing machines, no power and cooling nightmares, and no system software updates.

At the state of the art, there exist many solutions for building up a cloud environment. VMWare cloud OS is integrated in the VMWare virtualization solutions. Opennebula [4, 26], Enomaly , and Eucalyptus are open-source software layers that provide a service-oriented interface on the top of existing virtual engines (mainly, VMWare and Xen). Virtual workspaces [7, 16, 27], and related projects (Nimbus, Kupa, WISPY) build up the service-oriented inter-face for the virtual engines by exploiting a grid infrastructure (see Section 4.3.2 for further details).

Another source of confusion for most users is the relationship between clouds and grids. But this is obtained following two different approaches: centralized for clouds and distributed for grids. It is easy to find on the net many open (and often useless) discussions comparing the two paradigms. In this chapter we will not deal further with the problem, limiting ourselves to discuss the profitability of the two paradigms in the HPC context and to point out the possibility to integrate both of them in a unified view.

[bookmark: page758]Many applications have strict requirements for their execution environments. Often the applications’ environment requirements are mutually incompatible, and it is not reasonable to modify or to re-install system software on-the-fly to make applications work. Moreover, partitioning the computing hardware into closed environments with different characteristics is not decidedly an efficient solution.

In light of the above, it is reasonable to think that, notwithstanding the inevitable performance loss, cloud techniques will progressively spread into HPC environments. As an example, Rocks, the widely used Linux distribution for HPC clusters, provides support for virtual clusters starting from release 5.1 . As pointed out above, the performance problem is hard due to the intrinsically

“intangible” and flexible nature of cloud systems. This makes difficult (and maybe useless) to compare the performance of a given application that executes in two different virtual environments received from a cloud. So, given the extreme simplicity to ask from a cloud for additional computing resources (with additional costs), it is almost impossible to make a choice that maximizes the performance/cost ratio.

The presentation is organized as follows: The next section (4.3.2) introduces the fundamentals of cloud computing paradigm applied to HPC, aiming at defining the concepts and terminology concerning virtual clusters. Section 4.3.3 instead focuses on the relationship between grid and cloud, highlighting their similarities and differences, the opportunity of their integration, and the approaches proposed to this end. Section 4.3.4 focuses on performance-related problems, which affect the adoption of cloud computing for HPC, pointing out the need for methods, techniques, and tools for performance prediction of clouds. The final section (4.3.5) presents our conclusions.

BACKGROUND

As outlined in the introduction, the main question related to the adoption of the cloud paradigm in HPC is related to the evaluation (and, possibly, to the reduction) of possible performance losses compared to physical HPC hardware. In clouds, performance penalties may appear at two different levels:

Virtual Engine (VE). These are related to the performance loss introduced by the virtualization mechanism. They are strictly related to the VE technology adopted.

Cloud Environment (CE). These are the losses introduced at a higher level by the cloud environment, and they are mainly due to overheads and to

the sharing of computing and communication	resources.

Additional considerations on the cloud hardware and its impact on the performance of HPC applications will be presented in Section 4.3.3.

	[bookmark: page759]
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	…
	
	

	
	
	
	
	
	
	
	
	
	
	
	VFE
	
	
	VN
	
	VN
	
	
	VN
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	VLAN
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	VFE
	
	
	VN
	
	VN
	
	…
	VN
	

	
	FE
	
	PN
	
	PN
	
	…
	PN
	
	
	
	VLAN
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	VFE
	
	
	VN
	
	VN
	
	…
	VN
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	VLAN
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	FE
	
	
	PN
	
	PN
	
	
	PN
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	NETWORK
	
	
	
	
	
	
	
	NETWORK
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

FIGURE 4.3.1. Physical and virtual	cluster.

The configuration and performance analysis of virtual clusters poses problems that are considerably more complex than those involved in the use of physical clusters. The objective of this section is to present the main problems and to introduce a clear and sound terminology, which is still lacking in the literature.

A traditional cluster—that is, a physical cluster—can be schematized as in Figure 4.3.1. It is essentially made up of a front-end (typically used only for administration purposes, often the only node with a public IP address) and a number of (physical) processing nodes. These are, turn, provided with a single CPU or with multiple CPUs sharing a common memory and I/O resources. The multiple CPUs may be multiple cores on a single processor chip, a traditional single-core CPUs working in SMP mode, a “fictitious” CPU obtained by hyperthreading, or a mixture of all the above.

A physical cluster can execute multiple jobs in parallel, by assigning to every job a subset of the total number of CPUs. Usually the choice is to use non-overlapping subsets of CPUs, in order to avoid processor sharing among multiple jobs. But, even doing so, the interconnection network (and the front-end) are inevitably shared.

This may, or may not, introduce significant overheads, depending on the type of computations and their communication requirements and, above all, on the characteristics of the interconnect. Anyway, very often this overhead is tolerable.

A parallel application running in a physical cluster is composed of processes. To exploit all the available computing resources, the application should use at least a number of processes equal to the number of available CPUs (or, in the case of concurrent jobs, equal to the number of CPU exclusively reserved for the job). Redundant application decompositions (i.e., applications made up of a number of processes higher than the number of CPUs) are possible and, in some cases, they may even be more efficient.

The main problem with physical clusters is that all jobs running on the cluster, whether concurrent or non-concurrent, have to share the same operating system

[bookmark: page760](OS), the system and application libraries, and the operating environment (system applications and tools). The frequently recurring requirements for mutually exclusive or incompatible libraries and support software make physical cluster management a nightmare for system administrators.

Basically, a virtual cluster is made up of a virtual front-end and a number of virtual nodes (see Figure 4.3.1). Virtual front-ends are obtained by virtualiza-tion of a physical front-end machine, and virtual nodes are obtained by virtualization of physical processing nodes.

Even if, strictly speaking, in a virtual cluster the front-end could be virtualized as compute nodes, a simpler and less resource-demanding solution is to use a physical front-end. Both with physical or virtual front-ends, virtual cluster may have an execution environment of its own (OS, libraries, tools, etc.) that is loaded and initialized when the cluster is created. The advantages of cluster virtualization are clear: Every application can set up a proper execution environment, which does not interfere with all other applications and virtual clusters running on the hardware. Moreover, the network traffic of every virtual cluster is encapsulated in a separate VLAN. However, most likely all VLANs will share the physical network resources.

As shown in Figure 4.3.1, every virtual processing node can host one or several virtual machines (VMs), each running a private OS instance. These may belong to the same or to different virtual clusters. At least in theory, the number of VMs is limited only by resource consumption (typically, physical memory). In turn, each VM is provided with several virtual CPUs (VCPUs). A virtual machine manager running in every node makes it possible to share the physical CPUs among the VCPUs defined on the node (which may belong to a single virtual cluster or to several virtual clusters). Typically, it is possible to define VCPU affinity and to force every VCPU to run on a subset of the physical CPUs available.

It is worth noting that, given a physical node provided with n CPUs, there are two possibilities to exploit all the computing resources available:

Using n VMs (each running its OS instance) with one, or even several, VCPUs;

Using a single VM with at least n VCPUs.

On the other hand, the use in a node of v VCPUs, with v.n, whether in a single or in multiple VMs, leads to a fictitious multiplication of computing resources. In nodes where CPU resources are multiplied, the virtual clusters not only share memory, communication hardware, and the virtual machine manager, but also share CPU cycles, with a more direct effect on overall computing performance.

GRID AND CLOUD

[bookmark: page761]“Grid vs Cloud” is the title of an incredible number of recent Web blogs andarticles in on-line forums and magazines, where many HPC users express their own opinion on the relationship between the two paradigms [11, 28, 29, 40]. Cloud is simply presented, by its supporters, as an evolution of the grid. Some consider grids and clouds as alternative options to do the same thing in a different way. However, there are very few clouds on which one can build, test, or run compute-intensive applications. In fact it still necessary to deal with some open issues. One is when, in term of performance, a cloud is better than a grid to run a specific application. Another problem to be addressed concerns the effort to port a grid application to a cloud. In the following it will be discussed how these and other arguments suggest that we investigate the integration of grids and clouds to improve the exploitation of computing resources in HPC.

Grid and Cloud as	Alternatives

Both grid and cloud are technologies that have been conceived to provide users with handy computing resources according to their specific requirements.

Grid was designed with a bottom-up approach [9, 30, 31, 39]. Its goal is to share a hardware or a software among different organizations by means of common protocols and policies. The idea is to deploy interoperable services in order to allow the access to physical resources (CPU, memory, mass storage, etc.) and to available software utilities. Users get access to a real machine. Grid resources are administrated by their owners. Authorized users can invoke grid services on remote machines without paying and without service level guaran-tees. A grid middleware provides a set of API (actually services) to program a heterogeneous, geographically distributed system.

On the other hand, cloud technology was designed using a top-down approach. It aims at providing its users with a specific high-level functionality: a storage, a computing platform, a specialized service. They get virtual resources from the cloud. The underlying hardware/software infrastructure is not exposed. The only information the user needs to know is the quality of service (QoS) of the services he is paying for. Bandwidth, computing power, and storage represent parameters that are used for specifying the QoS and for billing. Cloud users ask for a high-level functionality (service, platform, infrastructure), pay for it, and become owners of a virtual machine. From a technological point of view, virtualization is exploited to build an insulated environment, which is configured to meet users’ requirements and is exploited for easy reconfiguration and backup. A single enterprise is the owner of the cloud platform (software and underlying hardware), whereas customers be-come owners of the virtual resources they pay for.

Cloud supporters claim that the cloud is easy to be used [9], is scalable , and always gives users exactly what they want. On the other hand, grid is difficult to be used, does not give performance guarantees, is used by narrow communities of scientists to solve specific problems, and does not actually support interoperability [9].

Grid fans answer that grid users do not need a credit card, that around the world there are many examples of successful projects, and that a

[bookmark: page762]
great number of computing nodes connected across the net execute large - scale scientific applications, addressing problems that could not be solved otherwise. Grid users can use a reduced set of functionalities and can develop simple applications, or they can get, theoretically, an infinite amount of resources.

As always, truth is in the middle. Some users prefer to pay since they need a specific service with strict requirements and require a guaranteed QoS. Cloud can provide this. Many users of the scientific community look for some sort of supercomputing architecture to solve intensive computations that process a huge amount of data, and they do not care about getting a guaranteed performance level. The grid can provide it. But, even on this last point, there are divergent opinions.

Grid and Cloud Integration

To understand why grids and clouds should be integrated, we have to start by considering what the users want and what these two technologies can provide. Then we can try to understand how cloud and grid can complement each other and why their integration is the goal of intensive research activities . We know that a supercomputer runs faster than a virtualized resource. For example, a LU benchmark on EC2 (the cloud platform provided by Amazon) runs slower, and some overhead is added to start VMs [13]. On the other hand, the probability to execute an application in fixed time on a grid resource depends on many parameters and cannot be guaranteed. As experimented in Foster [13], if 400 msec is the time that an EC2 requires to execute an LU benchmark, then the probability of obtaining a grid resource in less that 400 msec is very low (34%), even if the same benchmark can take less than 100 msec to complete.

If you want to get your results as soon as possible, you are adopting the cloud end-user perspective. If you want to look for the optimum resources that solve the problem, overcoming the boundaries of a single enterprise, you are using the grid perspective that aims at optimizing resources sharing and system utilization.

The integration of cloud and grid, or at least their integrated utilization, has been proposed since there is a trade-off between application turnaround and system utilization, and sometimes it is useful to choose the right compromise

between them.

Some issues to be investigated have been pointed	out:

● Integration of virtualization into existing e-infrastructures

● Deployment of grid services on top of virtual	infrastructures

● Integration of cloud-base services in	e-infrastructures

● Promotion of open-source components to build	clouds

● Grid technology for cloud	federation

[bookmark: page763]
In light of the above, the integration of the two environments is a debated issue

At the state of the art, two main approaches have been proposed:

Grid on Cloud. A cloud IaaS (Infrastructure as a Service) approach isadopted to build up and to manage a flexible grid system . Doing so, the grid middleware runs on a virtual machine. Hence the main drawback of

this approach is performance. Virtualization inevitably entails perfor-mance losses as compared to the direct use of physical resources.

Cloud on Grid: The stable grid infrastructure is exploited to build up acloud environment. This solution is usually preferred [7, 16] because the cloud approach mitigates the inherent complexity of the grid. In this case, a set of grid services is offered to manage (create, migrate, etc.) virtual machines. The use of Globus workspaces , along with a set of grid services for the Globus Toolkit 4, is the prominent solution, as in the Nimbus project .

The integration could simplify the task of the HPC user to select, to configure, and to manage resources according to the application requirements. It adds flexibility to exploit available resources, but both of the above-presented approaches have serious problems for overall system management, due to the complexity of the resulting architectures. Performance prediction, application tuning, and benchmarking are some of the relevant activities that become critical and that cannot be performed in the absence of performance evaluation of clouds.

HPC IN THE CLOUD: PERFORMANCE-RELATED	ISSUES

This section will discuss the issues linked to the adoption of the cloud paradigm

	in the HPC context. In particular, we will focus on three
	different issues:

	1.
	The difference between typical HPC paradigms
	and those of
	current

	
	cloud environments, especially in terms of performance
	evaluation.

	2.
	A comparison of the two approaches in order to
	point
	out their

	
	advantages and drawbacks, as far as performance is concerned.

New performance evaluation techniques and tools to support HPC in cloud systems.

As outlined in the previous sections, the adoption of the cloud paradigm for HPC is a flexible way to deploy (virtual) clusters dedicated to execute HPC applications. The switch from a physical to a virtual cluster is completely transparent for the majority of HPC users, who have just terminal access to the

[bookmark: page764]cluster and limit themselves to “launch” their	tasks.

The first and well-known difference between HPC and cloud environments is the different economic approach: (a) buy-and-maintain for HPC and

[bookmark: page765]
(b) pay-per-use in cloud systems. In the latter, every time that a task is started, the user will be charged for the used resources. But it is very hard to know in advance which will be the resource usage and hence the cost. On the other hand, even if the global expense for a physical cluster is higher, once the system has been acquired, all the costs are fixed and predictable (in fact, they are so until the system is not faulty). It would be great to predict, albeit approximately, the resource usage of a target application in a cloud, in order to estimate the cost of its execution.

These two issues above are strictly related, and a performance problem becomes an economic problem. Let us assume that a given application is well - optimized for a physical cluster. If it behaves on a virtual cluster as on the physical one, it will use the cloud resources in an efficient way, and its execution will be relatively cheap. This is not so trivial as it may seem, as the pay-per-use paradigm commonly used in commercial clouds (see Table 4.3.1) charges the user for virtual cluster up-time, not for CPU usage. Almost surprisingly, this means that processor idle time has a cost for cloud users.

For clarity’s sake, it is worth presenting a simple but interesting example regarding performance and cost. Let us consider two different virtual clusters with two and four nodes, respectively. Let us assume that the application is well-optimized and that, at least for a small number of processors, it gets linear speed-up. The target application will be executed in two hours in the first cluster and in one hour in the second one. Let the execution cost be X dollars per hour per machine instance (virtual node). This is similar to the charging scheme of EC2. The total cost is given by

hcost per hour per instancei m hnumberofinstancesi m hhoursi

In the first case (two-node cluster) the cost will be X*2*2, whereas in the second one it will be X*1*4. It turns out that the two configurations have the same cost for the final user, even if the first execution is slower than the second. Now if we consider an application that is not well-optimized and has a speed-up less than the ideal one, the running time on the large virtual cluster will be longer than two hours; as a consequence, the cost of the run of the second virtual cluster

	
	TABLE 4.3.1. Example of Cost Criteria
	
	

	
	Cloud Provider
	Index
	Description

	
	
	
	
	

	
	Amazon
	$/hour
	Cost (in $) per hour of activity of the virtual

	
	
	
	machines.

	
	Amazon
	$/GB
	Cost (in $) per Gigabyte transferred outside

	[bookmark: page766]
	
	the cloud zone (transfers inside the same

	
	
	zone have no price)

	GoGrid
	$*RAM/hour
	Cost (in $) by RAM memory allocated per

	
	
	hour

	
	
	

[bookmark: page767]
will be higher than that on the small one. In conclusion: In clouds, performance counts two times. Low performance means not only long waiting times, but also high costs. The use of alternative cost factors (e.g., the RAM memory allocated, as for GoGrid in Table 4.3.1) leads to completely different considera - tions and requires different application optimizations to reduce the final cost of execution.

In light of the above, it is clear that the typical HPC user would like to know how long his application will run on the target cluster and which configuration has the highest performance/cost ratio. The advanced user, on the other hand, would also know if there is a way to optimize its application so as to reduce the cost of its run without sacrificing performance. The high-end user, who cares more for performance than for the cost to be sustained, would like instead to know how to choose the best configuration to maximize the performance of his application. In other words, in the cloud world the hardware configuration is not fixed, and it is not the starting point for optimization decisions. Config - urations can be easily changed in order to fit the user needs. All the three classes of users should resort to performance analysis and prediction tools. But, unfortunately, prediction tools for virtual environments are not available, and the literature presents only partial results on the performance analysis of such systems.

An additional consequence of the different way that HPC users exploit a virtual cluster is that the cloud concept makes very different the system dimensioning—that is, the choice of the system configuration fit for the user purposes (cost, maximum response time, etc.). An HPC machine is chosen and acquired, aiming to be at the top of available technology (under inevitable money constraints) and to be able to sustain the highest system usage that may eventually be required. This can be measured in terms of GFLOPS, in terms of number of runnable jobs, or by other indexes depending on the HPC applications that will be actually executed. In other words, the dimensioning is made by considering the peak system usage. It takes place at system acquisition time, by examining the machine specifications or by assembling it using hardware components of known performance. In this phase, simple and global performance indexes are used (e.g., bandwidth and latency for the interconnect, peak FLOPS for the computing nodes, etc.).

In clouds, instead, the system must be dimensioned by finding out an optimal trade-off between application performance and used resources. As mentioned above, the optimality is a concept that is fairly different, depending on the class of users. Someone would like to obtain high performance at any cost, whereas others would privilege economic factors. In any case, as the choice of the system is not done once and for all, the dimensioning of the virtual clusters takes place every time the HPC applications have to be executed on new datasets. In clouds, the system dimensioning is a task under the control of the user, not of the system administrator. This completely changes the scenario and makes the dimensioning a complex activity, eager for performance data and indexes that can be measured fairly easily in the HPC world on physical

[bookmark: page768]

TABLE 4.3.2.	Differences Between “Classical” HPC and HPC in Cloud Environments

	Problem
	HPC
	HPC in Clouds

	
	
	

	Cost
	Buy-and-maintain
	Pay-per-use paradigm

	
	paradigm
	

	Performance
	Tuning of the application
	Joint tuning of application

	optimization
	to the hardware
	and system

	System dimensioning
	At system acquisition time,
	At every application

	
	
	execution, using application

	
	using global performance
	oriented performance

	
	indexes under system ad-
	indexes, under user control

	
	ministrator control
	

	
	
	

systems, but that are not generally available for complex and rapidly changing systems as virtual clusters.

Table 4.3.2 summarizes the differences between HPC classical environments and HPC in clouds. To summarize the above discussion, in systems (the clouds) where the availability of performance data is crucial to know how fast your applications will run and how much you will pay, there is great uncertainty about what to measure and how to measure, and there are great difficulties when attempting to interpret the meaning of measured data.

HPC Systems and HPC on Clouds: A Performance

Comparison

The second step of our analysis is a performance comparison between classical HPC systems and the new cloud paradigm. This will make it possible to point out the advantages and disadvantages of the two approaches and will enable us to understand if and when clouds can be useful for HPC.

The performance characterization of HPC systems is usually carried out by executing benchmarks. However, the only ones that make measurements of virtual clusters at different levels and provide available results in the literature [18—22, 33, 34, 36] are the following:

●	The LINPACK benchmark, a so-called kernel benchmark, which aims at measuring the peak performance (in FLOPSs) of the target environment.

[bookmark: page769]The NAS Parallel Benchmarks (NPB), a set of eight programs designed to help to evaluate the performance of parallel supercomputers, derived from computational fluid dynamics (CFD) applications and consisting of five kernels and three pseudo-applications. As performance index, together with FLOPS, it measures response time, network bandwidth usage, and latency.

mpptest, a microbenchmark that measures the performance of some of the basic MPI message passing routines in a variety of different conditions. It measures (average) response time, network bandwidth usage and latency.

[bookmark: page770]
When these benchmarks are executed on physical machines (whether clusters or other types of parallel hardware), they give a coarse-level indication of the system potentialities. In the HPC world, these benchmarks are of common use and widely diffused, but their utility is limited. Users usually have an in-depth knowledge of the target hardware used for executing their applications, and a comparison between two different (physical) clusters makes sense only for Top500 classification or when they are acquired. HPC users usually outline the potentiality and the main features of their system through (a) a brief description of the hardware and (b) a few performance indexes obtained using some of the above-presented benchmarks. In any case, these descriptions are considered useless for application performance optimization, because they only aim at providing a rough classification of the hardware.

Recently, the benchmarking technique has been adopted in a similar way, tackling also the problem of the utility of the cloud paradigm for scientific applications. In particular, the papers focusing on the development of applica - tions executed in virtual clusters propose the use of a few benchmarks to outline the hardware potentialities [22, 23]. These results are of little interest for our comparison. On the other hand, papers that present comparisons between virtual and physical clusters [18, 20—22, 36, 37] use benchmarks to find out the limits of cloud environments, as discussed below. In the following, we will focus on these results.

We can start our analysis from benchmark-based comparison of virtual clusters and physical HPC systems. In the literature there are results on all three types of benchmarks mentioned above, even if the only cloud provider considered is Amazon EC2 (there are also results on private clusters, but in those cases the analysis focuses on virtual engine level and neglects the effects of the cloud environment, and so it is outside the scope of this chapter).

Napper and Bientinesi [20] and Ostermann et al. [21] adopted the LINPACK benchmark, measuring the GFLOPS provided by virtual clusters composed of Amazon EC2 virtual machines. Both studies point out that the values obtained in the VCs are an order of magnitude lower than equivalent solutions on physical clusters. The best result found in the literature is about 176 GFLOPS, to be compared to 37.64 TFLOPS of the last (worst) machine in Top500 list. Even if it is reasonable that VCs peak performances are far from the supercomputer ones, it is worth noting that the GFLOPS tends to decrease (being fixed the memory load) when the number of nodes increases. In other words, virtual clusters are not so efficient as physical clusters, at least for this benchmark. As shown later, the main cause of this behavior is the inadequate internal interconnect.

An analysis by real-world codes, using the NPB (NAS parallel benchmark) benchmark suite, was proposed in Walker , Ostermann et al. [21]. NPBs are a collection of MPI-based HPC applications. The suite is organized so as to stress different aspects of an HPC systems—for example, computation, com-munication, or I/O.

Walker compared a virtual EC2 cluster to a physical cluster composed of TeraGrid machines with similar hardware configuration (i.e., the hardware

[bookmark: page771]
under the virtual cluster was the same adopted by the physical cluster). This comparison pointed out that the overheads introduced by the virtualization layer and the cloud environment level were fairly high. It should be noted that Walker adopted for his analysis two virtual clusters made up of a very limited number of nodes (two and four). But, even for such small systems, the applications did not scale well with the number of nodes.

The last kind of benchmark widely adopted in the literature is the MPI kernel benchmark, which measures response time, bandwidth, and latency for MPI communication primitives. These tests, proposed by almost all the authors who tried to run scientific applications on cloud-based virtual clusters, are coherent with the results presented above. In all the cases in the literature, bandwidth and, above all, latency have unacceptable values for HPC applications.

In the literature, at the best of the authors’ knowledge, there are currently no other examples of virtual cluster benchmarking, even if the ongoing diffusion of the paradigm will lead probably to a fast growth of this kind of results in the next years. As mentioned above, the benchmarking technique is able to put in evidence the main drawback linked to the adoption of cloud systems for HPC: the unsatisfactory performance of the network connection between virtual clusters. In any case, the performance offered by virtual clusters is not comparable to the one offered by physical clusters.

Even if the results briefly reported above are of great interest and can be of help to get insight on the problem, they do not take into account the differences between HPC machines and HPC in the cloud, which we have summarized at the start of this section. Stated another way, the mentioned analyses simply measure global performance indexes. But the scenario can drastically change if different performance indexes are measured.

Just to start, the application response time is perhaps the performance index of great importance in a cloud context. In fact, it is a measurement of interest for the final user and, above all, has a direct impact on the cost of the application execution. An interesting consideration linked to response time was proposed by Ian Foster in his blog . The overall application response time (RT) is given by the formula RT5 hjob submission timei 1 hexecution timei. In common HPC environments (HPC system with batch queue, grids, etc.) the job submission time may be fairly long (even minutes or hours, due to necessity to get all the required computing resources together). On the other hand, in a cloud used to run HPC workload (a virtual cluster dedicated to the HPC user), queues (and waiting time) simply disappear. The result is that, even if the virtual cluster may offer a much lower computational power, the final

response time may be comparable to that of (physical) HPC	systems.

In order to take into account this important difference between physical and virtual environments, Foster suggests to evaluate the response time in terms of probability of completion, which is a stochastic function of time, and representsthe probability that the job will be completed before that time. Note that the stochastic behavior mainly depends on the job submission time, whereas execution time is usually a deterministic value. So in a VC the probability of

[bookmark: page772]
completion is a threshold function (it is zero before the value corresponding to execution time of actual task, and one after). In a typical HPC environment, which involves batch and queuing systems, the job submission time is stochastic and fairly long, thus leading to a global completion time higher than the one measured on the VC.

This phenomenon opens the way to a large adoption of the cloud approach, at least for middle- or small-dimension HPC applications, where the computa-tion power loss due to the use of the cloud is more tolerable. In Jha et al. [9] and in the on-line discussion [13] it is well shown that the cloud approach could be very interesting for substituting the ecosystem of HPC clusters that are usually adopted for solving middle-dimension problems. This is a context in which the grid paradigm was never largely adopted because of the high startup overhead.

Supporting HPC in the Cloud

The above-presented analysis shows how the cloud approach has good chances to be widely adopted for HPC [32, 35, 38], even if there are limits one should be aware of, before trying to switch to virtualized systems. Moreover, the differences between “physical computing” and “virtual computing,” along with their impact on performance evaluation, clearly show that common performance indexes, techniques, and tools for performance analysis and prediction should be suitably adapted to comply with the new computing paradigm.

To support HPC applications, a fundamental requirement from a cloud provider is that an adequate service-level agreement (SLA) is granted. For HPC applications, the SLA should be different from the ones currently offered for the most common uses of cloud systems, oriented at transactional Web applications. The SLA should offer guarantees useful for the HPC user to predict his application performance behavior and hence to give formal (or semi-formal) statements about the parameters involved. At the state of the art, cloud providers offer their SLAs in the form of a contract (hence in natural language, with no formal specification). Two interesting examples are Amazon EC2 (http://aws.amazon.com/ec2-sla/) and GoGrid (http://www.gogrid.com/legal/ sla.php).

The first one (Amazon) stresses fault tolerance parameters (such as service uptime), offering guarantees about system availability. There are instead no guarantees about network behavior (for both internal and external network), except that it will “work” 95% of the time. Moreover, Amazon guarantees that the virtual machine instances will run using a dedicated memory (i.e., there will be no other VM allocated to on the physical machine using the same memory). This statement is particularly relevant for HPC users, because it is of great help for the performance predictability of applications.

On the other hand, GoGrid, in addition to the availability parameters, offers a clear set of guarantees on network parameters, as shown in Table 4.3.3. This kind of information is of great interest, even if the guaranteed network latency (order of milliseconds) is clearly unacceptable for HPC applications. GoGrid

[bookmark: page773]
TABLE 4.3.3. Service-Level Agreement of GoGrid	Network

	Parameter
	Description
	GoGrid SLA

	
	
	

	Jitter
	Variation in latency
	, 0.5msec

	Latency
	Amount of time it takes for a packet to
	, 5 msec

	
	travel from one point to another
	

Maximum	Highest permissible jitter within a given

jitter	period when there is no network outage

Network	Unscheduled period during which IP

outage	services are not useable due to capacity-

constraints or hardware failures

10 msec within any 15-min period

None

	Packet loss Latency in excess of 10 seconds
	, 0.1%

does not offer guarantees about the sharing of physical computing resources with other virtual machines.

In conclusion, even if the adoption of SLA could be (part of) a solution for HPC performance tuning, giving a clear reference for the offered virtual cluster performances, current solutions offer too generic SLA contracts or too poor values for the controlled parameters.

As regards performance measurement techniques and tools, along with their adaption for virtualized environments, it should be noted that very few performance-oriented services are offered by cloud providers or by third parties. Usually these services simply consist of more or less detailed performance monitoring tools, such as CloudWatch offered by Amazon, or CloudStatus, offered by Hyperic (and integrated in Amazon). These tools essentially measure the performance of the cloud internal or external network and should help the cloud user to tune his applications. In exactly the same way as SLAs, they can be useful only for the transactional applications that are the primary objective of cloud systems, since, at the state of the art, they do not offer any features to predict the behavior of long-running applications, such as HPC codes.

An interesting approach, although still experimental, is the one offered by solutions as C-meter [21] and PerfCloud [24], which offer frameworks that dynamically benchmark the target VMs or VCs offered by the cloud. The idea is to provide a benchmark-on-demand service to take into account the extreme variability of the cloud load and to evaluate frequently its actual state. The first framework [25] supports the GrenchMark benchmark (which generates syn-thetic workloads) and is oriented to Web applications. The second one, instead, supports many different benchmarks typical of the HPC environment (the above-mentioned NPB and MPP tests, the SkaMPI benchmark, etc.). More

[bookmark: page774]detailed, the PerfCloud project aims at providing performance evaluation and prediction services in grid-based clouds. Besides providing services for on-demand benchmarking of virtual clusters, the PerfCloud framework uses the benchmarking results to tune a simulator used for predict the performance of PC applications.

[bookmark: page775]BEST PRACTICES IN ARCHITECTING CLOUD

APPLICATIONS IN THE AWS CLOUD

INTRODUCTION

For several years, software architects have discovered and implemented several concepts and best practices to build highly scalable applications. In today’s “era of tera,” these concepts are even more applicable because of ever-growing datasets, unpredictable traffic patterns, and the demand for faster response times. This chapter will reinforce and reiterate some of these traditional concepts and discuss how they may evolve in the context of cloud computing. It will also discuss some unprecedented concepts, such as elasticity, that have emerged due to the dynamic nature of the cloud.

This chapter is targeted toward cloud architects who are gearing up to move an enterprise-class application from a fixed physical environment to a virtua-lized cloud environment. The focus of this chapter is to highlight concepts, principles, and best practices in creating new cloud applications or migrating existing applications to the cloud.

BACKGROUND

As a cloud architect, it is important to understand the benefits of cloud computing. In this section, you will learn some of the business and technical benefits of cloud computing and different Amazon Web services (AWS) available today.

.

Business Benefits of Cloud Computing

There are some clear business benefits to building applications in the cloud. A few of these are listed here:

Almost Zero Upfront Infrastructure Investment. If you have to build a large-scale system, it may cost a fortune to invest in real estate, physical security, hardware (racks, servers, routers, backup power supplies),

[bookmark: page776]hardware management (power management, cooling), and operations personnel. Because of the high upfront costs, the project would typically require several rounds of management approvals before the project could even get started. Now, with utility-style cloud computing, there is no fixed cost or startup cost.

Just-in-Time Infrastructure. In the past, if your application became popularand your systems or your infrastructure did not scale, you became a victim of your own success. Conversely, if you invested heavily and did not get popular, you became a victim of your failure. By deploying applications in-the-cloud with just-in-time self-provisioning, you do not have to worry about pre-procuring capacity for large-scale systems. This increases agility, lowers risk, and lowers operational cost because you scale only as you grow and only pay for what you use.

More Efficient Resource Utilization. System administrators usually worryabout procuring hardware (when they run out of capacity) and higher infrastructure utilization (when they have excess and idle capacity). With the cloud, they can manage resources more effectively and efficiently by having the applications request and relinquish resources on-demand.

Usage-Based Costing. With utility-style pricing, you are billed only for theinfrastructure that has been used. You are not paying for allocated infrastructure but instead for unused infrastructure. This adds a new dimension to cost savings. You can see immediate cost savings (some - times as early as your next month’s bill) when you deploy an optimization patch to update your cloud application. For example, if a caching layer can reduce your data requests by 70%, the savings begin to accrue immediately and you see the reward right in the next bill. Moreover, if you are building platforms on the top of the cloud, you can pass on the same flexible, variable usage-based cost structure to your own customers.

Reduced Time to Market. Parallelization is one of the great ways to speed upprocessing. If one compute-intensive or data-intensive job that can be run in parallel takes 500 hours to process on one machine, with cloud architectures , it would be possible to spawn and launch 500 instances and process the same job in 1 hour. Having available an elastic infrastructure provides the application with the ability to exploit paralle- lization in a cost-effective manner reducing time to market.

Technical Benefits of Cloud Computing

Some of the technical benefits of cloud computing	includes:

[bookmark: page777]Automation—“Scriptable Infrastructure”: You can create repeatable buildand deployment systems by leveraging programmable (API-driven) infrastructure.

Auto-scaling: You can scale your applications up and down to match yourunexpected demand without any human intervention. Auto-scaling encourages automation and drives more efficiency.

Proactive Scaling: Scale your application up and down to meet youranticipated demand with proper planning understanding of your traffic patterns so that you keep your costs low while scaling.

More Efficient Development Life Cycle: Production systems may be easilycloned for use as development and test environments. Staging environ-ments may be easily promoted to production.

Improved Testability: Never run out of hardware for testing. Inject andautomate testing at every stage during the development process. You can spawn up an “instant test lab” with preconfigured environments only for the duration of testing phase.

Disaster Recovery and Business Continuity: The cloud provides a lower costoption for maintaining a fleet of DR servers and data storage. With the cloud, you can take advantage of geo-distribution and replicate the environment in other location within minutes.

“Overflow” the Traffic to the Cloud: With a few clicks and effective loadbalancing tactics, you can create a complete overflow-proof application by routing excess traffic to the cloud.

Understanding the Amazon Web Services	Cloud

The Amazon Web Services (AWS) cloud provides a highly reliable and scalable infrastructure for deploying Web-scale solutions, with minimal support and administration costs, and more flexibility than you’ve come to expect from your own infrastructure, either on-premise or at a datacenter facility. AWS offers variety of infrastructure services today. The diagram below will introduce you to the AWS terminology and help you understand how your application can interact with different Amazon Web Services (Figure 4.4.1) and how different services interact with each other. Amazon Elastic Compute Cloud (Amazon EC2) is a Web service that provides resizable compute capacity in the cloud. You can bundle the operating system, application software, and associated configuration settings into an Amazon machine image (AMI). You can then use these AMIs to provision multiple virtualized instances as well as decommission them using simple Web service calls to scale capacity up and down quickly, as your capacity requirement changes. You can purchase either (a) on-demand

Your Application

[bookmark: page778][image:]

	Auto-
	Elastic
	Cloud

	Scaling
	LB
	Watch

[image:]

	
	
	
	
	
	
	
	
	
	
	
	Amazon
	
	
	Amazon Elastic
	
	

	
	
	
	
	
	
	
	
	
	
	
	RDS
	
	
	MapReduce JobFlows
	
	

	Payment:AmazonFPS/DevPay
	
	AmazonSimpleDBDomains
	
	AmazonSNSTopics
	
	
	AmazonSQSQueues
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Amazon S3

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Objects and

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	EBS
	
	
	Buckets

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Snapshots

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	Amazon
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	Virtual Private Cloud
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	Amazon WorldWide Physical Infrastructure
	
	
	

	
	
	
	
	
	(Geographical Regions, Availability Zones, Edge Locations)

FIGURE 4.4.1. Amazon Web Services.

Amazon

Cloud

Front

instances, in which you pay for the instances by the hour, or (b) reserved instances, in which you pay a low, one-time payment and receive a lower usage rate to run the instance than with an on-demand instance or spot instances where you can bid for unused capacity and further reduce your cost. Instances can be launched in one or more geographical regions. Each region has multiple availability zones. Availability zones are distinct locations that are engineered to be insulated from failures in other availability zones and provide inexpen - sive, low-latency network connectivity to other availability zones in the same region.

Elastic IP addresses allow you to allocate a static IP address and program-matically assign it to an instance. You can enable monitoring on an Amazon EC2 instance using Amazon CloudWatch in order to gain visibility into resource utilization, operational performance, and overall demand patterns (including metrics such as CPU utilization, disk reads and writes, and network

[bookmark: page779]traffic). You can create an auto-scaling group using the auto-scaling feature to automati- cally scale your capacity on certain conditions based on metric that Amazon CloudWatch collects. You can also distribute incoming traffic by creating an elastic load balancer using the Elastic Load Balancing service . Amazon Elastic Block Storage (EBS) volumes provide network-attached persistent storage to Amazon EC2 instances. Point-in-time consistent snapshots of EBS volumes can be created and stored on Amazon Simple Storage Service (Amazon S3).

Amazon S3 is highly durable and distributed data store. With a simple Web services interface, you can store and retrieve large amounts of data as objects in buckets (containers) at any time, from anywhere on the Web using standard

HTTP verbs. Copies of objects can be distributed and cached at 14 edgelocations around the world by creating a distribution using Amazon Cloud-Front service , a Web service for content delivery (static or streaming content). Amazon SimpleDB[9] is a Web service that provides the core functionality of a database—real-time lookup and simple querying of struc- tured data—without the operational complexity. You can organize the dataset into domains and can run queries across all of the data stored in a particular domain. Domains are collections of items that are described by attribute—value pairs. Amazon Relational Database Service (Amazon RDS) provides an easy way to set up, operate, and scale a relational database in the cloud. You can launch a DBinstance and get access to a full-featured MySQL database and not worry aboutcommon database administration tasks like backups, patch management, and so on.

Amazon Simple Queue Service (Amazon SQS) is a reliable, highly scalable, hosted distributed queue for storing messages as they travel between computers and application components.

Amazon Elastic MapReduce provides a hosted Hadoop framework running on the web-scale infrastructure of Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Simple Storage Service (Amazon S3) and allows you to create customized JobFlows. JobFlow is a sequence of MapReduce steps.

Amazon Simple Notifications Service (Amazon SNS) provides a simple way to notify applications or people from the cloud by creating Topics and using a publish-subscribe protocol.

Amazon Virtual Private Cloud (Amazon VPC)[13] allows you to extend your corporate network into a private cloud contained within AWS. Amazon VPC uses an IPSec tunnel mode that enables you to create a secure connection between a gateway in your data center and a gateway in AWS.

AWS	also	offers	various	payment	and	billing	services	that	leverages

Amazon’s payment infrastructure.

All AWS infrastructure services offer utility-style pricing that require no long-term commitments or contracts. For example, you pay by the hour for Amazon EC2 instance usage and pay by the gigabyte for storage and data transfer in the case of Amazon S3. More information about each of these services and their pay-as-you-go pricing is available on the AWS Web site.

[bookmark: page780]
CLOUD CONCEPTS

The cloud reinforces some old concepts of building highly scalable Internet architectures and introduces some new concepts that entirely change the way applications are built and deployed. Hence, when you progress from concept to implementation, you might get the feeling that “Everything’s changed, yet nothing’s different.” The cloud changes several processes, pat- terns, practices, and philosophies and reinforces some traditional service- oriented architectural principles that you have learned because they are even more important than before. In this section, you will see some of those new cloud concepts and reiterated SOA concepts.

Traditional applications were built with some pre-conceived mindsets that made economic and architectural-sense at the time they were developed. The cloud brings some new philosophies that you need to understand, and these are discussed below.

Building Scalable Architectures

It is critical to build a scalable architecture in order to take advantage of a scalable infrastructure.

The cloud is designed to provide conceptually infinite scalability. However, you cannot leverage all that scalability in infrastructure if your architecture is not scalable. Both have to work together. You will have to identify the monolithic components and bottlenecks in your architecture, identify the areas where you cannot leverage the on-demand provisioning capabilities in your architecture, and work to refactor your application in order to leverage the scalable infrastructure and take advantage of the cloud.

Characteristics of a truly scalable	application:

● Increasing resources results in a proportional increase in	performance.

A scalable service is capable of handling heterogeneity.

A scalable service is operationally efficient.

A scalable service is resilient.

A scalable service should become more cost effective when it grows (cost

per unit reduces as the number of units	increases).

These are things that should become an inherent part of your application; and if you design your architecture with the above characteristics in mind, then both your architecture and infrastructure will work together to give you the scalability you are looking for.

Understanding Elasticity

[bookmark: page781]Figure 4.4.2 illustrates the different approaches a cloud architect can take to scale their applications to meet the demand.

Scale-Up Approach. Not worrying about the scalable application architec-ture and investing heavily in larger and more powerful computers (vertical scaling) to accommodate the demand. This approach usually works to a point, but either it could cost a fortune (see “Huge capital expenditure” in Figure 4.4.2) or the demand could outgrow capacity before the new “big iron” is deployed (see “You just lost your customers” in diagram).
[image:]

	
	
	Too much excess capacity

	
	Huge capital
	You just lost your

	
	
	

	Cost $$
	
	

	Infrastrcture
	
	Predicted demand

	
	
	Actual demand

	
	
	

	
	
	Scale-up approach

	
	
	Time t

Automated Elasticity + Scalability

[bookmark: page782]
FIGURE 4.4.2. Automated elasticity.

The Traditional Scale-Out Approach. Creating an architecture that scaleshorizontally and investing in infrastructure in small chunks. Most of the businesses and large-scale Web applications follow this pattern by distributing their application components, federating their datasets, and employing a service-oriented design. This approach is often more effective than a scale-up approach. However, this still requires predicting the demand at regular intervals and then deploying infrastructure in chunks to meet the demand. This often leads to excess capacity (“burning cash”) and constant manual monitoring (“burning human cycles”). Moreover, it usually does not work if the application is a victim of a viral fire (often referred to as the Slashdot Effect).

Note: Both approaches have initial startup costs, and both approaches are reactive in nature.

Traditional infrastructure generally necessitates predicting the amount of computing resources your application will use over a period of several years. If you underestimate, your applications will not have the horsepower to handle unexpected traffic, potentially resulting in customer dissatisfaction. If you overestimate, you’re wasting money with superfluous resources.

The on-demand and elastic nature of the cloud approach (automated elasticity), however, enables the infrastructure to be closely aligned (as it expands and contracts) with the actual demand, thereby increasing overall utilization and reducing cost.

Elasticity is one of the fundamental properties of the cloud. Elasticity is thepower to scale computing resources up and down easily and with minimal friction. It is important to understand that elasticity will ultimately drive most of the benefits of the cloud. As a cloud architect, you need to internalize this concept and work it into your application architecture in order to take maximum benefit of the cloud.

Traditionally, applications have been built for fixed, rigid, and pre-provisioned infrastructure. Companies never had the need to provision and install servers on a daily basis. As a result, most software architectures do not address the rapid deployment or reduction of hardware. Since the provisioning time and upfront investment for acquiring new resources was too high, software architects never invested time and resources in optimizing for hard-ware utilization. It was acceptable if the hardware on which the application is running was underutilized. The notion of “elasticity” within an architecture was overlooked because the idea of having new resources in minutes was not possible.

[bookmark: page783]With the cloud, this mindset needs to change. Cloud computing streamlines the process of acquiring the necessary resources; there is no longer any need to place orders ahead of time and to hold unused hardware captive. Instead, cloud architects can request what they need mere minutes before they need it or automate the procurement process, taking advantage of the vast scale and rapid response time of the cloud. The same is applicable to releasing the unneeded or underutilized resources when you don’t need them. If you cannot embrace the change and implement elasticity in your application architecture, you might not be able to take the full advantage of the cloud. As a cloud architect, you should think creatively and think about ways you can implement elasticity in your application. For example, infrastructure that used to run daily nightly builds and performs regression and unit tests every night at 2:00 AM for two hours (often termed as the “QA/Build box”) was sitting idle for rest of the day. Now, with elastic infrastructure, one can run nightly builds on boxes that are “alive” and being paid for only for 2 hours in the night. Likewise, an internal trouble ticketing Web application that always used to run on peak capacity (5 servers 24 3 7 3 365) to meet the demand during the day can now be provisioned to run on-demand (five servers from 9 AM to 5 PM and two servers for 5 PM to 9 AM) based on the traffic pattern.

Designing intelligent elastic cloud architectures, so that infrastructure runs only when you need it, is an art in itself. Elasticity should be one of the architectural design requirements or a system property. The questions that you need to ask are as follows: What components or layers in my application architecture can become elastic? What will it take to make that component elastic? What will be the impact of implementing elasticity to my overall systemarchitecture?

In the next section, you will see specific techniques to implement elasticity in your applications. To effectively leverage the cloud benefits, it is important to architect with this mindset.

Not Fearing Constraints

When you decide to move your applications to the cloud and try to map your system specifications to those available in the cloud, you will notice that cloud might not have the exact specification of the resource that you have on-premise.

For example, “Cloud does not provide X amount of RAM in a server” or “My database needs to have more IOPS than what I can get in a single instance.”

You should understand that cloud provides abstract resources that become powerful when you combine them with the on-demand provisioning model. You should not be afraid and constrained when using cloud resources because it is important to understand that even if you might not get an exact replica of your hardware in the cloud environment, you have the ability to get more of those resources in the cloud to compensate that need.

For example, if the cloud does not provide you with exact or greater amount of RAM in a server, try using a distributed cache like memcached or partitioning your data across multiple servers. If your databases need more IOPS and it does not directly map to that of the cloud, there are several recommendations that you can choose from depending on your type of data and use case. If it is a read-heavy application, you can distribute the read load

[bookmark: page784]across a fleet of synchronized slaves. Alternatively, you can use a sharding algorithm that routes the data where it needs to be or you can use various database clustering solutions.

In retrospect, when you combine the on-demand provisioning capabilities with the flexibility, you will realize that apparent constraints can actually be broken in ways that will actually improve the scalability and overall perfor-mance of the system.

Virtual Administration

The advent of cloud has changed the role of System Administrator to a “Virtual System Administrator.” This simply means that daily tasks performed by these administrators have now become even more interesting as the administrators learn more about applications and decide what’s best for the business as a whole. The System Administrator no longer has a need to provision servers and install software and wire up network devices since all of that grunt work is replaced by few clicks and command line calls. The cloud encourages automa-tion because the infrastructure is programmable. System administrators need to move up the technology stack and learn how to manage abstract cloud resources using scripts.

Likewise, the role of Database Administrator is changed into a “Virtual Database Administrator” (DBA) in which he/she manages resources through a

Web-based console, executes scripts that add new capacity programmatically if the database hardware runs out of capacity, and automates the day-to-day processes. The virtual DBA has to now learn new deployment methods (virtual machine images), embrace new models (query parallelization, geo-redundancy, and asynchronous replication [19]), rethink the architectural approach for data (sharding [20], horizontal partitioning , federating [21]), and leverage different storage options available in the cloud for different types of datasets. In the traditional enterprise company, application developers may not work closely with the network administrators and network administrators may not have a clue about the application. As a result, several possible optimizations in the network layer and application architecture layer are overlooked. With the cloud, the two roles have merged into one to some extent. When architecting future applications, companies need to encourage more cross-pollination of knowledge between the two roles and understand that they are merging.

CLOUD BEST PRACTICES

In this section, you will learn about best practices that will help you build an application in the cloud.

[bookmark: page785]
Design for Failure and Nothing Will Fail

Rule of Thumb: Be a pessimist when designing architectures in the cloud; assume things will fail. In other words, always design, implement, and deploy for automated recovery from failure.

In particular, assume that your hardware will fail. Assume that outages will occur. Assume that some disaster will strike your application. Assume that you will be slammed with more than the expected number of requests per secondsome day. Assume that with time your application software will fail too. By being a pessimist, you end up thinking about recovery strategies during design time, which helps in designing an overall system better.

If you realize that things fail over time and incorporate that thinking into your architecture, as well as build mechanisms to handle that failure before disaster strikes to deal with a scalable infrastructure, you will end up creating a fault-tolerant architecture that is optimized for the cloud.

Questions that you need to ask: What happens if a node in your system fails? How do you recognize that failure? How do I replace that node? What kind of scenarios do I have to plan for? What are my single points of failure? If a load balancer is sitting in front of an array of application servers, what if that load balancer fails? If there are master and slaves in your architecture, what if the master node fails? How does the failover occur and how is a new slave instantiated and brought into sync with the master?

Just like designing for hardware failure, you have to also design for software failure. Questions that you need to ask: What happens to my application if the dependent services changes its interface? What if downstream service times out or returns an exception? What if the cache keys grow beyond memory limit of an instance?

Build mechanisms to handle that failure. For example, the following strategies can help in event of failure:

Have a coherent backup and restore strategy for your data and automate it.

Build process threads that resume on reboot.

Allow the state of the system to re-sync by reloading messages from queues.

Keep preconfigured and preoptimized virtual images to support strategies 2 and 3 on launch/boot.

Avoid in-memory sessions or stateful user context; move that to data stores.

Good cloud architectures should be impervious to reboots and re-launches. In GrepTheWeb (discussed in the next section), by using a combination of Amazon SQS and Amazon SimpleDB, the overall controller architecture is very resilient to the types of failures listed in this section. For instance, if the

[bookmark: page786]instance on which controller thread was running dies, it can be brought up and resume the previous state as if nothing had happened. This was accomplished by creating a preconfigured Amazon machine image, which, when launched, dequeues all the messages from the Amazon SQS queue and reads their states from an Amazon SimpleDB domain on reboot.

Designing with an assumption that underlying hardware will fail will prepare you for the future when it actually fails.

This design principle will help you design operations-friendly applications, as also highlighted in Hamilton’s paper [19]. If you can extend this principle to proactively measure and balance load dynamically, you might be able to deal with variance in network and disk performance that exists due to the multi-tenant nature of the cloud.

AWS-Specific Tactics for Implementing This Best Practice

Failover gracefully using Elastic IPs: Elastic IP is a static IP that is dynamically remappable. You can quickly remap and failover to another set of servers so that your traffic is routed to the new servers. It works great when you want to upgrade from old to new versions or in case of hardware failures.

Utilize multiple availability zones: Availability zones are conceptually like logical datacenters. By deploying your architecture to multiple availability zones, you can ensure high availability.

Maintain an Amazon Machine Image so that you can restore and clone environments very easily in a different availability zone; main-tain multiple database slaves across availability zones and set up hot replication.

[bookmark: page787]
Utilize Amazon CloudWatch (or various real-time open source mon-itoring tools) to get more visibility and take appropriate actions in case of hardware failure or performance degradation. Set up an Auto scaling group to maintain a fixed fleet size so that it replaces unhealthy Amazon EC2 instances by new ones.

Utilize Amazon EBS and set up cron jobs so that incremental snap-shots are automatically uploaded to Amazon S3 and data are persisted independent of your instances.

Utilize Amazon RDS and set the retention period for backups, so that it can perform automated backups.

Decouple your Components

The cloud reinforces the SOA design principle that the more loosely coupled thecomponents of the system, the bigger and better it scales.

The key is to build components that do not have tight dependencies on each other, so that if one component were to die (fail), sleep (not respond), or remain busy (slow to respond) for some reason, the other components in the system are built so as to continue to work as if no failure is happening. In essence, loose coupling isolates the various layers and components of your application so that each component interacts asynchronously with the others and treats them as a

“black box.” For example, in the case of Web application architecture, you can isolate the app server from the Web server and from the database. The app server does not know about your Web server and vice versa; this gives decoupling between these layers, and there are no dependencies code-wise nor functional perspectives. In the case of batch-processing architecture, you can create asynchronous components that are independent of each other.

Questions you need to ask: Which business component or feature could be isolated from current monolithic application and can run stand-alone sepa-rately? And then how can I add more instances of that component without breaking my current system and at the same time serve more users? How much effort will it take to encapsulate the component so that it can interact with other components asynchronously?

Decoupling your components, building asynchronous systems, and scaling horizontally become very important in the context of the cloud. It will not only allow you to scale out by adding more instances of same component but will also allow you to design innovative hybrid models in which a few components continue to run in on-premise while other components can take advantage of the cloudscale and use the cloud for additional compute-power and bandwidth.

That way with minimal effort, you can “overflow” excess traffic to the cloud by implementing smart load balancing tactics.

One can build a loosely coupled system using messaging queues. If a queue/ buffer is used to connect any two components together (as shown in Figure 4.4.3 under Loose Coupling), it can support concurrency, high availability, and

[bookmark: page788]load

[bookmark: page789]
	
	Call a
	
	Call a

	
	Method in
	
	Method in

	
	
	
	

	
	B from A
	
	C from B

	
	
	
	

	Controller A
	
	Controller B

[image:]

Controller C

	
	Tight coupling (procedural programming)

	Queue
	Queue
	Queue

[image:]

	Controller A
	Controller B
	Controller C

	
	Loose coupling (independent phases using queues)
	

FIGURE 4.4.3. Decoupling components using	Queues.

spikes. As a result, the overall system continues to perform even if parts of components are momentarily unavailable. If one component dies or becomes temporarily unavailable, the system will buffer the messages and get them processed when the component comes back up.

You will see heavy use of queues in GrepTheWeb architecture epitomized in the next section. In GrepTheWeb, if lots of requests suddenly reach the server (an Internet-induced overload situation) or the processing of regular expres-sions takes a longer time than the median (slow response rate of a component), the Amazon SQS queues buffer the requests in a durable fashion so that those delays do not affect other components.

[bookmark: page790]
AWS Specific Tactics for Implementing This Best Practice

Use Amazon SQS to isolate components [22].

Use Amazon SQS as buffers between components [22].

Design every component such that it expose a service interface and is

responsible for its own scalability in all appropriate dimensions and interacts with other components asynchronously.

Bundle the logical construct of a component into an Amazon Machine Image so that it can be deployed more often.

Make your applications as stateless as possible. Store session state

outside of component (in Amazon SimpleDB, if	appropriate).

[bookmark: page791]
Implement Elasticity

The cloud brings a new concept of elasticity in your applications. Elasticity can be implemented in three ways:

Proactive Cyclic Scaling. Periodic scaling that occurs at fixed interval(daily, weekly, monthly, quarterly).

Proactive Event-Based Scaling. Scaling just when you are expecting a bigsurge of traffic requests due to a scheduled business event (new product launch, marketing campaigns).

Auto-scaling Based on Demand. By using a monitoring service, yoursystem can send triggers to take appropriate actions so that it scales up or down based on metrics (utilization of the servers or network i/o, for instance).

To implement elasticity, one has to first automate the deployment process and streamline the configuration and build process. This will ensure that the system can scale without any human intervention.

This will result in immediate cost benefits as the overall utilization is increased by ensuring your resources are closely aligned with demand rather than potentially running servers that are underutilized.

Automate your Infrastructure. One of the most important benefits of usinga cloud environment is the ability to use the cloud’s APIs to automate your deployment process. It is recommended that you take the time to create an automated deployment process early on during the migration process and not wait until the end. Creating an automated and repeatable deployment process will help reduce errors and facilitate an efficient and scalable update process.

To automate the deployment	process:

Create a library of “recipes”—that is, small frequently used scripts (for installation and configuration).

Manage the configuration and deployment process using agents bundled inside an AMI.

Bootstrap your instances.

Bootstrap Your Instances. Let your instances ask you a question at boot:“Who am I and what is my role?” Every instance should have a role (“DB server,” “app server,” “slave server” in the case of a Web application) to play in the environment. This role may be passed in as an argument during launch that

[bookmark: page792]instructs the AMI when instantiated the steps to take after it has booted. On boot, instances should grab the necessary resources (code, scripts, configuration) based on the role and “attach” itself to a cluster to serve its function.

[bookmark: page793]
Benefits of bootstrapping your	instances:

It re-creates the (Dev, staging, Production) environment with few clicks and minimal effort.

2. It affords more control over your abstract cloud-based	resources.

It reduces human-induced deployment errors.

It creates a self-healing and self-discoverable environment which is more resilient to hardware failure.

AWS-Specific Tactics to Automate Your Infrastructure

Define auto-scaling groups for different clusters using the Amazon auto-scaling feature in Amazon EC2.

Monitor your system metrics (CPU, memory, disk I/O, network I/O) using Amazon CloudWatch and take appropriate actions (launching new AMIs dynamically using the auto-scaling service) or send notifications.

Store and retrieve machine configuration information dynamically: Utilize Amazon SimpleDB to fetch config data during the boot-time of an instance (e.g., database connection strings). SimpleDB may also be used to store information about an instance such as its IP address, machine name, and role.

Design a build process such that it dumps the latest builds to a bucket in Amazon S3; download the latest version of an application from during system startup.

Invest in building resource management tools (automated scripts, preconfigured images) or use smart open source configuration man-agement tools like Chef [23], Puppet [24], CFEngine [25], or Genome [26].

Bundle Just Enough Operating System (JeOS [27]) and your software dependencies into an Amazon Machine Image so that it is easier to

manage and maintain. Pass configuration files or parameters at launch time and retrieve user data [28] and instance metadata after launch.

Reduce bundling and launch time by booting from Amazon EBS volumes [29] and attaching multiple Amazon EBS volumes to an instance. Create snapshots of common volumes and share snapshots [30] among accounts wherever appropriate.

Application components should not assume health or location of hardware it is running on. For example, dynamically attach the IP address of a new node to the cluster. Automatically failover to the new

[bookmark: page794]cloned instance in case of a	failure.

[bookmark: page795]
Think Parallel

The cloud makes parallelization effortless. Whether it is requesting data from the cloud, storing data to the cloud, or processing data (or executing jobs) in the cloud, as a cloud architect you need to internalize the concept of parallelization when designing architectures in the cloud. It is advisable to not only implement parallelization wherever possible but also automate it because the cloud allows you to create a repeatable process every easily.

When it comes to accessing (retrieving and storing) data, the cloud is designed to handle massively parallel operations. In order to achieve maximum performance and throughput, you should leverage request parallelization. Multi-threading your requests by using multiple concurrent threads will store or fetch the data faster than requesting it sequentially. Hence, wherever possible, the processes of a cloud application should be made thread-safe through a share-nothing philosophy and leverage multi-threading.

When it comes to processing or executing requests in the cloud, it becomes even more important to leverage parallelization. A general best practice, in the case of a Web application, is to distribute the incoming requests across multiple Web servers using load balancer. In the case of a batch processing application, your master node can spawn up multiple slave worker nodes that process a task in parallel (as in distributed processing frameworks like Hadoop [31]).

The beauty of the cloud shines when you combine elasticity and parallelization.Your cloud application can bring up a cluster of compute instances that are provisioned within minutes with just a few API calls, perform a job by executing tasks in parallel, store the results, and terminate all the instances. The GrepTheWeb application discussed in the next section is one such example.

AWS Specific Tactics for Parallelization

Multi-thread your Amazon S3 requests as detailed in a best practices paper [32] [62].

Multi-thread your Amazon SimpleDB GET and BATCHPUT re-quests [33—35].

Create a JobFlow using the Amazon Elastic MapReduce Service for

each of your daily batch processes (indexing, log analysis, etc.) which will compute the job in parallel and save time.

Use the Elastic Load Balancing service and spread your load across multiple Web app servers dynamically.

Keep Dynamic Data Closer to the Compute and

Static Data Closer to the End	User

In general it’s a good practice to keep your data as close as possible to your

[bookmark: page796]compute or processing elements to reduce latency. In the cloud, this	best

[bookmark: page797]
practice is even more relevant and important because you often have to deal with Internet latencies. Moreover, in the cloud, you are paying for bandwidth in and out of the cloud by the gigabyte of data transfer, and the cost can add up very quickly.

If a large quantity of data that need to be processed resides outside of the cloud, it might be cheaper and faster to “ship” and transfer the data to the cloud first and then perform the computation. For example, in the case of a data warehousing application, it is advisable to move the dataset to the cloud and then perform parallel queries against the dataset. In the case of Web applica-tions that store and retrieve data from relational databases, it is advisable to move the database as well as the app server into the cloud all at once.

If the data are generated in the cloud, then the applications that consume the data should also be deployed in the cloud so that they can take advantage of in-cloud free data transfer and lower latencies. For example, in the case of an e - commerce Web application that generates logs and clickstream data, it is advisable to run the log analyzer and reporting engines in the cloud.

Conversely, if the data are static and not going to change often (e.g., images, video, audio, PDFs, JS, CSS files), it is advisable to take advantage of a content delivery service so that the static data are cached at an edge location closer to the end user (requester), thereby lowering the access latency. Due to the caching, a content delivery service provides faster access to popular objects.

AWS-Specific Tactics for Implementing This Best Practice

Ship your data drives to Amazon using the Import/Export service [36]. It may be cheaper and faster to move large amounts of data using the sneakernet [37] than to upload using the Internet.

2. Utilize the same availability zone to launch a cluster of	machines.

Create a distribution of your Amazon S3 bucket and let Amazon CloudFront caches content in that bucket across all the 14 edge locations around the world.

Security Best Practices

In a multi-tenant environment, cloud architects often express concerns about security. Security should be implemented in every layer of the cloud applicationarchitecture.

Physical security is typically handled by your service provider (Security Whitepaper [38]), which is an additional benefit of using the cloud. Network and application-level security is your responsibility, and you should implement the best practices as applicable to your business. In this section, you will learn

[bookmark: page798]about some specific tools, features, and guidelines on how to secure your cloud application in the AWS environment. It is recommended to take advantage of

[bookmark: page799]
these tools and features mentioned to implement basic security and then implement additional security best practices using standard methods as appropriate or as they see fit.

Protect Your Data in Transit. If you need to exchange sensitive or con-fidential information between a browser and a Web server, configure SSL on your server instance. You’ll need a certificate from an external certification authority like VeriSign [39] or Entrust [40]. The public key included in the certificate authenticates your server to the browser and serves as the basis for creating the shared session key used to encrypt the data in both directions.

Create a virtual private cloud by making a few command line calls (using Amazon VPC). This will enable you to use your own logically isolated resources within the AWS cloud, and then connect those resources directly to your own data center using industry-standard encrypted IPSec VPN connections.

You can also set up [41] an OpenVPN server on an Amazon EC2 instance and install the OpenVPN client on all user PCs.

Protect your Data at Rest. If you are concerned about storing sensitive andconfidential data in the cloud, you should encrypt the data (individual files) before uploading it to the cloud. For example, encrypt the data using any open source [42] or commercial [43] PGP-based tools before storing it as Amazon S3 objects and decrypt it after download. This is often a good practice when building HIPPA-compliant applications [44] that need to store protected health information (PHI).

On Amazon EC2, file encryption depends on the operating system. Amazon EC2 instances running Windows can use the built-in Encrypting File System (EFS) feature [45] available in Windows. This feature will handle the encryption and decryption of files and folders automatically and make the process transparent to the users [46]. However, despite its name, EFS doesn’t encrypt the entire file system; instead, it encrypts individual files. If you need a full encrypted volume, consider using the open-source TrueCrypt [47] product; this will integrate very well with NTFS-formatted EBS volumes. Amazon EC2 instances running Linux can mount EBS volumes using encrypted file systems using a variety of approaches (EncFS [48], Loop-AES [49], dm-crypt [50], TrueCrypt [51]). Likewise, Amazon EC2 instances running OpenSolaris can take advantage of ZFS [52] encryption support [53]. Regardless of which approach you choose, encrypting files and volumes in Amazon EC2 helps protect files and log data so that only the users and processes on the server can see the data in clear text, but anything or anyone outside the server sees only encrypted data.

No matter which operating system or technology you choose, encrypting data at rest presents a challenge: managing the keys used to encrypt the data. If you lose the keys, you will lose your data forever; and if your keys become compromised, the data may be at risk. Therefore, be sure to study the key management capabilities of any products you choose and establish a procedure that minimizes the risk of losing keys.

[bookmark: page800]
Besides protecting your data from eavesdropping, also consider how to protect it from disaster. Take periodic snapshots of Amazon EBS volumes to ensure that it is highly durable and available. Snapshots are incremental in nature and stored on Amazon S3 (separate geo-location) and can be restored back with a few clicks or command line calls.

Manage Multiple Users and their permissions with IAM. AWS Identityand Access Management (IAM) enables you to create multiple Users and manage the permissions for each of these Users within your AWS Account. A User is an identity (within your AWS Account) with unique security credentials that can be used to access AWS Services. IAM eliminates the need to share passwords or access keys, and makes it easy to enable or disable a User’s access as appropriate.

IAM enables you to implement security best practices, such as least privi-lege, by granting unique credentials to every User within your AWS account and only grant permission to access the AWS Services and resources required for the Users to perform their job. IAM is secure by default; new Users have no access to AWS until permissions are explicitly granted.

IAM is natively integrated into most AWS Services. No service APIs have changed to support IAM, and applications and tools built on top of the AWS service APIs will continue to work when using IAM. Applications only need to begin using the access keys generated for a new User.

You should minimize the use of your AWS Account credentials as much as possible when interacting with your AWS Services and take advantage of IAM User credentials to access AWS Services and resources.

Protect your AWS Credentials. AWS supplies two types of securitycredentials: AWS access keys and X.509 certificates. Your AWS access key has two parts: your access key ID and your secret access key. When using the REST or Query API, you have to use your secret access key to calculate a signature to include in your request for authentication. To prevent in-flight tampering, all requests should be sent over HTTPS.

If your Amazon Machine Image (AMI) is running processes that need to communicate with other AWS Web services (for polling the Amazon SQS queue or for reading objects from Amazon S3, for example), one common design mistake is embedding the AWS credentials in the AMI. Instead of embedding the credentials, they should be passed in as arguments during launch and encrypted before being sent over the wire [54].

If your secret access key becomes compromised, you should obtain a new one by rotating [55] to a new access key ID. As a good practice, it is recommended that you incorporate a key rotation mechanism into your application architecture so that you can use it on a regular basis or occasionally (when an disgruntled employee leaves the company) to ensure that compro-mised keys can’t last forever.

[bookmark: page801]
Alternately, you can use X.509 certificates for authentication to certain AWS services. The certificate file contains your public key in a base64-encoded DER certificate body. A separate file contains the corresponding base64-encoded PKCS#8 private key. AWS supports multi-factor authentication [56] as an additional protector for working with your account information on aws. Amazon.com and AWS Management Console [57].

Secure Your Application. Every Amazon EC2 instance is protected by oneor more security groups [58]—that is, named sets of rules that specify which ingress (i.e., incoming) network traffic should be delivered to your instance. You can specify TCP and UDP ports, ICMP types and codes, and source addresses. Security groups give you basic firewall-like protection for running instances. For example, instances that belong to a Web application can have the security group settings shown in Figure 4.4.4.

Only Permit Web layer access to App Layer

Web
[image:]
Server

DB

Server

Server

Web

ServerApp

ServerServer

App
ServerDB

Server

Server

EBS

Amazon EC2

Security Group

Firewall

O n l y

P e r m i t

A p p

l a y e r

a c c e s s

[bookmark: page802]to

DB Layer

Port 80 (HTTP)
[image:]
and 443 (HTTPS)

of Web Layer open to Internet

Only Port 22 (SSH) of App layer open to only developers in corporate office network

All other traffic denied

FIGURE 4.4.4. Securing your Web application using Amazon EC2 security	groups.

[bookmark: page803]
Another way to restrict incoming traffic is to configure software-based firewalls on your instances. Windows instances can use the built-in firewall [59]. Linux instances can use netfilter [60] and iptables.

Over time, errors in software are discovered and require patches to fix. You should ensure the following basic guidelines to maximize security of your application:

Regularly download patches from the vendor’s Web site and update your AMIs.

Redeploy instances from the new AMIs and test your applications to ensure that the patches don’t break anything. Ensure that the latest AMI is deployed across all instances.

Invest in test scripts so that you can run security checks periodically and automate the process.

Ensure that the third-party software is configured to the most secure settings.

Never run your processes as root or Administrator login unless absolutely necessary.

All the standard security practices in the pre-cloud era, such as adopting good coding practices and isolating sensitive data, are still applicable and should be implemented.

In retrospect, the cloud abstracts the complexity of the physical security from you and gives you the control through tools and features so that you can secure your application.

GREPTHEWEB CASE STUDY

The Alexa Web Search1 Web service allows developers to build customized search engines against the massive data that Alexa generates (using a Web crawl) every night. One of the features of their Web service allows users to query the Alexa search index and get Million Search Results (MSR) back as output. Developers can run queries that return up to 10 million results.

The resulting set, which represents a small subset of all the documents on the Web, can then be processed further using a regular expression language. This allows developers to filter their search results using criteria that are not indexed by Alexa, thereby giving the developer power to do more sophisticated searches. Developers can run regular expressions against the actual documents, even when there are millions of them, to search for patterns and retrieve the subset of documents that matched that regular expression. This application is

[bookmark: page804]1The service has been deprecated for business reasons; however, the architecture and design principles are still relevant.

[bookmark: page805]
currently in production at Amazon.com and is code-named GrepTheWeb because it can “grep” (a popular Unix command-line utility to search pat-terns) the actual Web documents. GrepTheWeb allows developers to either

(a) perform specialized searches such as selecting documents that have a particular HTML tag or META tag, (b) find documents with particular punctuations (“Hey!”, he said. “Why Wait?”), or (c) search for mathematical equations (“f(x) 5Px1W”), source code, e-mail addresses, or other pat-terns such as “(dis)integration of life.”

The functionality is impressive, but even more impressive was GrepThe-

Web’s architecture and implementation. In the next section, you will zoom in to see different levels of the architecture of GrepTheWeb.

Architecture

Figure 4.4.5 shows a high-level depiction of the architecture. The output of the Million Search Results Service, which is a sorted list of links gzipped (com-pressed using the Unix gzip utility) into a single file, is given to GrepTheWeb as input. It takes a regular expression as a second input. It then returns a filtered subset of document links sorted and gzipped into a single file. Since the overall process is asynchronous, developers can get the status of their jobs by calling GetStatus() to see whether the execution is completed.

Matching a regular expression against millions of documents is not trivial. Different factors could combine to cause the processing to take a lot of time:

● Regular expressions could be complex.

● Dataset could be large, even hundreds of	terabytes.

● There could be unknown request patterns; for example, any number of

people can access the application at any given point in	time.

Hence, the design goals of GrepTheWeb included the ability to scale in all dimensions (more powerful pattern-matching languages, more concurrent users

Input dataset (List of Document Urls)
[image:]

RegEx
[image:]
GetStatus
Grep The Web

[bookmark: page806]Subset of document Urls that matched the RegEx

FIGURE 4.4.5. GrepTheWeb Architecture—Zoom Level	1.

[bookmark: page807]
of common datasets, larger datasets, better result quality) while keeping the costs of processing as low as possible.

The approach was to build an application that scales not only with demand, but also without a heavy upfront investment and without the cost of maintaining idle machines. To get a response in a reasonable amount of time, it was important to distribute the job into multiple tasks and to perform a distributed Grep operation that runs those tasks on multiple nodes in parallel.

Zooming in further, GrepTheWeb architecture is as shown in Figure 4.4.6. It uses the following AWS components:

Amazon S3. For retrieving input datasets and for storing the output dataset.

Amazon SQS. For durably buffering requests acting as a “glue” between controllers.

Amazon SimpleDB. For storing intermediate status, for storing log, and

for user data about	tasks.

Amazon EC2. For running a large distributed processing Hadoop cluster on-demand.

Hadoop. For distributed processing, automatic parallelization, and job scheduling.

	
	
	
	Input Files

	StartGrep
	
	
	

	
	Amazon
	
	

	
	Manage phases
	

	
	Controller
	
	

	User info,
	Launch, Monitor,

	GetStatus
	Amazon
	
	Get Output

	Amazon
	
	Input
	Amazon

	
	EC2
	
	

	
	
	
	

[image:]

[bookmark: page808]FIGURE 4.4.6. GrepTheWeb Architecture—Zoom Level 2.

[bookmark: page809][image:]

	Launch
	
	
	
	Monitor
	
	
	Shutdown
	
	
	Cleanup

	Phase
	
	
	
	Phase
	
	
	Phase
	
	
	Phase

	
	
	
	
	
	
	
	
	
	
	

FIGURE 4.4.7. Phases of GrepTheWeb	architecture.

Workflow

GrepTheWeb is modular. It does its processing in four phases as shown in Figure 4.4.7. The launch phase is responsible for validating and initiating the processing of a GrepTheWeb request, instantiating Amazon EC2 instances, launching the Hadoop cluster on them, and starting all the job processes. The monitor phase is responsible for monitoring the EC2 cluster; it also maps, reduces, and checks for success and failure. The shutdown phase is responsible for billing and shutting down all Hadoop processes and Amazon EC2 instances, while the cleanup phase deletes Amazon SimpleDB transient data.

Detailed Workflow for Figure 4.4.8

On application start, queues are created if not already created and all the controller threads are started. Each controller thread starts polling their respective queues for any messages.

When a StartGrep user request is received, a launch message is enqueued in the launch queue.

Launch Phase: Thelaunchcontrollerthreadpicksupthelaunchmessage,executes the launch task, updates the status and timestamps in the Amazon SimpleDB domain, enqueues a new message in the monitor queue, and deletes the message from the launch queue after processing.

The launch task starts Amazon EC2 instances using a JRE pre-installed AMI, deploys required Hadoop libraries, and starts a Hadoop Job (run Map/Reduce tasks).

Hadooprunsmaptaskson Amazon EC2 slave nodesinparallel. Each map task takes files (multithreadedin background) from Amazon S3, runs a regular expression (Queue Message Attribute) against the file from Amazon S3, and writes the match results along with a descrip-tion of up to five matches locally, and then the combine/reduce task combines and sorts the results and consolidates the output.

[bookmark: page810]The final results are stored on Amazon S3 in the output bucket.

Monitor Phase: The monitor controller thread picks up this message,validates the status/error in Amazon SimpleDB, executes the monitor task, updates the status in the Amazon SimpleDB domain, enqueues a new message in the shutdown queue and billing queue, and deletes the message from monitor queue after processing.

[bookmark: page811]
a. The monitor task checks for the Hadoop status (JobTracker success/failure) in regular intervals, and it updates the SimpleDB items with status/error and Amazon S3 output file.

Shutdown Phase: The shutdown controller thread picks up this messagefrom the shutdown queue, executes the shutdown task, updates the status and timestamps in Amazon SimpleDB domain, and deletes the message from the shutdown queue after processing. Likewise, the billing controller threadpicks up the message from the billing queue and executes the billing task of sending usage information to the billing service.

The shutdown task kills the Hadoop processes, terminates the EC2

instances after getting EC2 topology information from Amazon SimpleDB, and disposes of the infrastructure.

The billing task gets EC2 topology information, SimpleDB Box Usage, and Amazon S3 file and query input and calculates the billing and passes it to the billing service.

Cleanup Phase: Archives the SimpleDB data with user info.

Users can execute GetStatus on the service endpoint to get the status of the overall system (all controllers and Hadoop) and download the filtered results from Amazon S3 after completion.
[image:]

Amazon SQS

	
	
	Billing
	

	
	Monitor
	Shutdown
	

	Launch
	
	
	Billing

	
	
	
	Service

	
	
	
	

Controller

	Launch
	Monitor
	Shutdown
	
	Billing

	Controller
	Controller
	Controller
	
	Controller

	
	Launch
	Get EC2
	
	

	
	
	
	
	

	
	Ping
	
	
	

	Insert
	Insert
	Check for results
	

	
	
	
	

	JobID,
	Amazon EC2
	Shutdown
	
	

	
	
	Master M
	
	

	Status
	
	Put
	Output
	

	
	
	
	
	

	
	
	File
	
	

	
	HDFS
	Get
	Input
	

	
	
	
	
	

	Amazon SimpleDB
	Amazon S3

[bookmark: page812]FIGURE 4.4.8. GrepTheWeb Architecture—Zoom Level 3.

[bookmark: page813]
Implementing Best Practices

In the next four subsections, you will see how GrepTheWeb implements the best practices using different Amazon Web Services.

Elastic Storage Provided by Amazon S3. In GrepTheWeb, Amazon S3acts as an input as well as an output data store. The input to GrepTheWeb is the Web itself (compressed form of Alexa’s Web Crawl), stored on Amazon S3 as objects and updated frequently. Because the Web Crawl dataset can be huge (usually in terabytes) and always growing, there was a need for a distributed, elastic, persistent storage. Amazon S3 proved to be a perfect fit.

Loose Coupling Using Amazon SQS. Amazon SQS was used as message-passing mechanism between components. It acts as “glue” that wired different functional components together. This not only helped in making the different components loosely coupled, but also helped in building an overall more failure resilient system.

Buffer. If one component is receiving and processing requests faster than othercomponents (an unbalanced producer consumer situation), buffering will help make the overall system more resilient to bursts of traffic (or load). Amazon SQS acts as a transient buffer between two components (controllers) of the GrepTheWeb system. If a message is sent directly to a component, the receiver will need to consume it at a rate dictated by the sender. For example, if the billing system was slow or if the launch time of the Hadoop cluster was more than expected, the overall system would slow down, because it would just have to wait. With message queues, sender and receiver are decoupled and the queue service smooths out any “spiky” message traffic.

Isolation. Interaction between any two controllers in GrepTheWeb is throughmessages in the queue, and no controller directly calls any other controller. All communication and interaction happens by storing messages in the queue (en-queue) and retrieving messages from the queue (de-queue). This makes the entire system loosely coupled and makes the interfaces simple and clean. Amazon SQS provided a uniform way of transferring information between the different application components. Each controller’s function is to retrieve the message, process the message (execute the function), and store the message in another queue while they are completely isolated from others.

Asynchrony. Because it was difficult to know how much time each phasewould take to execute (e.g., the launch phase decides dynamically how many

[bookmark: page814]instances need to start based on the request and hence execution time is unknown), Amazon SQS helped by making the system behave in an

[bookmark: page815]
asynchronous fashion. Now, if the launch phase takes more time to process or the monitor phase fails, the other components of the system are not affected and the overall system is more stable and highly available.

Storing Statuses in Amazon SimpleDB. One use for a database in cloudapplications is to track statuses. Since the components of the system run asynchronously, there is a need to obtain the status of the system at any given point in time. Moreover, since all components are autonomous and discrete, there is a need for a query-able data store that captures the state of the system. Because Amazon SimpleDB is schema-less, there is no need to define the structure of a record beforehand. Every controller can define its own structure and append data to a “job” item. For example: For a given job, “run email

address regex over 10 million documents,” the launch controller will add/ update the “launch_status” attribute along with the “launch_starttime,” while

the monitor controller will add/update the “monitor_status” and “hadoop_ status” attributes with enumeration values (running, completed, error, none). A GetStatus() call will query Amazon SimpleDB and return the state of each controller and also the overall status of the system.

Component services can query Amazon SimpleDB anytime because controllers independently store their states—one more nice way to create asynchronous highly available services. Although a simplistic approach was used in implementing the use of Amazon SimpleDB in GrepTheWeb, a more sophisticated approach, where there was complete, almost real-time monitor-ing, would also be possible—For example, storing the Hadoop JobTracker status to show how many maps have been performed at a given moment.

Amazon SimpleDB is also used to store active Request IDs for historical and auditing/billing purposes.

In summary, Amazon SimpleDB is used as a status database to store the different states of the components and a historical/log database for querying high-performance data.

Intelligent Elasticity Implemented Using Amazon EC2. In GrepTheWeb,the controller code runs on Amazon EC2 instances. The launch controller spawns master and slave instances using a preconfigured Amazon machine image (AMI). Since the dynamic provisioning and decommissioning happens using simple Web service calls, GrepTheWeb knows how many master and slave instances need to be launched.

The launch controller makes an educated guess, based on reservation logic, of how many slaves are needed to perform a particular job. The reservation logic is based on the complexity of the query (number of predicates, etc.) and the size of the input dataset (number of documents to be searched). This was also kept configurable so that overall processing time can be reduced by simply specifying the number of instances to launch. After launching the instances and starting the Hadoop cluster on those instances, Hadoop will appoint a master

[bookmark: page816][image:]
Example
[image:]
Regular Expression
[image:]“A(.*)zon”

Format of the line in the Input dataset

[URL] [Title] [charset] [size] [S3 Object Key of .gz file] [offset] http://www.amazon.com/gp/browse.html?node=3435361 Amazon Web us-ascii 3509
/2008/01/08/51/1/51_1_20080108072442_crawl100.arc.gz	70150864

Mapper Implementation
[image:]Key = line number and value = line in the input dataset
[image:]
Create a signed URL (using Amazon AWS credentials) using the contents of key-value Read (fetch) Amazon S3 Object (file) into a buffer
[image:]Run regular expression on that buffer
[image:]If there is match, collect the output in new set of key-value pairs (key = line, value = up to 5 matches)

Reducer Implementation Pass-through (Built-in Identity Function) and write the results back to S3.

FIGURE 4.4.9. Map reduce operation (in	GrepTheWeb).

and slaves, handles the negotiating, handshaking, and security token distribu-tion (SSH keys, certificates), and runs the grep job.

GrepTheWeb Hadoop implementation

Hadoop is an open source distributed processing framework that allows computation of large datasets by splitting the dataset into manageable chunks, spreading it across a fleet of machines and managing the overall process by launching jobs, processing the job no matter where the data are physically located and, at the end, aggregating the job output into a final result.

Hadoop is a good fit for the GrepTheWeb application. Because each grep task can be run in parallel independently of other grep tasks, using the parallel approach embodied in Hadoop is a perfect fit.

For GrepTheWeb, the actual documents (the web) are crawled ahead of time and stored on Amazon S3. Each user starts a grep job by calling the StartGrep function at the service endpoint. When triggered, masters and slave nodes (Hadoop cluster) are started on Amazon EC2 instances. Hadoop splits the input (document with pointers to Amazon S3 objects) into multiple manageable chunks of 100 lines each and assign the chunk to a slave node to run the map task [61]. The map task reads these lines and is responsible for fetching the files from Amazon S3, running the regular expression on them and writing the results locally. If there is no match, there is no output. The map tasks then passes the results to the reduce phase, which is an identity function (pass through) to aggregate all the outputs. The “final” output is written back to Amazon S3.

FUTURE RESEARCH DIRECTIONS

[bookmark: page817]
The day is not too far when applications will cease to be aware of physical

	hardware. Much like plugging in a microwave in
	order to power it doesn’t

	require any knowledge of electricity, one should
	be able to plug in
	an

[bookmark: page818]
application to the cloud in order to receive the power it needs to run, just like a utility. As an architect, you will manage abstract compute, storage, and network resources instead of physical servers. Applications will continue to function even if the underlying physical hardware fails or is removed or replaced. Applications will adapt themselves to fluctuating demand patterns by deploying resources instantaneously and automatically, thereby achieving highest utilization levels at all times. Scalability, security, high availability, fault-tolerance, testability, and elasticity will be configurable properties of the application architecture and will be an automated and intrinsic part of the platform on which they are built.

However, we are not there yet. Today, you can build applications in the cloud with some of these qualities by implementing the best practices high - lighted in the chapter. Best practices in cloud computing architectures will continue to evolve, and as researchers we should focus not only on enhancing the cloud but also on building tools, technologies, and processes that will make it easier for developers and architects to plug in applications to the cloud easily.

BUILDING CONTENT DELIVERY NETWORKS

USING CLOUDS

INTRODUCTION

Numerous “storage cloud” providers (or “Storage as a Service”) have recently emerged that can provide Internet-enabled content storage and delivery capabilities in several continents, offering service-level agreement (SLA)-backed performance and uptime promises for their services. Customers are charged only for their utilization of storage and transfer of content (i.e., a utility computing model), which is typically on the order of cents per gigabyte. This represents a large paradigm shift away from typical hosting arrangements that were prevalent in the past, where average customers were locked into hosting contracts (with set monthly/yearly fees and excess data charges) on shared hosting services like DreamHost . Larger enterprise customers typically utilized pervasive and high-performing Content Delivery Networks (CDNs) like Akamai [3, 4] and Limelight, who operate extensive networks of “edge” servers that deliver content across the globe. In recent years it has become increasingly difficult for competitors to build and maintain competing CDN infrastructure, and a once healthy landscape of CDN companies has been reduced to a handful via mergers, acquisitions, and failed companies . However, far from democratizing the delivery of content, the most pervasive remaining CDN provider (Akamai) is priced out of the reach of most small to

[bookmark: page819]medium-sized enterprises (SMEs), government agencies, universities, and charities . As a result, the idea of utilizing storage clouds as a poor man’s CDN is very enticing. At face value, these storage providers promise the ability to rapidly and cheaply “scale-out” to meet both flash crowds (which is the dream and the nightmare of most Web-site operators) and anticipated increases in demand. Economies of scale, in terms of

cost effectiveness and performance for both providers and end users, could be achieved by leveraging existing “storage cloud” infrastructure, instead of investing large amounts of money in their own content delivery platform or utilizing one of the incumbent operators like Akamai. In Section 4.5.2, we analyze the services provided by these storage providers, and well as their respective cost structures, to ascertain if they are a good fit for basic content delivery needs.

These emerging services have reduced the cost of content storage and delivery by several orders of magnitude, but they can be difficult to use for nondevelopers, because each service is best utilized via unique Web services or programmer APIs and have their own unique quirks. Many Web sites have utilized individual storage clouds to deliver some or all of their content , most notably the NewYork Times and SmugMug [9]; however, there is no general-purpose, reusableframework to interact with multiple storage cloud providers and leverage their services as a content delivery network. Most “storage cloud” providers are merely basic file storage and delivery services and do not offer the capabilities of a fully featured CDN such as automatic replication, fail-over, geographical load redirection, and load balancing. Furthermore, a customer may need coverage in more locations than offered by a single provider. To address this, in Section 4.5.3 we introduce MetaCDN, a system that utilizes numerous storage providers in order to create an overlay network that can be used as a high-performance, reliable, and redundant geographically distributed CDN.

However, in order to utilize storage and file delivery from these providers in MetaCDN as a Content Delivery Network, we want to ensure that they provide sufficient performance (i.e., predictable and sufficient response time and throughput) and reliability (i.e., redundancy, file consistency). While individual storage clouds have been trialed successfully for application domains such as science grids [10, 11] and offsite file backup [23], their utility for generalpurpose content delivery, which requires low latency and high throughput, has not been evaluated rigorously. In Section 4.5.4 we summarize the performance findings to date for popular storage clouds as well as for the MetaCDN overlay itself. In Section 4.5.5 we consider the future directions of MetaCDN and identify potential enhancements for the service. Finally, in Section 4.5.6 we offer some concluding remarks and summarize our contribution.

[bookmark: page820]BACKGROUND/RELATED WORK

In order to ascertain the feasibility of building a content delivery network service from storage clouds, it is important to ascertain whether the storage clouds used possess the necessary features, performance, and reliability characteristics to act as CDN replica servers. While performance is crucial for content delivery, we also need to examine the cost structures of the different providers. At face value these services may appear ludicrously cheap; however, they have subtle differences in pricing and the type of services billed to the end user, and as a result a user could get a nasty surprise if they have not understood what they will be charged for.

[bookmark: page821]
For the purposes of this chapter, we chose to analyze the four most prominent storage cloud providers: Amazon Simple Storage Service (S3) and CloudFront (CF), Nirvanix Storage Delivery Network (SDN), Rackspace Cloud Files, and Microsoft Azure Storage, described in Sections 4.5.2.1, 4.5.2.2, 4.5.2.3 and 4.5.2.4, respectively. At the time of writing, Amazon offers storage nodes in the United States and Europe (specifically, Ireland) while Nirvanix has storage nodes in the United States (over three separate sites in California, Texas, and New Jersey), Germany, and Japan. Another storage cloud provider of note is Rackspace Cloud Files, located in Dallas, Texas, which recently launched in late 2008. Microsoft has also announced their cloud storage offering, Azure Storage Service, which has data centers in Asia, Europe, and the United States and formally launched as an SLA-backed commercial service in April 2010. An enterprise class CDN service typically offers audio and video encoding and adaptive delivery, so we will consider cloud-based encoding services such as encoding.com that offer similar capability in Section 4.5.2.5.

Amazon Simple Storage and	CloudFront

Amazon S3 was launched in the United States in March 2006 and in Europe in November 2007, opening up the huge infrastructure that Amazon themselves utilize to run their highly successful e-commerce company, Amazon.com. In November 2008, Amazon launched CloudFront, a content delivery service that added 14 edge locations (8 in the United States, 4 in Europe, and 2 in Asia). However, unlike S3, CloudFront does not offer persistent storage. Rather, it is analogous to a proxy cache, with files deployed to the different CloudFront locations based on demand and removed automatically when no longer required. CloudFront also offers “streaming distributions” that can distribute audio and video content in real time, using the Real-Time Messaging Protocol (RTMP) instead of the HTTP protocol.

Amazon provides REST and SOAP interfaces to its storage resources, allowing users the ability to read, write, or delete an unlimited amount of objects, with sizes ranging from 1 byte to 5 gigabytes each. As noted in Table 4.5.1, Amazon S3 has a storage cost of $0.15 per GB/month in their standard U.S. and EU data centers, or $0.165 per GB/month in their North California data center. Incoming traffic (i.e., uploads) are charged at $0.10 per GB/month, and outgoing traffic (i.e., downloads) are charged at $0.15 per GB/ month, from the U.S. or EU sites. For larger customers, Amazon S3 has a sliding scale pricing scheme, which is depicted in Figure 4.5.1. Discounts for outgoing data occur after 10TB, 50 TB and 150 TB of data a month has been transferred, resulting in a subtly sublinear pricing response that is depicted in the figure. As a point of comparison, we have included the “average” cost of the top four to five major incumbent CDN providers. An important facet of

[bookmark: page822]

TABLE 4.5.1. Pricing Comparison of Cloud Storage

Vendors

	
	
	
	
	
	Microsoft
	Microsoft

	
	
	Amazon
	
	
	
	
	

	
	
	S3
	Amazon
	Rackspace
	Azure
	Azure

	
	
	U.S./EU
	S3 U.S.
	Cloud
	Storage
	Storage

	Cost
	Nirvanix
	Standardb
	N. Californiab
	Files
	NA/EU
	Asia Pacific

	Type
	SDNa
	
	
	
	
	
	

	Incoming
	0.18
	0.10
	0.10
	0.08
	0.10
	0.30
	

	data
	
	
	
	
	
	
	

	($/GB)
	
	
	
	
	
	
	

	Outgoing
	
	
	
	
	
	
	

	data
	
	
	
	
	
	
	

	($/GB)
	0.18
	0.15
	0.15
	0.22
	0.15
	0.45
	

	
	
	
	
	
	
	
	

	Storage
	
	
	
	
	
	
	

	($/GB)
	
	
	
	
	
	
	

	Requests
	
	
	
	
	
	
	

	($/1000
	0.25
	0.15
	0.165
	0.15
	0.15
	0.15
	

	PUT)
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Requests
	
	
	
	
	
	
	

	($/10,000
	0.00
	0.01
	0.011
	0.02
	0.001
	0.001
	

	GET)
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

0.00	0.01	0.011	0.00	0.01	0.01

a Pricing valid for storage, uploads, and download usage under 2 TB/month.

[bookmark: page823]b Pricing valid for first 50 TB/month of storage used and first 1 GB/month data transfer out.

	
	120000
	
	
	
	
	

	
	
	Amazon S3 (all)
	
	
	

	
	
	Amazon CF US/EU
	
	
	

	
	
	Amazon CF HK/SING
	
	
	

	
	
	Amazon CF JAP
	
	
	

	
	
	Nirvarix SDN
	
	
	

	
	100000
	Rackspace Cloud Files
	
	
	

	
	
	
	
	
	

	
	
	Windows Azure Storage NA/EU
	
	
	

	
	80000
	
	
	
	
	

	$USD/month
	60000
	
	
	
	
	

	
	
	
	
	
	
	

	
	40000
	
	
	
	
	

	
	20000
	
	
	
	
	

	
	0
	
	
	
	
	

	
	0
	50000
	100000
	150000
	200000
	250000

	
	
	
	Outgoing TB Data/month
	
	

[image:]

FIGURE 4.5.1. Pricing comparison of cloud storage vendors based on	usage.

[bookmark: page824]
Amazon’s pricing that should be noted by users (but is not captured by Figure 4.5.1) is the additional cost per 1000 PUT/POST/LIST or 10,000 GET HTTP requests, which can add up depending on the type of content a user places on Amazon S3. While these costs are negligible if a user is utilizing Amazon S3 to primarily distribute very large files, if they are storing and serving smaller files, a user could see significant extra costs on their bill. For users serving content with a lower average file size (e.g., 100 kB), a larger cost is incurred.

Nirvanix Storage Delivery	Network

Nirvanix launched its Amazon S3 competitor, the Nirvanix Storage Delivery Network (SDN), on September 2007. The Nirvanix service was notable in that it had an SLA-backed uptime guarantee at a time when Amazon S3 was simply operated on a best-effort service basis. Unsurprisingly, shortly after Nirvanix launched its SDN, Amazon added their own SLA-backed uptime guarantees. Nirvanix differentiates itself in several ways (depicted in Table 4.5.2), notably by having coverage in four regions, offering automatic file replication over sites in the SDN for performance and redundancy, and supporting file sizes up to 256 GB. Nirvanix is priced slightly higher than Amazon’s service, and they do not publish their pricing rates for larger customers (2 TB/month). Nirvanix provides access to their resources via SOAP or REST interfaces, as well as providing SDK’s in Java, PHP Zend, Python, and C#.

Rackspace Cloud Files

Rackspace (formerly Mosso) Cloud Files provides a self-serve storage and delivery service in a fashion similar to that of the Amazon and Nirvanix offerings. The core Cloud Files offering is served from a multizoned, redundant data center in Dallas, Texas. The service is notable in that it also provides CDN integration. Rather than building their own CDN extension to the Cloud Files platform as

TABLE 4.5.2. Feature Comparison of Cloud Storage Vendors

	
	
	
	
	Rackspace
	Microsoft

	
	Nirvanix
	Amazon
	Amazon
	Cloud
	Azure

	Feature
	SDN
	S3
	Cloud Front
	Files
	Storage

	
	
	
	
	
	

	SLA
	99.9
	99.9
	99.9
	99.9
	99.9

	Max. size
	256 GB
	5 GB
	5 Gb
	5 GB
	50 GB

	U.S. PoP
	Yes
	Yes
	Yes
	Yes
	Yes

	EU PoP
	Yes
	Yes
	Yes
	Yes
	Yes

	Asia PoP
	Yes
	No
	Yes
	Yes
	Yes

	Aus PoP
	No
	No
	No
	Yes
	No

	[bookmark: page825]File ACL
	Yes
	Yes
	Yes
	Yes
	Yes

	Replication
	Yes
	No
	Yes
	Yes
	No

	API
	Yes
	Yes
	Yes
	Yes
	Yes

	
	
	
	
	
	

[bookmark: page826]
Amazon has done for S3, Rackspace has partnered with a traditional CDN service, Limelight, to distribute files stored on the Cloud Files platform to edge nodes operated by Limelight. Unlike Amazon CloudFront, Rackspace does not charge for moving data from the core Cloud Files servers to the CDN edge locations. Rackspace provides RESTful APIs as well as API bindings for popular languages such as PHP, Python, Ruby, Java, and .NET.

Azure Storage Service

Microsoft’s Windows Azure platform offers a comparable storage and delivery platform called Azure Storage, which provides persistent and redundant storage in the cloud. For delivering files, the Blob service is used to store files up to 50 GB in size. On a per storage account basis, the files can be stored and delivered from data centers in Asia (East and South East), the United States (North Central and South Central), and Europe (North and West). Azure Storage accounts can also be extended by a CDN service that provides an additional 18 locations globally across the United States, Europe, Asia, Australia, and South America. This CDN extension is still under testing and is currently being offered to customers as a Community Technology Preview (CTP) at no charge.

Encoding Services

Video and audio encoding services are also individually available from cloud vendors. Two notable providers are encoding.com and Nirvanix (previously discussed in Section 4.5.2.2). The endoing.com service is a cloud-based video encoding platform that can take a raw video file and generate an encoded file suitable for streaming. The service supports a number of video output formats that are suitable for smartphones (e.g., iPhone) right up to high-quality H.264 desktop streaming. A variety of integration services are available, allowing the encoded file to be placed on a private server, Amazon S3 bucket, or Rackspace Cloud Files folder. Nirvanix also offers video encoding as a service, offering a limited number of H.263 and H.264 encoding profiles in a Flash (flv) or MPEG-4 (mp4) container. The resulting encodes are stored on the Nirvanix SDN.

4.5.3	METACDN: HARNESSING STORAGE CLOUDS FOR

LOW-COST, HIGH-PERFORMANCE CONTENT DELIVERY

In this section we introduce MetaCDN, a system that leverages the existing storage clouds and encoding services described in Section 4.5.2, creating an integrated overlay network that aims to provide a low-cost, high-performance, easy-to-use content delivery network for content creators and consumers.

[bookmark: page827]The MetaCDN service (depicted in Figure 4.5.2) is presented to end users in two ways. First, it can be presented as a Web portal, which was developed using

[bookmark: page828]Amazon S3 &

CloudFront

JetS3t toolkit

Java SDK

Open Source

AmazonS3Connector

Java stub

MetaCDN.org

MetaCDN

Manager

Mosso Cloud
[image:]
Files CDN
Niranix SDN

Cloud Files SDK

	Nirvanix SDK
	
	Java SDK
	

	
	
	
	

	Java SDK
	
	Mosso, Inc
	

	Nirvanix, Inc
	
	
	

	
	
	
	

	NirvanixConnector
	
	CloudFilesConnector

	Java stub
	
	Java stub
	

	MetaCDN.org
	
	MetaCDN.org
	

	MetaCDN
	
	
	

	MetaCDN QoS
	
	
	

	Monitor
	MetaCDN
	MetaCDN

	
	
	

	
	Allocator
	
	Database

	Microsoft Azure
	Shared/Private

	Storage Service
	Host

AzureConnector	WebDAVConnector

Java stub	Java stub

MetaCDN.org	MetaCDN.org

SCPConnector

Java stub

MetaCDN.org

FTPConnector

Java stub

MetaCDN.org

EncodingEncoder

Java stub

MetaCDN.org	Encoding.com

NirvanixEncoder

Java stub

	[bookmark: page829]Ni
	rvanix
	
	
	
	
	

	Web Portal
	Web Service
	Load Redirector
	MetaCDN.org
	

	
	
	
	
	

	Java (JSF/EJB) based portal
	SOAP Web Service
	Random redirection
	
	FFmpegEncoder
	Shared/Private

	
	
	
	
	
	Java stub
	

	
	
	
	
	
	
	Host

	Support HTTP POST
	RESTful Web Service
	Geographical redirection
	MetaCDN.org
	

	
	
	
	
	

	New/view/modify deployment
	Programmatic access
	Least cost redirection
	
	
	

	<uses><uses>
	<uses>
	<uses>
	<uses>
	<uses>
	
	

	
	
	
	
	
	
	

User	1	User 2	User n	Consumer	1	Consumer	2	Consumer n

FIGURE 4.5.2. The MetaCDN architecture.

[bookmark: page830]
(a) Java Enterprise and Java Server Faces (JSF) technologies, with a MySQL back-end to store user accounts and deployments, and (b) the capabilities, pricing, and historical performance of service providers. The Web portal acts as the entry point to the system and also functions as an application-level load balancer for end users that wish to download content that has been deployed by MetaCDN. Using the Web portal, users can sign up for an account on the MetaCDN system (depicted in Figure 4.5.3) and enter credentials for any cloud storage or other provider they have an account with. Once this simple step has been performed, they can utilize the MetaCDN system to intelligently deploy content onto storage providers according to their performance requirements and budget limitations. The Web portal is most suited for small or ad hoc deployments and is especially useful for less technically inclined content creators.
[image:]

FIGURE 4.5.3. Registering storage vendors in the MetaCDN	GUI.

[bookmark: page831]
The second method of accessing the MetaCDN service is via RESTful Web Services. These Web Services expose all of the functionality of the MetaCDN system. This access method is most suited for customers with more complex and frequently changing content delivery needs, allowing them to integrate the MetaCDN service in their own origin Web sites and content creation workflows.

Integrating “Cloud Storage” Providers

The MetaCDN system works by integrating with each storage provider via connectors (shown in Figures 4.5.2 and 4.5.4) that provides an abstraction tohide the complexity arising from the differences in how each provider allows access to their systems. An abstract class, DefaultConnector, prescribes the basic functionality that each provider could be expected to support, and it must be implemented for all existing and future connectors. These include basic operations like creation, deletion, and renaming of replicated files and folders. If an operation is not supported on a particular service, then the connector for that service throws a FeatureNotSupportedException. This is crucial, because while the providers themselves have very similar functionality, there are some key differences, such as the largest allowable file size or the coverage footprint. Figure 4.5.4 shows two connectors (for Amazon S3 and Nirvanix SDN, respectively), highlighting one of Amazon’s most well-known limitations— that you cannot rename a file, which should result in a FeatureNotSupportedException if called. Instead, you must delete the file andre-upload it. The Nirvanix connector throws a FeatureNotSupportedException when you try and create a Bittorrent deployment, because it does not support this functionality, unlike Amazon S3. Connectors are also available for (a) shared or private hosts via connectors for commonly available FTP-accessible shared Web hosting (shown in Figure 4.5.4) and (b) privately operated Web hosting that may be available via SSH/SCP or WebDAV protocols.

[bookmark: page832]AmazonS3Connector

createFolder(foldername, location) deleteFolder(foldername) createFile(file, foldername,

location, date) createFile(fileURL, foldername,

location, date) renameFile(filename, newname,

<<exception>>

DefaultConnector

DEPLOY_USA
DEPLOY_EU
DEPLOY_ASIA
DEPLOY_AUS

createFolder(foldername, location) deleteFolder(foldername) createFile(file, foldername,

location, date) createFile(fileURL, foldername,

locatrion, date)

NirvanixConnector createFolder(foldername, location) deleteFolder(foldername) createFile(file, foldername,

location, date) createFile(fileURL, foldername,

locatrion, date) renameFile(filename, newname,

location) createTorrent(file) throws

FIGURE 4.5.4. Design of the MetaCDN	connectors.

[bookmark: page833]
Overall Design and Architecture of the System

The MetaCDN service has a number of core components that contain the logic and management layers required to encapsulate the functionality of different upstream storage providers and present a consistent, unified view of the services available to end users. These components include the MetaCDN Allocator, which (a) selects the optimal providers to deploy content to and (b) performs the actual physical deployment. The MetaCDN QoS monitor tracks the current and historical performance of participating storage providers, and the

MetaCDN Manager tracks each user’s current deployment and performsvarious housekeeping tasks. The MetaCDN Database stores crucial information needed by the MetaCDN portal, ensuring reli1able and persistent operation of the system. The MetaCDN Load Redirector is responsible for directing MetaCDN end users (i.e., content consumers) to the most appropriate file replica, ensuring good performance at all times.

The MetaCDN Database stores crucial information needed by the MetaCDN system, such as MetaCDN user details, their credentials for various storage cloud and other providers, and information tracking their (origin) content and any replicas made of such content. Usage information for each replica (e.g., download count and last access) is recorded in order to track the cost incurred for specific content, ensuring that it remains within budget if one has been specified. The database also tracks logistical details regarding the content storage and delivery providers utilized in MetaCDN, such as their pricing, SLA offered, historical performance, and their coverage locations. The MetaCDN Database Entity Relationship is depicted in Figure 4.5.5, giving a high-level

	semantic data model of the MetaCDN
	system.

	The MetaCDN Allocator allows
	users to deploy files either directly

(uploading a file from their local file system) or from an already publicly accessible origin Web site (sideloading the file, where the backend storage provider pulls the file). It is important to note that not all back-end providers support
[image:]

	MetaCDN
	1
	has
	0 : M
	CDN
	1
	for
	1
	CDN
	
	

	User
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	1
	
	
	
	
	
	
	1
	1
	
	

	has
	
	
	
	
	
	hosted
	
	has
	
	QoS Monitor

	
	
	
	
	
	
	by
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	M
	
	
	M
	
	M

	1
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	Content
	1
	deployed
	0 : M
	MetaCDN
	M
	hosted
	1
	Coverage
	1
	measures

	
	
	
	
	Replica
	
	
	
	locations
	
	

	
	
	as
	
	
	
	at
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

[bookmark: page834]
FIGURE 4.5.5. Entity relationship diagram for the MetaCDN	database.

[bookmark: page835]
sideloading, and this is naturally indicated to users as appropriate. MetaCDN users are given a number of different deployment options depending on their needs, regardless of whether they access the service via the Web portal or via Web services. It is important to note that the deployment option chosen also dictates the load redirection policy that directs end users (consumers) to a specific replica. The available deployment options include:

Maximize coverage and performance, where MetaCDN deploys as many replicas as possible to all available locations. The replicas used for the experiments in previous performance studies [12, 13] were deployed by MetaCDN using this option. The MetaCDN Load Redirector directs endusers to the closest physical replica.

Deploy content in specific locations, where a user nominates regions and MetaCDN matches the requested regions with providers that service those areas. The MetaCDNLoad Redirector directs end users to the closest physicalreplica.

Cost-optimized deployment, where MetaCDN deploys as many replicas in the locations requested by the user as their storage and transfer budget will allow, keeping them active until that budget is exhausted. The MetaCDNLoad Redirector directs end users to the cheapest replica to minimize cost and maximize the lifetime of the deployment.

Quality of service (QoS)-optimized deployment, where MetaCDN deploys to providers that match specific QoS targets that a user specifies, such as average throughput or response time from a particular location, which is tracked by persistent probing from the MetaCDN QoS monitor. TheMetaCDN Load Redirector directs end users to the best-performing replica for their specific region based on historical measurements from the QoS monitor.

After MetaCDN deploys replicas using one of the above options, it stores pertinent details such as the provider used, the URL of the replica, the desired lifetime of the replica, and the physical location (latitude and longitude) of that deployment in the MetaCDN Database. A geolocation service (either free2 or commercial3) is used to find the latitude and longitude of where the file is stored.

The MetaCDN QoS Monitor tracks the performance of participating providers (and their available storage and delivery locations) periodically, monitoring and recording performance and reliability metrics from a variety of locations, which is used for QoS-optimized deployment matching. Specifically, this component tracks the historical response time, throughput, hops and HTTP

2Hostip.info is a community-based project to geolocate IP addresses, and it makes the database freely available.

3MaxMind GeoIP is a commercial IP geolocation service that can determine information such as country, region, city, postal code, area code, and longitude/latitude.

[bookmark: page836]
response codes (e.g., 2XX, 3XX, 4XX, or 5XX, which denotes success, redirection/proxying, client error, or server error) of replicas located at each coverage location. This information is utilized when performing a QoS-optimized deployment (described previously).

This component also ensures that upstream providers are meeting their service-level agreements (SLAs), and it provides a logging audit trail to allow end users to claim credit in the event that the SLA is broken. This is crucial, because you cannot depend on the back-end service providers themselves to voluntarily provide credit or admit fault in the event of an outage. In effect, this keeps the providers “honest”; and due to the agile and fluid nature of the system, MetaCDN can redeploy content with minimal effort to alternative providers that can satisfy the QoS constraints, if available.

The MetaCDN Manager has a number of housekeeping responsibilities. First, it ensures that all current deployments are meeting QoS targets of users that have made QoS optimized deployments. Second, it ensures that replicas are removed when no longer required (i.e., the “deploy until” date set by the user has expired), ensuring that storage costs are minimized at all times. Third, for users that have made cost-optimized deployments, it ensures that a user’s budget has not been exceeded, by tracking usage (i.e., storage and downloads) from auditing information provided by upstream providers.

Integration of Geo-IP Services and Google Maps

Cloud storage offerings are already available from providers located across the globe. The principle of cloud computing and storage is that you shouldn’t need to care where the processing occurs or where your data are stored—the services are essentially a black box. However, your software and data are subject to the laws of the nations they are executed and stored in. Cloud storage users could find themselves inadvertently running afoul of the Digital Millennium Copyright Act (DMCA)4 or Cryptography Export laws that may not apply to them in their own home nations. As such, it is important for cloud storage users to know precisely where their data are stored. Furthermore, this information is crucial for MetaCDN load balancing purposes, so end users are redirected to the closest replica, to maximize their download speeds and minimize latency. To address this issue, MetaCDN offers its users the ability to pinpoint exactly where their data are stored via geolocation services and Google Maps integration. When MetaCDN deploys replicas to different cloud storage providers, they each return a URL pointing to the location of the replica. MetaCDN then utilizes a geolocation service to find the latitude and longitude of where the file is stored. This information is stored in the MetaCDN database

and can be overlaid onto a Google Maps view (see Figure 4.5.6) inside the MetaCDN portal, giving users a bird’s-eye view of where their data are currently being stored (depicted in Figure 4.5.6).

[bookmark: page837]4Available at http://www.copyright.gov/legislation/dmca.pdf.

[bookmark: page838][image:]

FIGURE 4.5.6. Storage providers overlaid onto a Google Map	view.

Load Balancing via DNS and HTTP

The MetaCDN Load Redirector is responsible for directing MetaCDN end users (i.e., content consumers) to the most appropriate file replica. When a MetaCDN user deploys content, they are given a single URL, in the format http://www. metacdn.org/MetaCDN/FileMapper?itemid 5 {item_id}, where item_id is a unique key associated with the deployed content. This provides a single namespace, which is more convenient for both MetaCDN users (content deployers) and end users (content consumers), and offers automatic and totally transparent load balancing for the latter.

Different load balancing and redirection policies can be utilized, including simple random allocation, where end users are redirected to a random replica; geographically aware redirection, where end users are redirected to their physically closest replica; least-cost redirection, where end users are directed to the cheapest replica from the content deployer’s perspective; and QoS-aware

[bookmark: page839]redirection, where end users are directed to replicas that meet certain performance criteria, such as response time and throughput.

[bookmark: page840]
DNS	Server	MetaCDN gateway
[image:]
MetaCDN end user

Resolve www.metacdn.org

Return IP of closest MetaCDN gateway, www-na.metacdn.org

GET http://metacdn.org/MetaCDN/FileMapper?itemid=1

processRequest ()

geoRedirect ()

HTTP 302 Redirect to

http://metacdn-us-username.s3.amazonaws.com/filename.pdf

Resolve metacdn-us-username.s3.amazonaws.com

Amazon S3 USA

Return IP of metacdn-us-username-s3.amazonaws.com

GET http://metacdn-us-username.s3.amazonaws.com/filename.pdf

Return replica

FIGURE 4.5.7. MetaCDN Load Redirector.

The load balancing and redirection mechanism is depicted in Figure 4.5.7, for an example scenario where an end user on the East Coast of the United

[bookmark: page841]States wishes to download a file. The user requests a MetaCDN URL such as http://www.metacdn.org/MetaCDN/FileMapper?itemid 5 1, and the browser attempts to resolve the base hostname, www.metacdn.org. The authoritative DNS (A-DNS) server for this domain resolves this request to the IP address of the closest copy of the MetaCDN portal—in this case www-na.metacdn.org. The user (or more typically their Web browser) then makes a HTTP GET request for the desired content on the MetaCDN gateway. In the case of geographically aware redirection, the MetaCDN load redirector is triggered to select the closest replica for the end user, in an effort to maximize performance and minimize latency. MetaCDN utilizes a geolocation service (mentioned previously) to find the geographical location (latitude and longitude) of the end user, and it measures their distance from each matching replica using a simple spherical law of cosines, or a more accurate approach such as the Vincenty formula for distance between two latitude/longitude points , in order to find the closest replica. While there is a strong correlation between the performance experienced by the end user and their locality to replicas (which was found in previous work [12, 13] and summarized in Section 4.5.4), there is no guarantee that the closest replica is always the best choice, due to cyclical and transient fluctuations in load on the network path. As such, we intend to investigate the effectiveness of more sophisticated active measurement approaches such as CDN-based relative network positioning (CRP) , IDMaps , or OASIS to ensure that end users are always directed to the best-performing replica.

[bookmark: page842]PERFORMANCE OF THE METACDN OVERLAY

In order to evaluate the potential of using storage cloud providers for content delivery, in prior work [12, 13] we evaluated the major provider nodes currently available to us, in order to test the throughput and response time of these data sources. We also looked at the effectiveness of the MetaCDN overlay in choosing the most appropriate replica. The files in these experiments were deployed by the MetaCDN Allocator, which was instructed to maximize coverage and performance, and consequently the test files were deployed on all available nodes. As noted in the previous section, the default MetaCDN load redirection policy for this deployment option is to redirect end users to the physically closest replica. At the time of the first experiment, we could utilize one node in the United States (Seattle, WA) and one node in Ireland (Dublin). Nirvanix provides two nodes in the United States (both in California), one node in Singapore, and one node in Germany. The test files were also cached where possible using Coral CDN [22]. Coral replicates the file to participating Coral proxy nodes on an as-needed basis, depending on where the file is accessed. The second experiment included storage nodes offered by Amazon CloudFront and Rackspace Cloud Files (described in Section 4.5.2).

For the first experiment, we deployed clients in Australia (Melbourne), France (Sophia Antipolis), Austria (Vienna), the United States (New York and San Diego), and South Korea (Seoul). Each location had a high-speed connection to major Internet backbones to minimize the chance of the client being the bottleneck during this experiment. The experiment was run simultaneously at each client location over a 24-hour period, during the middle of the week. As the test spans 24 hours, it experiences localized peak times in each of the geographical regions. Each hour, the client sequentially downloads each test file from each available node a total of 30 times, for statistical significance. The file is downloaded using the Unix utility, wget, with the no-cache and no-dns-cache options to ensure that for each download a fresh file is always downloaded (and not sourced from any intermediary cache) and that the DNS lookup is not cached either.

In the interests of brevity, we present a summarized set of results. The first set of results (depicted in Table 4.5.3) shows the transfer speed to download each replicated 10-MB test file from all client locations. The file is large enough to have some confidence that a steady-state transfer rate has been achieved. The second set of results (depicted in Table 4.5.4) captures the end-to-end response time when downloading each replica of a 1-kB file from all client locations. Due to the size of the file being negligible, the response time is dominated by the time taken to look up the DNS record and establish the HTTP connection.

After performing this experiment, we were confident that cloud storage providers delivered the necessary raw performance to be utilized for reliable content delivery. Performance was especially good when there was a high degree of locality between the client and the replica servers, which was evident from client nodes in Europe, the United States, and Korea. The client in Australia had reasonable throughput and response time but would certainly benefit from more

[bookmark: page843]
TABLE 4.5.3. Average Response Time (seconds) over 24 Hours from Six Client Locations
	
	
	
	S3 US
	
	S3 EU
	SDN #1 SDN #2
	SDN #3 SDN #4
	Coral

	
	
	
	
	
	
	
	
	
	
	
	

	Melbourne,
	Australia
	264.3
	389.1
	30
	
	366.8
	408.4
	405.5
	173.7

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Paris, France
	
	703.1
	
	2116
	483.8
	2948
	44.2.8
	1042
	530.2
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Vienna, Austria
	490.7
	
	1347
	288.4
	2271
	211
	538.7
	453.4
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

	Seoul, South
	Korea
	312.8
	376.1
	
	466.5
	
	411.8
	
	2456
	588.2
	152
	

	
	
	
	
	
	
	
	
	
	
	
	

	San Diego, CA, USA
	1234
	323.5
	5946
	
	380.1
	506.1
	84.5.4
	338.5
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	Secaucus, NJ, USA
	2381
	1949
	860.8
	967.1
	572.8
	
	4230
	636.4
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

TABLE 4.5.4. Average Throughput (KB/s) over 24 Hours from Six Client Locations

	
	
	
	
	
	SDN
	SDN
	SDN
	SDN
	
	

	
	
	S3 US
	S3 EU
	#1
	#2
	#3
	#4
	Coral

	
	
	
	0.2
	
	
	0.099
	
	
	
	

	
	Paris, France
	0.533
	
	
	0.538
	
	1.078
	0.316
	3.11
	

	
	Melbourne, Australia
	1.378
	1.458
	
	0.663
	0.703
	1.195
	0.816
	5.452

	
	Vienna, Austria
	0.723
	0.442
	
	0.585
	0.099
	1.088
	0.406
	3.171
	

	
	
	
	
	
	
	
	
	
	
	

[image:][image:]

	
	Seoul, South Korea
	1.135
	1.21
	0.856
	0.896
	1
	0.848
	3.318

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	San Diego, USA
	0.232
	
	0.455
	0.23
	0.361
	0.775
	0.319
	
	4.655

	
	
	
	
	
	
	
	
	

	
	Secaucus, NJ, USA
	0.532
	0.491
	0.621
	0.475
	1.263
	0.516
	1.916

	
	
	
	
	
	
	
	
	
	
	

localized storage resources. In all, we found the results to be consistent (and in some cases better) in terms of response time and throughput with previous studies of dedicated (and costly) content delivery networks [4, 18, 19]. However, further and longer-term evaluation is needed before we can make any categorical claims.

The second experiment (described in Pathan et al. [13]) tested a number of different load redirection policies operating in the MetaCDN overlay. The

[bookmark: page844]policies tested were as follows:

● Random (RAN): End users were directed to a random	replica.

Geolocation (GEO): End users were directed to the closest physical replica (as described in 4.5.3.4).

● Cost (COST): End users were directed to the cheapest	replica.

Utility aware (UTIL): End users were directed to the replica with the highest utility, where utility depends on the weighted throughput for requests, the user-perceived response times from direct replica access and via MetaCDN, the unit replication cost, and the content size. This policy is described in detail in Pathan et al. [13].

[bookmark: page845]TABLE 4.5.5. Average Throughput (kB/sec) over 48 Hours from Eight Client Locations

	
	
	Atlanta, California,
	Beijing,
	Melbourne,
	Rio,
	Vienna,
	Poznan,
	Paris,

	
	
	USA
	USA
	China
	Australia
	Brazil
	Austria
	Poland
	France

	
	
	
	
	
	
	
	
	
	

	
	RAN
	6170
	4412
	281
	3594
	800
	2033
	7519
	1486

	
	GEO
	6448
	2757
	229
	6519
	521
	2192
	9008
	2138

	
	COST
	3275
	471
	117
	402
	1149
	523
	1740
	265

	
	UTIL
	3350
	505
	177
	411
	1132
	519
	1809
	280

	
	
	
	
	
	
	
	
	
	

Measurements were from eight clients in five continents: Paris (France), Innsbruck (Austria), and Poznan (Poland) in Europe; Beijing (China) and Melbourne (Australia) in Asia/Australia; Atlanta, GA, Irvine, CA (USA) in North America, and Rio de Janeiro (Brazil) in South America. The testing methodology was identical to the first experiment described in this section, with the exception that the test ran for 48 hours instead of 24. Unsurpris ingly in nearly all client locations, the highest throughput was achieved from end users being redirected to the geographically closest replica (depicted in Table 4.5.5). There were instances where this was not the case, such as for the client in California, suggesting that the closest physical replica did not necessarily have the best network path, performing worse than random redirection.

From an end-user perspective, most clients (with the exception of Rio de Janeiro) perform much worse with a utility policy compared to a geoloca tion policy. Given that the utility-aware redirection emphasizes maximizing

MetaCDN’s utility rather than the experience of an individual user, it is understandable that end-user perceived performance has been sacrificed to some extent. For Rio de Janeiro, the geolocation policy leads to the closest Rackspace node in the United States, whereas the utility-aware redirection results in a higher-utility replica, which is Amazon’s node in the United States. In this instance, Amazon’s node betters the Rackspace node in terms of its service capability, network path, internal overlay routing, and request traffic strain, which are captured by the utility calculation metric used.

FUTURE DIRECTIONS

MetaCDN is currently under active testing and development and is rapidly evolving. Additional storage cloud resources are rapidly coming online now and in the near future, improving performance and expanding the coverage footprint of MetaCDN further. Rackspace’s storage cloud offering, Cloud

Files, has recently launched, while Amazon has expanded their content delivery footprint to additional locations in the United States, Europe, and Asia via their CloudFront service. Microsoft has also officially launched their cloud storage offering, Azure Storage Service. MetaCDN was rapidly updated to support each of these new services as they formally launched. Due to the

[bookmark: page846]
flexible and adaptable nature of MetaCDN, it is well-poised to support any changes in existing storage cloud services as well as incorporating support for new providers as they appear.

However, it is likely that many locations on the so-called “edges” of the Internet may not have local storage cloud facilities available to them for some time, or any time in the foreseeable future. So far, most storage cloud infrastructure has been located in Europe, North America, and Asia. However,

MetaCDN users can supplement these “black spots” by adding storage for commercial shared hosting providers (available in most countries) as well as privately run Web hosting facilities thanks to the MetaCDN connectors for FTP, SCP/SSH, and WebDAV accessible Web hosting providers. These noncloud providers can be seamlessly integrated into a MetaCDN user’s resource pool and utilized by the MetaCDN system, increasing the footprint of the MetaCDN service and improving the experience of end users via increased locality of file replicas in these areas.

In future work we intend to better harness the usage and quality of service (QoS) metrics that the system records in order to make the MetaCDN system truly autonomic, improving the utility for content deployers and end users. MetaCDN tracks the usage of content deployed using the service at the content and replica level, tracking the number of times that replicas are downloaded and the last access time of each replica. We intend to harness this information to optimize the management of deployed content, expanding the deployment when and where it is needed to meet increases in demand (which are tracked by MetaCDN). Conversely, we can remove under-utilized replicas during quiet periods in order to minimize cost while still meeting a baseline QoS level. From the end-users (consumers) perspective, we have expanded the QoS tracking to include data gathered from probes or agents deployed across the Internet to improve end-users’ experience. These agents operate at a variety of geographically disparate locations, tracking the performance (response time, throughput, reliability) they experienced from their locale when downloading replicas from each available coverage location. This information is reported back to their closest MetaCDN gateway. Such information can assist the MetaCDN load redirector in making QoS-aware redirections, because the client’s position can be mapped to that of a nearby agent in order to approximate the performance they will experience when downloading from specific coverage locations. As mentioned in Section 4.5.3.4, we are also investigating other active measurement approaches for QoS-aware client redirection.

[bookmark: page847]

4.6. RESOURCE CLOUD MASHUPS

Outsourcing computation and/or storage away from the local infrastructure is not a new concept itself: Already the grid and Web service domain presented (and uses) concepts that allow integration of remote resource for seemingly local usage. Nonetheless, the introduction of the cloud concept via such providers as Amazon proved to be a much bigger success than, for example, Platform’s Grid Support —or at least a much more visible success. However, the configuration and management overhead of grids greatly exceeds one of the well-known cloud providers and therefore encourages, in particular, average users to use the system. Furthermore, clouds address an essential economical factor, namely, elastic scaling according to need, thereby theoretically reducing unnecessary resource loads.

Cloud systems are thereby by no means introducing a new technology—just the opposite in fact, because many of the initial cloud providers simply opened their existing infrastructure to the customers and thus exploited their respective proprietary solutions. Implicitly, the offered services and hence the according API are specific to the service provider and can not be used in other environments. This, however, poses major issues for customers, as well as for future providers.

Interoperability and Vendor Lock-In. Since most cloud offerings areproprietary, customers adopting the according services or adapting their respective applications to these environments are implicitly bound to the respective

provider. Movement between providers is restricted by the effort the user wants to vest into porting the capabilities to another environment, implying in most

[bookmark: page848]cases reprogramming of the according applications. This makes the user dependent not only on the provider’s decisions, but also on his/her failures: As the example of the Google crash on the May 14, 2009 showed, relying too much on a specific provider can lead to serious problems with service consumption .

This example also shows how serious problems can arise for the respective provider regarding his market position, in particular if he/she makes certain quality guarantees with the service provided—that is, is contractually obliged to ensure provisioning. Even the cloud-based Google App Engine experiences recurring downtimes, making the usage of the applications unreliable and thus reducing uptake unnecessarily [4—6].

Since the solutions and systems are proprietary, neither customer nor provider can cross the boundary of the infrastructure and can thus not compensate the issues by making use of additional external resources. However, since providers who have already established a (comparatively strong) market position fear competition, the success of standardization attempts, such as the Open Cloud Manifesto , is still dubious . On the other hand, new cloud providers too would profit from such standards, because it would allow them to offer competitive products.

In this chapter we will elaborate the means necessary to bring together cloud infrastructures so as to allow customers a transparent usage across multiple cloud providers while maintaining the interests of the individual business entities involved. As will be shown, interoperability is only one of the few concerns besides information security, data privacy, and trustworthiness in bridging cloud boundaries, and particular challenges are posed by data management and scheduling. We will thereby focus specifically on storage (data) clouds, because they form the basis for more advanced features related to provisioning of full computational environments, be that as infrastructure, platform, or service.

A Need for Cloud Mashups

Obviously by integrating multiple cloud infrastructures into a single platform, reliability and scalability is extended by the degree of the added system(s). Platform as a Service (PaaS) providers often offer specialized capabilities to their users via a dedicated API, such as Google App Engine providing additional features for handling (Google) documents, and MS Azure is focusing particularly on deployment and provisioning of Web services, and so on. Through aggregation of these special features, additional, extended capabilities can be achieved (given a certain degree of interoperability), ranging from extended storage and computation facilities (IaaS) to combined functions, such as analytics and functionalities. The Cloud Computing Expert Working Group refers to such integrated cloud systems with aggregated capabilities across the individual infrastructures as Meta-Clouds and Meta-Services, respectively [9].

It can be safely assumed that functionalities of cloud systems will specialize even further in the near future, thus exploiting dedicated knowledge and expertise in the target area. This is not only attractive for new clientele of that respective domain, but may also come as a natural evolution from supporting recurring customers better in their day-to-day tasks (e.g., Google’s financial services). While there is no “general-purpose platform (as a service),”

[bookmark: page849]aggregation could increase the capability scope of individual cloud systems, thus covering a wider range of customers and requirements; this follows the same principle as in service composition .

The following two use cases may exemplify this feature and its specific benefit in more detail.

User-Centric Clouds. Most cloud provisioning is userand context-agnostic; inother words, the user will always get the same type of service, access route, and so on. As clouds develop into application platforms (see, e.g., MS Azure and the Google Chrome OS [13]), context such as user device properties or location becomes more and more relevant: Device types designate the execution capabilities (even if remote), their connectivity requirements and restrictions, and the location . Each of these aspects has a direct impact on how the cloud

	needs to handle data and application location, communication, and so
	on.

	Single cloud providers can typically not handle such a wide scope
	of

	requirements, because they are in most cases bound to a specific location
	and

sometimes even to specific application and/or device models. As of the end of 2008, even Amazon did not host data centers all across the world, so that specific local requirements of Spain, for example, could not be explicitly met .

By offering such capabilities across cloud infrastructures, the service provider will be able to support, in particular, mobile users in a better way. Similar issues and benefits apply as for roaming. Along the same way, the systems need to be able to communicate content and authentication information to allow users to connect equally from any location. Notably, legislation and contractual restrictions may prevent unlimited data replication, access, and shifting between locations.

Multimedia Streaming. The tighter the coupling between user and theapplication/service in the cloud, the more complicated the maintenance of the data connectivity—even more so if data are combined from different sources so as to build up new information sets or offer enhanced media experiences. In such cases, not only the location of the user matters in order to ensure availability of data, but also the combination features offered by a third-party aggregator and its relative location.

In order to maintain and provide data as a stream, the platform provider must furthermore ensure that data availability is guaranteed without disruptions. In addition to the previous use case, this implies that not only data location is reallocated dynamically according to the elasticity paradigm [9, 16],but also the data stream—potentially taking the user context into consideration again.

Enhanced media provisioning is a growing field of interest for more and more market players. Recently, Amazon has extended its storage capabilities (Amazon S3) with Wowza Media Systems so as to offer liver streams over the cloud , and OnLive is currently launching a service to provide gaming as media streams over the Web by exploiting cloud scalability . While large companies create and aggregate information in-house, in particular new business entries rely on existing data providers so as to compose their new information set(s) [19, 20].

Such	business	entities	must	hence	not	only	aggregate	information	in

[bookmark: page850]potentially a user-specific way, but also identify the best sources, handle the streams of these sources, and redirect them according to user context. We can thereby assume that the same strategies as for user-centric clouds are employed.

CONCEPTS OF A CLOUD MASHUP

Cloud mashups can be realized in many different ways, just as they can cover differing scopes, depending on their actual purpose [21—23]. Most current considerations thereby assume that the definition of standard interfaces and protocols will ensure interoperability between providers, thus allowing consumers to control and use different existing cloud systems in a coherent fashion. In theory, this will enable SOA (Service-oriented Architecture)-like composition of capabilities by integrating the respective functions into meta-capabilities that can act across various cloud systems/platforms/infrastructures [9].

The Problem of Interoperability

The Web service domain has already shown that interoperability cannot be readily achieved through the definition of common interfaces or specifications [9]:

The standardization process is too slow to capture the development in academy and industry.

Specifications (as predecessors to standards) tend to diverge quickly with the standardization process being too slow.

“Competing” standardization bodies with different opinions prefer different specifications.

And so on.

What is more, clouds typically do not expose interfaces in the same way as Web services, so interoperability on this level is not the only obstacle to overcome. With the main focus of cloud-based services being “underneath” the

typical Web service level—that is, more related to resources and platforms— key interoperability issues relate to compatible data structures, related programming models, interoperable operating images, and so on. Thus, to realize a mashup requires at least:

●	A compatible API/programming model, respectively an engine that can parse the APIs of the cloud platforms to be combined (PaaS).

[bookmark: page851]A compatible virtual machine, respectively an image format that all according cloud infrastructures can host (IaaS).

Interoperable or transferrable data structures that can be interpreted by all engines and read by all virtual machines involved. This comes as a side

effect to the compatibility aspects mentioned	above.

Note that services offered on top of a cloud (SaaS) do indeed pose classical Web-service-related interoperability issues, where the actual interface needs to provide identical or at least similar methods to allow provider swapping on-thefly [24, 25].

By addressing interoperability from bottom up—that is, from an infrastructure layer first—resources in a PaaS and SaaS cloud mashup could principally shift the whole image rather than the service/module. In other words, the actual programming engine running on the PaaS cloud, respectively the software exposed as services, could be shifted within an IaaS cloud as complete virtual machines (cf. Figure 4.6.1), given that all resources can read the according image format. In other words, virtualize the data center’s resources including the appropriate system (platform or service engine) and thus create a virtual cloud environment rather than a real one. Amazon already provides virtual rather than true machines, so as to handle the user’s environment in a scalable fashion [26].

While this sounds like a simple general-purpose solution, this approach is obviously overly simplified, because actual application will pose a set of obstacles:
[image:]

	Applications
	
	Virtual
	

	and Services
	Software
	Services
	

	
	
	
	Scale out

	
	
	
	

	APIs and
	
	Virtual
	

	Engines
	Platform
	Engine
	Scale out

	
	
	
	

	Hardware,
	Image
	Replicated
	

	
	
	
	

	
	Infrastructure
	Server
	

FIGURE 4.6.1.	Encapsulated virtual environments.

[bookmark: page852]
Most platform engines and services currently offered are based on proprietary environments and are constructed so as to shift the status rather than the full software. In other words, not the full software or engine is replicated, but rather only the information relevant to execute the tasks— typically, the engine or the base software will be preinstalled on all servers, thus reducing the scaling overhead.

Moving/replicating an image including the data takes more bandwidth

and time than moving a potentially very small	applet.

The size requirements of an image are less easily adapted than that of an applet/service; in other words, an image occupies more space more statically.

This is particularly true, if the same engine can be used for multiple applets at the same time, as is generally the case; by default, each image will serve only one customer, thus increasing space requirement exponentially.

Distributed applications and (data) links between them are more difficult to handle across images than in environments specifically laid out for that.

The logic for scaling behavior is typically implemented in the engine or service sandbox, rather than in the underlying infrastructure; because not in all cases of service scaling does the image need to be scaled out, the logic differs quite essentially.

As has been noted, to achieve interoperability on the infrastructure layer has completely different implications than trying to realize interoperability on any higher layers. In fact, interoperability would imply that all images are identical in structure, which is generally not the case. With different well-established virtualization solutions (Xen, VMWare, HyperV, etc.) there exists a certain degree of defacto standards, yet at the cost of bad convertibility between them. Notably, there do exist efforts to standardize the virtual machine image format, too, such as the Open Virtualization Format (OVF) [27] which is supported by most of the virtualization solutions and as of 2009 even by a dedicated cloud computing platform [28]. Nonetheless, in all cases a converter is necessary to actually execute the transformation, and the resulting image may not always work correctly (e.g., [40]).

The main obstacles thus remain in performance issues, resource cost (with a virtual image consuming more resources than a small engine or even applet), and manageability. These are still main reasons why more storage providers than computational providers exist, even though the number of computing IaaS hosts continually grows, as cloud systems reduce the effort for the administration.

However, it may be noted that an image can host the engine, respectively the necessary service environment, thus leaving the cloud to handle the applets and services in a similar fashion to the PaaS and SaaS approach. This requires, however, that data, application, and image are treated in a new fashion.

[bookmark: page853]
Intelligent Image Handling

A straightforward cloud environment management system would replicate any hosted system in a different location the moment the resources become insufficient—for example, when too many users access the system concurrently and execute a load balance between the two locations. Similarly, an ideal system would down-scale the replicated units once the resource load is reduced again. However, what is being replicated differs between cloud types and as such requires different handling. As noted, in the IaaS clouds, images and datasets are typically replicated as whole, leading to performance issues during replication; what is more, in particular in the case of storage clouds, not the full dataset may be required in all locations (see next section). As opposed to this, applets in a PaaS environment are typically re-instantiated independent of the environment, because it can be safely assumed that the appropriate engine (and so on) is already made available in other locations.

In order to treat any cloud type as essentially an infrastructure environ ment, the system requires additional information about how to segment the exposed service(s) and thus how to replicate it (them). Implicitly, the system needs to be aware of the environment available in other locations. In order to reduce full replication overhead, resources that already host most of the environment should be preferred over “clean slate” ones—which may lead to serious scheduling issues if, for example, a more widely distributed environment occupies the resource where a less frequently accessed service is hosted, but

due to	recent	access	rates,	the	latter	gets	more	attention	(and	so	on). In

this chapter, we will assume though that such a scheduling mechanism exists.

Segmenting the Service. Any process exploiting the capabilities of the cloudessentially consists of the following parts: the user-specific data (state), the scalable application logic, the not-scalable underlying engine or supporting logic, the central dataset, and the execution environment (cf. Figure 4.6.3). Notably there may be overlaps between these elements; for example, the engine and execution environment may be quite identical as is the case with the Internet Information Service and the typical Windows installation.

The general behavior consists in instantiating a new service per requestor, along with the respective state dataset, until the resource exceeds its capabilities (bandwidth, memory, etc.) and a new resource is required to satisfy availability. Note that in the case of shared environments, such as Google Documents, the dataset may not be replicated each time. In a PaaS and a SaaS cloud, each resource already hosts the environment necessary to execute the customer’s service(s)—for example, in Google Docs, the Google App Engine, and so on— so that they can be instantiated easily on any other machine in the cloud environment. This replication requires not only moving a copy of the customerspecific application logic, but also the base dataset associated with it. New instances can now grow on this machine like on the first resource. In the case of

[bookmark: page854][image:]
Collaboration

	
	Image1
	
	
	New Image
	

	
	App 1
	2
	3
	
	

	
	let
	
	
	App
	

	
	App
	App
	
	let
	

	
	let
	let
	
	
	

	Applications
	
	
	
	
	

	and Services
	Data Set
	Data
	
	Data
	Scale out

	
	
	
	
	
	

	APIs and
	Engine
	
	
	Engine
	

	
	
	
	
	
	

Hardware,

Infrastructure	Infrastructure

Resource limitations (e.g. memory)

FIGURE 4.6.2.	Hierarchical scale out in an encapsulated, virtual cloud environment.

IaaS platforms, the general scaling behavior tends toward replicating the whole image or consumer-specific dataset in new resources (cf. Figure 4.6.2).

In order to allow infrastructure clouds to handle (platform) services in a (more) efficient manner, the management system must be able to identify which parts are needed and can be replicated in order to scale out, respectively which ones can and should be destroyed during scale-down; for example, it would not be sensible to destroy the whole image if only one user (of many) logs

[bookmark: page855]out from the	machine.

Life Cycle of a Segmented Cloud Image. With segmented main services inan IaaS environment, the system can now scale up and down in a (more) efficient manner across several resource providers: Any service requires that its base environment is available on the machines it gets replicated to. In essence, this means the virtual machine image—yet more particularly this involves all

“non scalable” parts, such as execution/hosting engine and central dataset. Any services, applications, or applets normally scaled out can essentially be scaled out in the virtual environment just like a real environment. To this end, the virtual machines need to be linked to each other in the same fashion as if the engines would be hosted on physical machines.

As soon as the hosted engine wants to scale beyond the boundaries of the local machine, a new physical machine has to be identified ready to host the new instances—in the simplest case, another machine will already prov ide the respective hosting image. More likely, however, other machines with the same image will be blocked or will simply not host the image—in these cases, a new resource must be identified to upload the base image to. The base image

[bookmark: page856]
thereby consists (in particular) of all nonscalable, not user-specific information to allow for new user instances; it must thereby be respected that different scaleouts can occur, depending also on the usage type of the cloud (see below).

Intelligent Data Management

Next to the segmentation of the image, management of the amount of data and thus the distribution in particular during replication (i.e., scale out) is a major challenge for future cloud systems—not alone because the digital contents will exceed the capacity of today’s storage capabilities, and data are growing extremely rapidly and even faster than the bandwidth and the processing power of modern computer systems, too [29]. Implicitly and at the same time the size of single datasets increase irresistibly and obviously faster than networks and platforms can deal with. In particular, analysis and search of data is getting more and more timeand power-consuming [30]—as such, applications that require only part of the data typically have to handle the full dataset(s) first.

Much research in the field of efficient data management for large-scale environments has been done recently. The Hadoop Distributed File System (HDFS) [31], the Google File System (GFS) [32], or Microsoft’s Dryad/SCOPE [33], for instance, provide highly fault-tolerant virtual file systems on top of the physical one, which enable high-throughput access of large datasets within distributed (cluster) environments. However, with all these efforts, there is still a big gap between the meaningful structure and annotation of file/data contents and the appropriate distribution of particular file/data chunks throughout the environment; that is, files are more or less randomly partitioned into smaller pieces (blocks) and spread across several machines without explicitly considering the context and requirements, respectively, of certain users/applications and thus their interest in different parts of particular datasets only.

To overcome this obstacle, the currently used random segmentation and distribution of data files need to be replaced by a new strategy which takes (1) the semantic contents of the datasets and (2) the requirements of users/applications into account (i.e., data shall be distributed according to the interest in the data/ information). For this reason, users, devices, and applications need to be modeled by capturing relevant context parameters (e.g., the actual position and network properties) as well as analyzing application states with respect to upcoming data retrieval and/or processing needs [34]. In addition, storage resources, platforms, and infrastructures (i.e., entire virtual images) shall also be continuously monitored, so as to react on sudden bottlenecks immediately. While broadcasting such relevant information (actual user and resource needs)— not frequently but in fact as soon as new requirements essentially differ from previous ones—among infrastructure and platform providers, necessary data could be replicated and stored sensibly near to the consumption point, so as to reduce bottlenecks and to overcome latency problems. Apart from distributing entire data records, this concept would also allow for segmenting large amounts of data more accurately by just releasing the relevant portion of the dataset only.

[bookmark: page857]
Assuming that certain parts of a database or file are more interesting than others (obtained from access statistics or user preferences), these subsets could be, for instance, extracted and replicated at the most frequently visited site as applied in content delivery networks for quite a long time [35] in order to improve scalability and performance of certain resources, too. Particular mechanisms (as applied in traditional service-oriented architectures) both on user and provider sites need to guarantee that running applications/workflows are still retrieving the correct pieces of data while shifting them among different platforms, infrastructures, and/or locations (e.g., Berbner et al. [36]). This redeployment should be completely transparent for users; they should be unaware if accessing the virtual resource X or Y as long as security, privacy, and legal issues are respected.

Theoretically, two alternatives might be considered to realize the efficient distribution of interesting datasets. First of all, in case of underperforming resources (e.g., due to limited bandwidth) and of course depending on the size of data/contents, providers could think of duplicating the entire virtual resource (image). This concept is similar to known load-balancing strategies [37] being applied if the access load of a single machine exceeds its own capacities and multiple instances of the same source are required to process requests accordingly. However, this only makes sense if local data sizes are larger than the size of the complete virtual image. The second option generally applies for large datasets which are permanently requested and accessed and, thus, exceeding the entire capacity of a single resource. In that case, the datasets might be transferred closer toward the user(s) (insofar as possible) in order to overcome latency problems by replicating the most relevant parts or at least the minimal required ones onto a second instance of the same virtual image (the same type of engine) which not necessarily runs on the same infrastructure as the original one. The latter case could yield to so-called virtual swarms (a cluster of resources of closely related data) among which datasets are actively and continuously exchanged and/or replicated. These swarms could furthermore help to speed up the handling of large files in terms of discovery and processing and might enhance the quality of results, too.

REALIZING RESOURCE MASHUPS

In order to realize efficient cloud mashups on an infrastructure level, distributed data and segmented image management have to be combined in order to handle the additional size created by virtualizing the machine (i.e., by handling images instead of applets and services). As noted above, we can distinguish between the base image set consisting of (a) the setup environment and any engine (if required), (b) the base dataset that may be customer-specific (but not user-specific), such as general data that are provided to the user, but also and more importantly the applet or service base that is provided to each user equally, and (c) the user-specific information which may differ per access

[bookmark: page858]and which may only be available on a single	machine.

[bookmark: page859]

	SaaS

	PaaS

	Applet
	necessitates

[image:]

User Data

	(Base) Services
	necessitates

Base Dataset

	IaaS

Base Image

FIGURE 4.6.3.	The relationship between IaaS, SaaS, and PaaS during scaling.

Scale-out behavior now depends on the type of application/cloud service running (Figure 4.6.3).

IaaS Provisioning. Infrastructures are typically provided in the form of animage containing the full computational environment or consist of a dynamic dataset, which is typically made available to all users equally. Scaling out involves either replication of the image/data set (horizontal scaling) or increasing the available storage size (vertical scale). Horizontal scaling thereby typically implies that the full dataset is replicated, while vertical scaling may lead to data

[bookmark: page860]segmentation and distribution.

However, as noted in the preceding section, different users may require different parts of the data, so that replication of the whole dataset every time the machine boundaries become insufficient may not be necessary, thus saving bandwidth and storage.

SaaS Provisioning. Unlike the typical charts related to the complexity ofcloud types, Software as a Service (SaaS) does pose fewer issues on an infrastructure than does Platform provisioning. This is mostly because provided services scale-out simply by instantiating new services and state data. In most cases, the base environment for SaaS cloud types is fairly simple and can be (re)used for various different processes—for example, a .NET environment with IIS as a hosting engine.

Implicitly, several resources in the cloud environment can host the base image and allow different SaaS customers to make use of these machines. In other words, machines with the respective compatible base image (e.g., hosting

[bookmark: page861]
a compatible IIS component) can host the replicated service instances, rather than having to duplicate the full image all the time. Notably, when no machine with a compatible base image is available anymore, a new resource has to be loaded with an image that meets the current scale-out requirements best. These may not be defined by a single service alone, but by multiple concurrent processes that have similar and opposing requirements. The same principles as for intelligent data management may be applied here, too. However, the maintenance of replicated datasets in SaaS environments requires more efforts and carefulness because synchronization between multiple instances of the same dataset on the same image might result in inconsistent states, and thus supervision of duplicated data sets is highly recommended. Particular services as applied in Microsoft’s Live Mesh [38] could help taking control over this.

PaaS Provisioning. The most complex case with respect to instancemanagement, and hence with respect to elasticity, consists in Platform as a Service provisioning: In this case, multiple different sets have to be managed during scale-out, depending on the original cause to increase the resource load. We can distinguish between the following triggers with this respect: (1) The number of customers exceeds the resource limits or (2) the number of users leads to resource problems. The actual content being replicated differs between these two cases: When another customer wants to host more applets than the resource can manage, the additional applet will be instantiated on a new resource that executes the relevant base image (see also SaaS Provisioning above). In case no such machine exists, the backed-up base image can be used to instantiate a new resource or a running image is duplicated without customer and user-specific data. This can be effectively considered horizontal scalability [39].

In case, however, a customer’s applet is taking away more resources than available due to too many users accessing the applet, respectively the appropriate data, a scale-out needs to replicate also the customer-specific data and code. This way, the new machine will have the full environment required from the user perspective.

4.6.3.1 Distributed Decision Making

The main management task for maintaining IaaS platforms for resource mashups hence consists in deciding which parts of image and data to replicate, which ones to

[bookmark: page862]duplicate, and which ones to retain. As discussed in the preceding sections, such information must be provided by and with the provisioning type and the appropriate usage of the cloud system. UNIT–V

GOVERNANCE AND CASE STUDIES

5.1	ORGANIZATIONAL	READINESS	AND

CHANGE MANAGEMENT IN THE CLOUD AGE

Studies for Organization for Economic Co-operation and Development (OECD) economies in 2002 demonstrated that there is a strong correlation between changes in organization and workplace practices and investment in information technologies . This finding is also further confirmed in Canadian government studies, which indicate that the frequency and intensity of organizational changes is positively correlated with the amount and extent of information technologies investment. It means that the incidence of organizational change is much higher in the firms that invest in information technologies (IT) than is the case in the firms that do not invest in IT, or those that invest less than the competitors in the respective industry.

In order to effectively enable and support enterprise business goals and strategies, information technology (IT) must adapt and continually change. IT must adopt emerging technologies to facilitate business to leverage the new technologies to create new opportunities, or to gain productivity and reduce cost. Sometimes emerging technology (e.g., cloud computing: IaaS, PaaS, SaaS) is quite disruptive to the existing business process, including core IT services — for example, IT service strategy, service design, service transition, service operation, and continual service improvement—and requires fundamental re-thinking of how to minimize the negative impact to the business, particularly the potential impact on morale and productivity of the organization.

[bookmark: page863]The Context

The adaptation of cloud computing has forced many companies to recognize that clarity of ownership of the data is of paramount importance. The protection of intellectual property (IP) and other copyright issues is of big concern and needs to be addressed carefully.

The Take Away

Transition the organization to a desirable level of change management maturity level by enhancing the following key domain of knowledge and competencies:

Domain 1. Managing the Environment: Understand the organization (peo-ple, process, and culture).

Domain 2. Recognizing and Analyzing the Trends (Business and Technol-ogy): Observe the key driver for changes.

Domain 3. Leading for Results: Assess organizational readiness and archi-tect solution that delivers definite business values.

BASIC CONCEPT OF ORGANIZATIONAL	READINESS

Change can be challenging; it brings out the fear of having to deal with uncertainties. This is the FUD syndrome: Fear, Uncertainty, and Doubt. Employees understand and get used to their roles and responsibility and are able to leverage their strength.

It is a common, observable human behavior that people tend to become comfortable in an unchanging and stable environment, and will become uncom-fortable and excited when any change occurs, regardless the level and intensity of the change.

A survey done by Forrester in June 2009 suggested that large enterprises are going to gravitate toward private clouds. The three reasons most often ad-vanced for this are:

Protect Existing Investment: By building a private cloud to leverage existing infrastructure.

Manage Security Risk: Placing private cloud computing inside the company reduces some of the fear (e.g., data integrity and privacy issues) usually associated with public cloud.

[bookmark: page864]A Case Study: Waiting in Line for a Special Concert Ticket

It is a Saturday morning in the winter, the temperature is 212○C outside, and you have been waiting in line outside the arena since 5:00 AM this morning for concert tickets to see a performance by Supertramp. What is your reaction? What should you do now without the tickets? Do you need to change the plan? Your reaction would most likely be something like this:

●	Denial. You are in total disbelief, and the first thing you do is to reject the fact that the concert has been sold out.

Anger. You probably want to blame the weather; you could have come here 10 minutes earlier.

Bargaining. You try to convince the clerk to check again for any available seats.

Depression. You are very disappointed and do not know what to do next.

Acceptance. Finally accepting the inevitable fate, you go to plan B if you have one.

The five-stage process illustrated above was originally proposed by Dr. Elizabeth Ku¨ bler-Ross to deal with catastrophic news. There are times in which people receive news that can seem catastrophic; for example; company merger, right-sizing, and so on.

What Do People Fear?

Let’s look at this from a different perspective and try to listen to and understand what people are saying when they first encounter change.

“That is not the way we do things here; or it is different	in here... .”

People are afraid of change because they feel far more comfortable and safe by not going outside their comfort zone, by not rocking the boat and staying in the unchanged state.

“It is too risky.. .”

People are also afraid of losing their position, power, benefits, or even their jobs in some instances. It is natural for people to try to defend and protect their work and practice.

The more common concerns are related to cloud computing, and some of them are truly legitimate and require further study, including:

[bookmark: page865]Security and privacy protection

Loss of control (i.e., paradigm shift)

New model of vendor relationship management

● More stringent contract negotiation and service-level agreement	(SLA)

● Availability of an executable exit strategy

DRIVERS FOR CHANGES: A FRAMEWORK TO COMPREHEND

THE COMPETITIVE ENVIRONMENT

The Framework. The five driving factors for change encapsulated by the framework are:

● Economic (global and local, external and	internal)

Legal, political, and regulatory compliance

Environmental (industry structure and trends)

Technology developments and innovation

Sociocultural (markets and customers)

The five driving factors for change is an approach to investigate, analyze, and forecast the emerging trends of a plausible future, by studying and understanding the five categories of drivers for change. The results will help the business to make better decisions, and it will also help shape the short- and long-term strategies of that business.

Every organization’s decisions are influenced by particular key factors, some of them are within the organization’s control, such as (a) internal financial

weakness and strength and (b) technology development and innovation, and therefore the organization has more control. The others, such as legal compliance issues, competitor capabilities, and strategies, are all external

	factors over which the organization
	has little or no control. In
	a business

	setting, it helps us to visualize
	and familiarize ourselves
	with future

possibilities (opportunities and threats).

Economic (Global and Local, External and	Internal)

Following are sample questions that could help to provoke further discussion:

What is the current economic situation?

What will the economy looks lik in 1 year, 2 years, 3 years, 5 years, and so on?

What are some of the factors that will influence the future economic outlook?

Is capital easy to access?

How does this technology transcend the existing business model?

Buy vs. build? Which is the right way?

● What is the total cost of ownership	(TCO)?

[bookmark: page866]Legal, Political, and Regulatory Compliance

This section deals with issues of transparency, compliance, and conformity. The objective is to be a good corporate citizen and industry leader and to avoid the potential cost of legal threats from external factors.

The following are sample questions that could help to provoke further discussion:

What are the regulatory compliance requirements?

What is the implication of noncompliance?

What are the global geopolitical issues?

Environmental (Industry Structure and Trends)

Environmental factors usually deal with the quality of the natural environment, human health, and safety. The following are sample questions that could help to provoke further discussion:

● What is the implication of global warming	concern?

Is a green data center over-hyped?

How can IT initiatives help and support organizational initiatives to reduce carbon footprint?

Can organizations and corporations leverage information technology,

including cloud computing to pursue sustainable	development?

Technology Developments and Innovation

Scientific discoveries are seen to be key drivers of economic growth; leading economists have identified technological innovations as the single most important contributing factor in sustained economic growth.

The following are sample questions that could help to provoke further discussion:

When will the IT industry standards be finalized? By who? Institute of Electrical and Electronics Engineers (IEEE)?

● Who is involved in the standardization	process?

Who is the leader in cloud computing technology?

What about virtualization of application—operating system (platform) pair (i.e., write once, run anywhere)?

How does this emerging technology (cloud computing) open up new areas for innovation?

How can an application be built once so it can configure dynamically in real time to operate most effectively, based on the situational constraint (e.g., out in the cloud somewhere, you might have bandwidth constraint to transfer needed data)?

What is the guarantee from X Service Providers (XSP) that the existing

[bookmark: page867]applications will still be compatible with the future infrastructure (IaaS)? Will the data still be executed correctly?

Sociocultural (Markets and Customers)

Societal factors usually deal with the intimate understanding of the human side of changes and with the quality of life in general. A case in point: The companies that make up the U.S. defense industry have seen more than 50% of their market disappear.

The following are sample questions that could help to provoke further discussion:

● What are the shifting societal expectations and	trends?

What are the shifting demographic trends?

How does this technology change the user experience?

Is the customer the king?

Buy vs. build? Which is the right way?

How does cloud computing change the world?

Is cloud computing over-hyped?

Creating a Winning Environment

At the cultural level of an organization, change too often requires a lot of planning and resource. In order to overcome this, executives must articulate a new vision and must communicate aggressively and extensively to make sure that every employee understands :

1. The new direction of the firm (where we want to go	today)

The urgency of the change needed

What the risks are to

Maintain status quote

Making the change

What the new role of the employee will be

What the potential rewards are

● Build a business savvy IT organization.

● Are software and hardware infrastructure an unnecessary	burden?

What kind of things does IT do that matter most to business?

Would the IT professional be better off focusing on highly valued product issues?

Cultivate an IT savvy business organization.

[bookmark: page868]● Do users require new skill and expertise?

One of the important value propositions of cloud computing should be to explain to the decision maker and the users the benefits of:

● Buy and not build

● No need	for a large amount of up-front capital investment

●	Opportunity to relieve your smartest people from costly data-center operational activities; and switch to focus on value-added activities

● Keep integration (technologies) simple

COMMON CHANGE MANAGEMENT MODELS

There are many different change management approaches and models, and we will discuss two of the more common models and one proposed working model (CROPS) here; the Lewin’s Change Management Model, the Deming Cycle (Plan, Do, Study, Act) and the proposed CROPS Change Management Framework.

Lewin’s Change Management Model

Kurt Lewin, a psychologist by training, created this change model in the 1950s. Lewin observed that there are three stages of change, which are: Unfreeze, Transition, and Refreeze. It is recognized that people tend to become compla-cent or comfortable in this “freeze” or “unchanging/stable” environment, and they wish to remain in this “safe/comfort” zone. Any disturbance/disruption to this unchanging state will cause pain and become uncomfortable.

The transition phase is when the change (plan) is executed and actual change is being implemented. Since these “activities” take time to be completed, the process and organizational structure may also need to change, specific jobs may also change. The most resistance to change may be experienced during this transition period. This is when leadership is critical for the change process to succeed, and motivational factors are paramount to project success.

The last phase is Refreeze; this is the stage when the organization once again becomes unchanging/frozen until the next time a change is initiated.

[bookmark: page869][image:]
UNFREEZE	TRANSITION	REFREEZE

Deming Cycle (Plan, Do, Study, Act)

The Deming cycle is also known as the PDCA cycle; it is a continuous improvement (CI) model comprised of four sequential subprocesses; Plan, Do, Check, and Act.

Edward Deming proposed in the 1950s that business processes and systems should be monitored, measured, and analyzed continuously to identify varia-tions and substandard products and services, so that corrective actions can be taken to improve on the quality of the products or services delivered to the customers.

● PLAN:	Recognize an opportunity and plan a change.

● DO:	Execute the plan in a small scale to prove the	concept.

● CHECK:	Evaluate the performance of the change and report the results

to sponsor.

● ACT:	Decide on accepting the change and standardizing it as	part of

the process.

Incorporate what has been learned from the previous steps to plan new improvements, and begin a new cycle.

Deming’s PDCA cycle is illustrated in Fig 5.1.1: Deming’s PDCA	cycle.

	[bookmark: page870]Study the result; redesign
	
	
	Understand the gap between

	systems to reflect learning –
	
	
	residents’ expectations and what

	change standards and
	
	
	is being delivered; set priorities

	
	
	
	

	regulations where
	for closing gaps; develop

	necessary; communicate it
	
	

	
	ACT
	PLAN

	
	BETTER
	
	

	
	ENVIRONMENT
	
	

	
	
	
	

	
	CHECK
	DO

	
	
	
	Implement changes;

	Observe the effects of the
	
	
	
	

	change and test – analyze data
	
	
	collect data to determine

	
	
	
	
	
	

[image:]

FIGURE 5.1.1. Deming’s PDCA cycle.

Source: http://www.gdrc.org/uem/iso14001/pdca-cycle.gif.

[bookmark: page871]A	Proposed	Working	Model:	CROPS	Change

Management Framework

For many organizations, change management focuses on the project manage- ment aspects of change. There are a good number of vendors offering products that are intended to help organizations manage projects and project changes, including the Project Portfolio Management Systems (PPMS). PPMS groups projects so they can be managed as a portfolio, much as an investor would manage his/her stock investment portfolio to reduce risks.

Culture. Corporate culture is a reflection of organizational (management and employees)values and belief. Edgar Schein, one of the most prominent theorists of organizational culture, gave the following very general definition [9, 10]:

The culture of a group can now be defined as: A pattern of shared basic assumptions that the group learned as it solved its problems of external adapta- tion and internal integration, that has worked well enough to be considered valid and, therefore, to be taught to new members as the correct way to perceive, think, and feel in relation to those problems.

Elements of organizational culture may	include:

Stated values and belief

Expectations for member behavior

Customs and rituals

Stories and myths about the history of the organization
[image:]

Processes

Organization	Skills and

Rewards and

Culture

Management

FIGURE 5.1.2. CROPS framework.

[bookmark: page872]
● Norms—the feelings evoked by the way members interact with each other, with

outsiders, and with their	environment

● Metaphors and symbols—found embodied in other cultural	elements

Rewards and Management System. This management system focuses on howemployees are trained to ensure that they have the right skills and tools to do the job right.

Organization and Structures. How the organization is structured is largely influencedby what the jobs are and how the jobs are performed. The design of the business processes govern what the jobs are, and when and where they get done.

Process. Thomas Davenport defined a business process or business method as acollection of related, structured activities or tasks that produce a specific service or product (serve a particular goal) for a particular customer or customers.

Hammer and Champy’s definition can be considered as a subset of Davenport’s. They define a process as “a collection of activities that takes one or more kinds of input and creates an output that is of value to the customer.”

Skills and Competencies. Specialized skills that become part of the organi-zational core competency enable innovation and create a competitive edge. Organizations that invest in research and development which emphasize investing in people’s training and well-being will shape a winning strategy.

The CROPS model is illustrated in Figure	5.1.2.

CHANGE MANAGEMENT MATURITY MODEL (CMMM)

A Change Management Maturity Model (CMMM) helps organizations to (a) analyze, understand, and visualize the strength and weakness of the firm’s change management process and (b) identify opportunities for improvement and building competitiveness. The model should be simple enough to use and flexible to adapt to different situations. The working model in Table 5.1.1 is based on CMM (Capability Maturity Model), originally developed by Amer-ican Software Engineering Institute (SEI) in cooperation with Mitre Corpora - tion. CMM is a model of process maturity for software development, but it has

[bookmark: page873]since been adapted to different domains. The CMM model describes a five-level process maturity continuum, depicted in Table 5.1.1.

How does CMMM help organizations to adopt new technology, including cloud computing, successfully? The business value of CMMM can be expressed in terms of improvements in business efficiency and effectiveness. All organiza-tional investments are business investments, including IT investments. The resulting benefits should be measured in terms of business returns. Therefore, CMMM value can be articulated as the ratio of business performance to CMMM investment; for example

ROITðCMMMÞ 5 Estimated total business performance improvement
Total CMMM investment TCO
ð	Þ

whereas

ROIT: Observed business value or total return on investment from IT initiative (CMMM)

Business performance improvement

Reduce error rate

[bookmark: page874]TABLE 5.1.1. A Working Model: Change Management Maturity Model (CMMM)

	
	CROPS
	
	
	Key Results and Benefits (or, the

	
	
	
	
	Lack There of)

	Description
	Practice
	Specific to CMMM
	Characteristics of Organization
	Path to Next Higher Level

	
	
	
	
	
	

Level	5	Optimized	P	1	R	AT this level of process maturity,

the focus is on improving process performance.

Level	4	Managed	CROPS	Adopted specific change manage-

ment methodology and process. Centralized and standardized change management control and tracking to manage risks and sus-tain quality of products and services.

Level	3	Defined	CROPS	Standardizing change manage-

ment processes and practices.

Level	2	Repeatable

COPS

Accept	the

importance of change

m a n a g e m e n t

p r o c e s s
.

N o

s t a n d a

	r
	n

	d
	a

	i
	g

	z
	e

	a
	m

	t
	e

	i
	n

	o
	t

	n
	

	/
	p

	c
	r

	e
	o

	n
	c

	t
	e

	r
	s

	a
	s

	l
	

	i
	a

	z
	n

	a
	d

	t
	

	i
	p

	o
	r

	n
	a

	
	c

	o
	t

	f
	i

	
	c

	c
	e

	h
	.

	a
	

	n
	P

	g
	

	
	o

	e
	

	
	o

	
	

	m
	r

	
	

	a
	c

	
	

	[bookmark: page875]hange
	authorization
	and
	Standardize and centralize change

	tracking scheme.
	
	management process.

	
	
	Operational excellence/organiza-
	Achieve strategic/operational ex-

	
	
	tional competency
	cellence.

Change management as part of the core competency.

Culturally, employee accepts that change is constant and in a rapid rate.

Organization and management can find ways to change, evolve, and adapt the process to particular project needs; with minimal or no impact to quality of products or services being delivered as mea-sured against SLA.

Processes at this level are defined and documented.

Some process improvement pro-jects initiate overtime.

It is characteristic of processes at this level that some processes are repeatable.

Extensive training exists at all level of organization.

Continuous process improvement. Effective business and IT strategic alignment.

[bookmark: page876]
Better business and IT strategic alignment.

Enabling innovation. Create competitiveness.

Level 1 Ad hoc None No change management processes. (disruptive)

No specific or informal change management process and practice exist anywhere.

Change can be made with no con-trol at all; there is no approval mechanism, no track record and no single party accountable for the failure.

	Achieve
	higher
	level
	of
	Better appreciation of value of

	quality.
	Higher
	degree
	of
	IT. Better business and IT

	customer/user satisfaction.
	
	integration.

	Reduce
	costs.
	
	
	

	Higher
	
	
	
	

	profitability.
	
	
	

	Increase
	revenue
	and market
	

	share.
	
	
	
	

	
	
	
	
	Project failure rate is still too

	
	
	
	
	high. Changes are still very

	
	
	
	
	disruptive to business operation.

	Chaotic
	
	
	
	Adopt formal change management

	Reactive
	
	
	
	practice.

	Disruptive
	
	
	

Uncontrolled

Unstable

Constantly operate in a firefighting mode.

No awareness of the benefits of adopting change management and best practice.

Project failures are too often and too costly.

No understanding of risk man-agement, and do not have the capacity to manage and minimize disruption to IT and business due to change and/or the failure of the uncontrolled changes.

[bookmark: page877]
Increase customer/user satisfaction

Customer retention

Employee retention

Increase market share and revenue

Increase sales from existing customer

Improve productivity

And others

CMMM investment

Initial capital investment

Total cost of ownership (TCO) over the life of the investment (solution)

A Case Study: AML Services Inc.

AML (A Medical Laboratory Services Inc.) is one of the medical laboratory service providers for a city with a population of one million, and AML is a technology-driven company with 150 employees serving the city and surround-ing municipalities. Although the barrier to entry is high—the field requires a lot of startup investment for equipment and technologies (e.g., laboratory testing, X ray, MRI, and information technologies), as well as highly skilled staff — there is some competition in this segment of the health care industry.

Tom Cusack, the CIO of AML, decides to hire a consulting firm to help him architect the right solution for AML. Potential discussion questions could be as follows:

● Should AML consider cloud computing part of the	solution?

Is AML ready for cloud computing?

What does “done” look like?

● How can the organization overcome these challenges of	change?

ORGANIZATIONAL READINESS SELF-ASSESSMENT: (WHO, WHEN, WHERE, AND HOW)

An organizational assessment is a process intending to seek a better under-standing of the as-is (current) state of the organization. It also defines the roadmap (strategies and tactics) required to fill the gap and to get the organiza - tion moving toward where it wants to go (future state) from its current state.

The process implies that the organization needs to complete the strategy analysis process first and to formulate the future goals and objectives that support the future direction of the business organization.

During an effective organization readiness assessment, it is desirable to achieve the following:

[bookmark: page878]● Articulate and reinforce the reason for	change.

● Determine the as-is state.

● Identify the gap (between future and current	state).

	●
	Anticipate and assess barriers to
	change.

	●
	Establish action plan to remove
	barriers.

	Involve the right people to enhance
	buy-in:

It is critical to involve all the right people (stakeholders) across the organization, and not just management and decision-makers, as partici-

pants in any organization assessment.

Asking the “right questions” is also essential. The assessment should provide insight into your challenges and help determine some of these key questions:

How big is the gap?

Does your organization have the capacity to execute and implement changes?

How will your employees respond to the changes?

Are all your employees in your organization ready to adopt changes that help realize the vision?

What are the critical barriers to success?

Are you business partners ready to support the changes?

Are you ready? Table 5.1.2 shows a working assessment	template.

TABLE 5.1.2. Working Assessment Template

	
	
	
	Don’t
	

	Nontechnical
	
	Agree
	Know
	Disagree

	
	
	
	

	Does your organization have a good common un-
	
	
	

	derstanding of why business objectives have been met
	
	
	

	or missed in the past?
	
	
	
	

	
	
	
	

	Does your organization have a good common un-
	
	
	

	derstanding of why projects have succeeded or failed
	
	
	

	in the past?
	
	
	
	

	
	
	
	
	

	Does your organization have a change
	champion?
	
	
	

	
	
	
	

	Does your organization perceive change as unneces-
	
	
	

	sary disruption to business?
	
	
	
	

	
	
	
	

	Does your organization view changes as the man-
	
	
	

	agement fad of the day?
	
	
	
	

	
	
	
	
	

[bookmark: page879]Does your organization adopt an industry standard change management best practice and methodology approach?

Does your organization adopt and adapt learning organization philosophy and practice?

How familiar is your organization with service pro-visioning with an external service provider?

Technical

Does your organization implement any industry management standards?

ITIL

COBIT

ITSM

others

Does your organization have a well-established pol-icy to classify and manage the full lifecycle of all corporate data?

Can you tell which percentage of your applications is CPU-intensive, and which percentage of your appli-cations is data-intensive?

DISCUSSION

Gartner Research has just released the Hype Cycle report for 2009, which evaluates the maturity of over 1500 technologies and 501 technology trends.

The report suggests that the cloud computing is the latest growing trend in the IT industry. According to Gartner Research, cloud computing is expected to hit the peak of the “inflated expectations” in the next few years. It is expected that cloud computing data security and integrity issues will be refined over time as the technology matured. The pay-as-you-go business model will mature with the technology over time; it will become more transparent and will behave more like a true utility model, such that you can easily work with a service provider without worrying about the security of the data. To summarize what we have learned, one can entertain to leverage the formula developed by management consultant David Gleicher:

Dissatisfaction 3 Vision of future possibilities 3 Achievable first stepÞ

cResistance to change

[bookmark: page880]This means that any component that is equal to zero or near zero will make the left-hand side of the equation equal to or approaching zero. In order to make the change initiative successful, the product of the left-hand side equation must be a lot greater than that of the right-hand side of the equation (pain or resistance to change).

Case Study: ENCANA CORP.

EnCana Corp, Canada’s biggest energy company, announced early Sunday afternoon—on Mother’s Day—its plans to split into two discrete companies, an oil company and a natural gas company, in an effort to wring out more shareholder value with crude prices at record highs. This has all the DNA of the company’s chairman, David O’Brien: In 2001, under O’Brien’s visionary leadership, tremendous value was created when CP Limited was split up into five separate companies and one of them was PanCanadian Petroleum. The challenge is to quickly establish a corporate culture that would bridge the somewhat divergent cultures of its two predecessor companies [13, 14].

EnCana, a $65 billion energy producer formed in 2002 in a $27 billion merger of PanCanadian Petroleum (which focused on oil) and Alberta Energy Corporation (which focused on gas production), said the move should help investors better gauge and appreciate the real value of the business of the respective products and remove a so-called “holding company discount” it suffers in the stock market.

It is expected that the proposed split of EnCana would be similar to the CP Enterprise split in 2001; the reorganization of EnCana should have the same impact on the two new companies being created. It should result in (a) better market valuations because of greater transparency for shareholders and (b) greater clarity when it comes to allocating capital for expenditures within each entity.

2008 Highlights (As Published on Their Web Site): Financial (US$)

● Cash flow increased 13% per share to $12.48, or $9.4	billion.

● Operating earnings were up 9% per share to $5.86, or $4.4	billion.

Net earnings were up 53% per share to $7.91, or $5.9 billion, primarily due to an after-tax unrealized mark-to-market hedging gain of $1.8 billion

in 2008 compared to an after-tax loss of $811 million in	2007.

Capital investment, excluding acquisitions and divestitures, was up 17% to $7.1 billion.

Generated $2.3 billion of free cash flow (as defined in Note 1 on page 10), down $112 million from 2007.

Operating cash flow nearly doubled to $421 million from the company’s

Foster Creek and Christina Lake upstream projects, whereas lower refining margins and higher purchased product costs resulted in a $241 million loss in operating cash flow for the downstream business. As a result, EnCana’s integrated oil business venture with ConocoPhillips generated $180 million of operating cash flow.

[bookmark: page881]In October 2008, EnCana announced that its plan to split into two companies has been put on hold because of the current global financial crisis:

“The unprecedented uncertainty in the debt and credit markets has certainly become more difficult and this kind of extraordinary time we’ve decided to wait,” says Alan Boras, a spokesperson for EnCana.

“However, there is currently too much uncertainty in the global debt and equity markets to proceed .. . at this time. We cannot predict when the appropriate financial and market conditions will return, but EnCana will be prepared to advance the proposed transaction when it determines that the market conditions are appropriate,” Eresman said.

The discussion questions could be as follows:

How would cloud computing be a part of the solution to facilitate the splitting of the company into two effectively and efficiently and with minimal disruption to the business?

What would you advise EnCana executives to do at the 2008 worldwide

financial market meltdown and the subsequent economic	recession?

3. What would your advice be from a business and IT strategic alignment perspective if you were brought in to advise EnCana IT executives?

What were the risks if EnCana went ahead with the split?

What were the risks if EnCana put the split on hold?

If EnCana is successful in its maneuver, could its peers and competitors consider splitting their assets into distinct companies to create greater shareholder value?

What IT migration strategy would you recommend EnCana to adopt in order to achieve the highest flexibility and adaptability to changes?

Would you recommend that EnCana buy or build a duplicate IT infrastructure for each distinct organization as the most efficient way to align and support the business organization, both the new and the old?

Would you recommend cloud computing or utility computing as the solution to EnCana’s business problem?

10. How would you assess the organizational readiness for	EnCana?

Would it make any difference if IT can accommodate all the necessary changes to facilitate the split up of the firm into two distinct entities one-third of the planned required time?

DATA SECURITY IN THE CLOUD

[bookmark: page882]Taking information and making it secure, so that only yourself or certain others can see it, is obviously not a new concept. However, it is one that we have struggled with in both the real world and the digital world. In the real world, even information under lock and key, is subject to theft and is certainly open to accidental or malicious misuse. In the digital world, this analogy of lock-and-key protection of information has persisted, most often in the form of container-based encryption. But even our digital attempt at protecting infor-mation has proved less than robust, because of the limitations inherent in protecting a container rather than in the content of that container. This limitation has become more evident as we move into the era of cloud computing: Information in a cloud environment has much more dynamism and fluidity than information that is static on a desktop or in a network folder, so we now need to start to think of a new way to protect information.

If we can start off our view of data security as more of a risk mitigation exercise and build systems that will work with humans (i.e., human-centric), then perhaps the software we design for securing data in the cloud will be successful.

THE CURRENT STATE OF DATA SECURITY IN THE	CLOUD

At the time of writing, cloud computing is at a tipping point: It has many arguing for its use because of the improved interoperability and cost savings it offers. On the other side of the argument are those who are saying that cloud computing cannot be used in any type of pervasive manner until we resolve the security issues inherent when we allow a third party to control our information. These security issues began life by focusing on the securing of access to the datacenters that cloud-based information resides in.

As I write, the IT industry is beginning to wake up to the idea of content - centric or information-centric protection, being an inherent part of a data object. This new view of data security has not developed out of cloud computing, but instead is a development out of the idea of the “de-perimerization” of the enterprise. This idea was put forward by a group of Chief Information Officers (CIOs) who formed an organization called the Jericho Forum .

HOMO SAPIENS AND DIGITAL	INFORMATION

Cloud computing offers individuals and organizations a much more fluid and open way of communicating information. This is a very positive move forward in communication technology, because it provides a more accurate mimic of the natural way that information is communicated between individuals and groups of human beings. Human discourse, including the written word, is, by nature, an open transaction: I have this snippet of information and I will tell you, verballyor in written form, what that information is. If the information is sensitive, it maybe whispered, or, if written on paper, passed only to those allowed to read it. The result is that human-to-human information communication will result in a

[bookmark: page883]very fluid discourse. Cloud computing is a platform for creating the digital equivalent of this fluid, human-to-human information flow, which is something that internal computing networks have never quite achieved. In this respect, cloud computing should be seen as a revolutionary move forward in the use of technology to enhance human communications.

CLOUD COMPUTING AND DATA SECURITY	RISK

The cloud computing model opens up old and new data security risks. By its very definition, Cloud computing is a development that is meant to allow more open accessibility and easier and improved data sharing. A user uploading or creating cloud-based data include those data that are stored and maintained by a third-party cloud provider such as Google, Amazon, Microsoft, and so on. This action has several risks associated with it: Firstly, it is necessary to protect the data during upload into the data center to ensure that the data do not get hijacked on the way into the database. Secondly, it is necessary to the stores the data in the data center to ensure that they are encrypted at all times. Thirdly, and perhaps less obvious, the access to those data need to be controlled; this control should also be applied to the hosting company, including the administrators of the data center.

A recent survey by Citrix which polled UK IT directors and managers showed that two-thirds of UK companies were computing in the cloud. Of those polled, one-third said they thought there were security risks and 22% said they had concerns over the control of their data in the cloud .

The development of Web 2.0 technologies has created a new and more dynamic method of communicating information; blogs, social networking sites, Web conferencing, wikis, podcasts and ultimately cloud computing itself offer new and novel methods of getting information from a to b; unfortunately, this can also often be via x, y, and z.

Compliance with data security directives and acts still needs to be met, no matter what platform for communication is being used. The lack of security and privacy within a cloud computing environment is hotly debated over whether this problem is perceived or real. However, reports by IT industry analysts suggest that this is a real problem and must be overcome to allow full utilization of cloud computing. A recent report by IDC which surveyed 244 respondents identified security as the main challenge for cloud computing, with 74.6% of the vote stating this as a stumbling block to the uptake of the technology . Reports by Gartner and Gigacom, specifically on cloud security, also confirms this [9, 10].

We can thus conclude that the risk profile of an organization, or individual, using the cloud to store, manage, distribute, and share its information has several layers. Each layer can be seen as a separate, but tied, level of risk that can be viewed independently, but these risks should be approached as a whole, to make sure that areas constituting a “weakest link” do not end up built into the system.

[bookmark: page884]CLOUD COMPUTING AND IDENTITY

Digital identity holds the key to flexible data security within a cloud environ-ment. This is a bold statement, but nonetheless appears to be the method of choice by a number of industry leaders. However, as well as being a perceived panacea for the ills of data security, it is also one of the most difficult technological methods to get right. Identity, of all the components of informa - tion technology, is perhaps the most closest to the heart of the individual. After all, our identity is our most personal possession and a digital identity represents who we are and how we interact with others on-line.

The developments seen in the area of a cloud-based digital identity layer have been focused on creating a “user-centric” identity mechanism. User-centric identity, as opposed to enterprise-centric identity, is a laudable design goal for something that is ultimately owned by the user. However, the Internet tenet of “I am who I say I am” cannot support the security requirements of a data protection methodology based on digital identity, therefore digital identity, in the context of a security system backbone, must be a verified identity by some trusted third party: It is worth noting that even if your identity is verified by a trusted host, it can still be under an individual’s management and control.

Identity, Reputation, and Trust

One of the other less considered areas of digital identity is the link between the identity and the reputation of the individual identity owner. Reputation is a real-world commodity that is a basic requirement of human-to-human relation-ships: Our basic societal communication structure is built upon the idea of reputation and trust. Reputation and its counter value, trust, is easily transferable to a digital realm: eBay, for example, having partly built a successful business model on the strength of a ratings system, builds up the reputation of its buyers and sellers through successful (or unsuccessful) transactions. These types of reputation systems can be extremely useful when used with a digital identity. They can be used to associate varying levels of trust with that identity, which in turn can be used to define the level (granular variations) of security policy applied to data resources that the individual wishes to access.

Identity for Identity’s Sake

An aspect of identity that again is part of our real world and needs to be mimicked in the digital world is that of “multiple identities,” because in the cloud you may find that you need a different “identity” or set of identifiers to access resources or perform different tasks.

Cloud Identity: User-Centric and Open-Identity Systems

As the use of the Internet and cloud computing increases, the risks associated

[bookmark: page885]with identifying yourself, via this medium, have also increased. Identity fraud and theft are a real threat to the uptake and acceptance of cloud computing; and as already stated, a robust digital identity can be the backbone of data security in the cloud.

Internet identities such as information cards were originally designed to overcome the problem of “password fatigue,” which is an increasing problem for users needing to remember multiple log-on credentials for Web site access. Similarly, OpenID was developed for the purpose of an easier logon into multiple Web sites, negating the need to remember username/logon creden-tials. Information cards differ from OpenID in a fundamental manner in that information cards have an architecture built on the principle of “claims,” claims being pieces of information that can be used to identify the card holder. At this juncture it is worth pointing out that, although OpenID can use claims, the architecture behind OpenID makes this use of claims less flexible —and, more importantly, less dynamic in nature—than those offered by information cards.

The Philosophy of User-Centric Identity

Digital identities are a still evolving mechanism for identifying an individual, particularly within a cloud environment; and, as such, the philosophy behind the idea is also still being formed. However, one area that is being recognized as a basic component of an identity is that of identity ownership being placed upon the individual (user-centric). Placing ownership with an individual then sets in place a protocol around the use of the identity.

User-Centric but Manageable

In situations that require a degree of nonrepudiation and verification, where a user is who they say they are—that is, situations that require a digital identity to provide access control and security—user-centric identities can still be under user control and thus user-centric (the user choosing which identity and which identity claims to send across a transaction path) but must be issued and managed by a trusted host able to verify the user (for example, the users bank). This may seem like a security paradox, but it is actually a balanced way of using a digital identity to assign security policies and control while retaining a high measure of privacy and user choice.

What Is an Information	Card?

Information cards permit a user to present to a Web site or other service (relying party) one or more claims, in the form of a software token, which may be used to uniquely identify that user. They can be used in place of user name/ passwords, digital certificates, and other identification systems, when user identity needs to be established to control access to a Web site or other resource, or to permit digital signing.

Information cards are part of an identity meta-system consisting of:

[bookmark: page886]
Identity providers (IdP), who provision and manage information cards, with specific claims, to users.

Users who own and utilize the cards to gain access to Web sites and other resources that support information cards.

An identity selector/service, which is a piece of software on the user’s desktop or in the cloud that allows a user to select and manage their cards.

Relying parties. These are the applications, services, and so on, that can use an information card to authenticate a person and to then authorize an action such as logging onto a Web site, accessing a document, signing content, and so on.

Each information card is associated with a set of claims which can be used to identify the user. These claims include identifiers such as name, email address, post code, and so on. Almost any information may be used as a claim, if supported by the identity provider/relying party; for example, a security clearance level could be used as a claim, as well as a method of assigning a security policy.

One of the most positive aspects of an information card is the user-centric nature of the card. An information card IdP can be set up so that the end users themselves can self-issue a card, based on the required claims that they themselves input—the claims being validated if needed. Alternatively, the claims can be programmatically input by the IdP via a Web service or similar, allowing the end user to simply enter the information card site and download the card.

Using Information Cards to Protect Data

Information cards are built around a set of open standards devised by a consortium that includes Microsoft, IBM, Novell, and so on.

The original remit of the cards was to create a type of single sign on system for the Internet, to help users to move away from the need to remember multiple passwords. However, the information card system can be used in many more ways. Because an information card is a type of digital identity, it can be used in the same way that other digital identities can be used. For example, an information card can be used to digitally sign data and content and to control access to data and content. One of the more sophisticated uses of an information card is the advantage given to the cards by way of the claims system. Claims are the building blocks of the card and are dynamic in that they

can be changed either manually or programmatically, and this change occurs in real time: As soon as the change is made, it can be

[bookmark: page887]reflected when the card is used, for example, by a subsequent change in the access or content usage policy of the resource requiring the information card. This feature can be used by

	applications
	that rely on the claims within an information card to

	perform
	a task (such as control access to a cloud-based data

resource such as a document). A security policy could be applied to a data resource that will be enacted when a specific information card claim is presented to it: If this claim changes, the policy can subsequently change.

For example, a policy could be applied to a Google Apps document specifying that access is allowed for user A when they present their information card with claim “security clearance level 5 3” and that post access, this user will be able to view this document for 5 days and be allowed to edit it. The same policy could also reflect a different security setting if the claim changes, say to a security clearance level 5 1; in this instance the user could be disallowed access or allowed access with very limited usage rights.

Weakness and Strengths of Information Cards

The dynamic nature of information cards is the strength of the system, but the weakness of information cards lies in the authentication. The current informa-tion card identity provisioning services on offer include Microsoft Geneva, Parity, Azigo, Higgins Project, Bandit, and Avoco Secure. Each offers varying levels of card authentication and are chosen from Username and password, Kerberos token, x509 digital certificate, and personal card. Each of these methods has drawbacks.

Cross-Border Aspects of Information Cards

Cloud computing brings with it certain problems that are specific to a widely distributed computing system. These problems stem from the cross-border nature of cloud computing and the types of compliance issues arising out of such a situation.

The use of information cards as a method of digitally identifying an individual within the cloud (as well as on the desktop) will gain ground, as its usage model extends with increased support for information cards, from relying parties and as usability through the use of cloud-based selectors becomes more mainstream.

5.2.6	THE CLOUD, DIGITAL IDENTITY, AND DATA	SECURITY

[bookmark: page888]
When we look at protecting data, irrespective of whether that protection is achieved on a desktop, on a network drive, on a remote laptop, or in a cloud, we need to remember certain things about data and human beings. Data are most often information that needs to be used; it may be unfinished and require to be passed through several hands for collaboration for completion, or it could be a finished document needing to be sent onto many organizations and then passed through multiple users to inform. It may also be part of an elaborate workflow, across multiple document management systems, working on plat-forms that cross the desktop and cloud domain. Ultimately, that information may end up in storage in a data center on a third-party server within the cloud, but even then it is likely to be re-used from time to time. This means that the idea of “static” data is not entirely true and it is much better (certainly in terms of securing that data) to think of it as highly fluid, but intermittently static.

One of the other aspects of data security we need to assess before embarking on creating a security model for data in the cloud is the levels of need; that is, how secure do you want that data to be? The levels of security of any data object should be thought of as concentric layers of increasingly pervasive security, which I have broken down here into their component parts to show the increasing granularity of this pervasiveness:

Level 1: Transmission of the file using encryption	protocols

Level 2: Access control to the file itself, but without encryption of the content Level 3: Access control (including encryption of the content of a data object) Level 4: Access control (including encryption of the content of a data object) also including rights management options (for example, no copying

content, no printing content, date restrictions,	etc.)

Other options that can be included in securing data could also include watermarking or red-acting of content, but these would come under level 4 above as additional options.

You can see from the increasing granularity laid out here that security, especially within highly distributed environments like cloud computing, is not an on/off scenario. This way of thinking about security is crucial to the successful creation of cloud security models. Content level application of data security gives you the opportunity to ensure that all four levels can be met by a single architecture, instead of multiple models of operation which can cause interoperability issues and, as previously mentioned, can add additional elements of human error, leading to loss of security.

CONTENT LEVEL SECURITY—PROS AND CONS

Much of the substance of this chapter has described a new way of thinking about securing data, so that data within a cloud can remain fluid, accessible on

[bookmark: page889]multiple nodes and yet remain protected throughout its life cycle. The basis of this new security model has been described as “content or information-centric.”

What this means in reality is that the content that makes up any given data object (for example, a Word document) is protected, as opposed to the file — that is, the carrier of that information being protected. This subtle difference in approach gives us a major advantage in terms of granularity and choice of protection level, as well as persistence of protection. We will take a Word document as our example here to outline the main pros and cons of this type of security approach.

You can easily see the advantages that are conferred on data protected at the content level: greater control, more focused access control, increased granular protection over content, and assurance within a cloud-hosted system. But what, if any, disadvantages come with this type of methodology?

Transfer of the data between application and database, or human-to-human transfer, can protect the data as an encrypted package, decrypted when access is granted. Content-centric security measures need to be compatible with both database security and secure transfer of data within a cloud environment. Protecting the content of our Word document needs to be done in such a manner that it does not impact the storage of that data.

FUTURE RESEARCH DIRECTIONS

This chapter has spent some time discussing digital identity within a cloud framework. The reason for this emphasis was to show the possibilities that can be achieved, in terms of data security, when using digital identity as the backbone for that security. Digital identity is an area that is, as I write, undergoing some revolutionary changes in what an identity stands for and how it can be leveraged. As a means of controlling access to information within a cloud environment, the idea of using a person’s digital identity to do this, as opposed to using authentication alone, or some sort of access control list setup, opens up new opportunities, not only from a technological standpoint but also from the viewpoint that ownership of information and privacy of that information are often inherently linked to individuals and groups. And, as such, how they access this information becomes much more natural when that access is by means of truly and digitally identifying themselves.

Currently there are methods of creating more private identity transactions which can hide or obfuscate an identity attribute (a social security number, for example) such as zero-knowledge technology (sometimes called minimal disclosure) or similar Privacy Enhancing Technologies (PETs) ; however, these methods are still not used in a pervasive manner, and this may be because of the need to build more user control into the technologies and to add greater granularity into such systems.

Another area that warrants research is auditing of the access to and use of information in the cloud. In particular, because of the cross-border nature of cloud computing, there is likely to be a greater need for location-aware security restrictions to be used. However, one area that does need further work is that of

[bookmark: page890]locking data access to a geographic location. How that geographic location is assessed is the salient area for research, because currently GPS systems are little used and come with inherent technical difficulties such as the ability to receive GPS coordinates when inside a building.

5.3 LEGAL ISSUES IN CLOUD COMPUTING

“Even before the blades in the data center went down, I knew we had a problem. That little warning voice in the back of my head had become an ambulance siren screaming right into my ears. We had all our customers’ applications and data in there, everything from the trivial to the mission critical. I mumbled one of those prayers that only God and IT types hear, hoping our decisions on redundancy were the right ones. We had a disaster recovery plan, but it had never really been battle-tested. Now we were in trouble; and the viability of not just our enterprise, but also that of many of our customers, hung in the balance. I can take the hits associated with my own business, but when someone else’s business could sink... it’s different.

I looked over at Mike and Nihkil, our resident miracle workers. The color had drained from both of their faces. ‘I’ve given you all she’s got, Captain,’

Nikhil said in his best Scotty from Star Trek voice. Looking over at Mike and sinking even lower into my seat, I knew it was going to be a long and painful day... .”

Definition of Cloud Computing

This chapter assumes that the reader is familiar with the manner in which cloud computing is defined as set forth by the National Institute of Standards and Technology , a federal agency of the United States Government.

In brief, cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released. This cloud model is composed of five essential characteristics, three service models, and four deployment models.

Overview of Legal Issues

The legal issues that arise in cloud computing are wide ranging. Significant issues regarding privacy of data and data security exist, specifically as they relate to protecting personally identifiable information of individuals, but also as they relate to protection of sensitive and potentially confidential business information either directly accessible through or gleaned from the cloud

[bookmark: page891]systems (e.g., identification of a company’s customer by evaluating traffic across the network). Additionally, there are multiple contracting models under which cloud services may be offered to customers (e.g., licensing, service agreements, on-line agreements, etc. Finally, commercial and business considerations require some attention. What happens to customer information, applications, and data when a cloud provider is acquired? What are the implications for that same set of informa- tion, applications, and data when a cloud provider is files bankruptcy or ceases to do business? All of these issues will be explored.

Distinguishing Cloud Computing from Outsourcing and Provision of Application Services

Cloud computing is different from traditional outsourcing and the application service provider (ASP) model in the following ways:

In general, outsourcers tend to take an entire business or IT process of a customer organization and completely run the business for the benefit of the customer.

In the ASP model, the service provided is a software service. The software application may have been used previously in-house by the customer, or it may be a new value-added offering. The ASP offering is a precursor to what is now called “software as a service.” The transaction is negotiated, though typically it is not as complex and highly negotiated as a traditional outsourcing arrangement.

Cloud computing covers multiple service models (i.e, software, infrastruc - ture, and platform as a service). As of this writing, access to cloud computing services are (at least in the public cloud computing frame-work), for the most part, one-size-fits-all ‘click here to accept’ agreements, not negotiated arrangements.

DATA PRIVACY AND SECURITY ISSUES

U.S. Data Breach Notification	Requirements

Generally speaking, data breach is a loss of unencrypted electronically stored personal information. This information is usually some combination of name and financial information (e.g., credit card number, Social Security Number).

Almost all 50 states in the United States now require notification of affected persons (i.e., residents of the individual state), upon the occurrence of a data breach. As of this writing, the European Union was considering data breach legislation.

[bookmark: page892]
U.S. Federal Law Compliance

Gramm—Leach—Bliley Act: Financial Privacy Rule. The Gramm—Leach—Bliley Act (GLB) requires, among other things, that financial institutions implement procedures to ensure the confidentiality of personal information and to protect against unauthorized access to the information. Various United States government agencies are charged with enforcing GLB, and those agencies have implemented and currently enforce standards .

The implications to the cloud provider that is providing services to financial institutions are that the cloud provider will, to some degree, have to (1) comply with the relevant portions of GLB by demonstrating how it prevents un-authorized access to information, (2) contractually agree to prevent unauthor - ized access, or (3) both of the above.

The Role of the FTC: Safeguards Rule and Red Flags Rule. At theUnited States federal level, the Federal Trade Commission (FTC) working under the auspices of the FTC Act has been given authority to protect consumers and their personal information. The Safeguards Rule mandated by GLB and enforced by the FTC requires that all businesses significantly involved in the provision of financial services and products have a written security plan to protect customer information. The plan must include the following elements :

Designation of one or more employees to coordinate its information security program;

Identification and assessment of the risks to customer information in each

relevant area of the company’s operation, and evaluation of the effective-ness of the current safeguards for controlling these risks;

Designing and implementing a safeguards program, and regularly mon-itoring and testing it;

Selection of service providers that can maintain appropriate safeguards; and

Evaluation and adjustment of the program in light of relevant circum-

stances, including (a) changes in the firm’s business or operations or

(a) the results of security testing and	monitoring.

In 2007, as part of the Fair and Accurate Credit Transaction Act of 2003 (FACT) , the FTC promulgated the Red Flag Rules1 (these rules were scheduled to go into effect in November 2009, but have been delayed several times). These rules are intended to curb identity theft by having financial institutions identify potential “red flags” for activities conducted through the organization’s systems that could lead to identity theft.

[bookmark: page893]Health Insurance Portability and Accountability Act & HITECH Act. TheHealth Information Technology for Economic and Clinical Health Act (HITECH ACT) requires notification of a breach of unencrypted health records (similar to that under state data breach notification requirements previously discussed) for all covered entitites that are required to comply with the Health insurance Portability and Accountability Act of 1996 (HIPAA) .

USA PATRIOT Act. Shortly after September 11, 2001, the United StatesCongress passed the “Uniting and Strengthening America by Providing Appropriate Tools Required to Intercept and Obstruct Terrorism Act” (USA

PATRIOT Act) of 2001. Neither the cloud user nor its customer likely has much recourse in such an instance.

International Data Privacy Compliance

European Union Data Privacy Directive. In 1995, the European Union

(EU) passed the “European Union Directive on the Protection of Individuals with Regard to the Processing of Personal Data and the Movement of Such Data Privacy Directive” (Directive)

Article 17 of the Directive requires that a data controller (i.e., the person or organization who determines the purposes and means of processing of the
personal data) “implement appropriate technical and organizational controls	to

protect personal data against accidental or unlawful destruction or acci- dental loss, alteration, unauthorized disclosure or access... .” Article 17 also mandates that there be a written contract between a data controller and a data processor (i.e., anyone who processes data for the controller) that requires, among other things, that the data processor act only on instructions from the data controller. Since a cloud provider will likely be a data processor, Article 17 is particularly important. The language of the cloud provider’s contract is also particularly important if the cloud provider resides in the EU.

If a cloud provider wishes to conduct business in the EU, place data in its possession in the EU, or otherwise access the personal information of those in the EU, there are compliance obligations under the Directive that must be studied and followed. The cloud user must ask questions regarding geographic placement of data, compliance methods, and so on, and get satisfactory answers prior to placing its personal data (whether through software, platform, or infrastructure as a service) into a cloud that might include data center operations in an EU member country.

A Sampling of Other Jurisdictions: Canada and Australia. Many coun-tries have data protection or data privacy regimes in place, but the coverage and effect of such regimes is varied. For example, Argentina’s regime is similar to the EU approach. Brazil, like many countries, has a constitutional right to privacy.

Canada’s Personal Information Protection and Electronic Documents Act

[bookmark: page894](PIPEDA). PIPEDA is intended to “support and promote electronic commerceby protecting personal information that is collected, used, or disclosed in certain circumstances.. .” . Canada, unlike the EU with its state-to-state approach, has taken an organization-to-organization approach to privacy. In essence, organizations are held accountable for the protection of personal information it transfers to third parties, whether such parties are inside or outside of Canada.

Australia Privacy Act. Australia’s Privacy Act	is based on (a) 11 “In-

formation Privacy Principles” that apply to the public sector and (b) 10 “National Privacy Principles” that apply to the private sector. Australian entities may send personal data abroad, so long as (1) the entity believes the recipient will uphold the principles, it has consent from the data subject, or (3) the transfer is necessary to comply with contractual obligations.

The Office of the Privacy Commissioner expects that Australian organiza-tions will ensure that cloud providers that collect and handle personal information comply with National Privacy Principles 4 and 9. They require that an organization (1) take steps to ensure that the personal information it holds is accurate, up-to-date, and secure and (2) protect personal information that it transfers outside Australia.

CLOUD CONTRACTING MODELS

Licensing Agreements Versus Services	Agreements

Summary of Terms of a License Agreement. A traditional software licenseagreement is used when a licensor is providing a copy of software to a licensee for its use (which is usually non-exclusive). This copy is not being sold or transferred to the licensee, but a physical copy is being conveyed to the licensee. The software license is important because it sets forth the terms under which the software may be used by the licensee. The license protects the licensor against the inadvertent transfer of ownership of the software to the person or company that holds the copy. It also provides a mechanism for the licensor of the software to (among other things) retrieve the copy it provided to the licensee in the event that the licensee (a) stops complying with the terms of the license agreement or (b) stops paying the fee the licensee charges for the license.

Summary of Terms of a Service Agreement. A service agreement, on theother hand, is not designed to protect against the perils of providing a copy of software to a user. It is primarily designed to provide the terms under which a service can be accessed or used by a customer. The service agreement may also set forth quality parameters around which the service will be provided to the users.

[bookmark: page895]Value of Using a Service Agreement in Cloud Arrangements. In each ofthe three permutations of cloud computing (SaaS, PaaS, and IaaS), the access to the cloud-based technology is provided as a service to the cloud user. The control and access points are provided by the cloud provider.

On-Line Agreements Versus Standard	Contracts

There are two contracting models under which a cloud provider will grant access to its services. The first, the on-line agreement, is a click wrap agreement with which a cloud user will be presented before initially accessing the service. A click wrap is the agreement the user enters into when he/she checks an “I Agree” box, or something similar at the initiation of the service relationship. The agreement is not subject to negotiation and is generally thought to be a contract of adhesion (i.e., a contract that heavily restricts one party while leaving the other relatively free).

The Importance of Privacy Policies Terms and Conditions

The privacy policy of a cloud provider is an important contractual document for the cloud user to read and understand. Why? In its privacy policy the cloud provider will discuss, in some detail, what it is doing (or not doing, as the case may be) to protect and secure the personal information of a cloud user and its customers.

The cloud provider should be explicit in its privacy policy and fully describe what privacy security, safety mechanisms, and safety features it is implement - ing. As further incentive for the cloud provider to employ a “do what we say we do” approach to the privacy policy, the privacy policy is usually where the FTC begins its review of a company’s privacy practices as part of its enforcement actions. If the FTC discovers anomalies between a provider’s practices and its policies, then sanctions and consent decrees may follow.

Risk Allocation and Limitations of Liability. Simply stated, the limitationof liability in an agreement sets forth the maximum amount the parties will agree to pay one another should there be a reason to bring some sort of legal claim under the agreement. The cloud user will pay a fee premium for shifting the liability and contractual risk to the cloud provider. The cloud provider’s challenge, as it sees the risk and liability profile shift requiring it to assume heightened provider obligations, will be to appropriately mitigate contract risk using technological or other types of solutions where possible. Examples of mitigation could include implementation of robust and demonstrable informa-tion security programs, implementing standards or best practices, developing next generation security protocols, and enhancing employee training.

JURISDICTIONAL ISSUES RAISED BY VIRTUALIZATION AND DATA

LOCATION

[bookmark: page896]Jurisdiction is defined as a court’s authority to judge acts committed in a certain territory. The geographical location of the data in a cloud computing environment will have a significant impact on the legal requirements for protection and handling of the data. This section highlights those issues.

Virtualization and Multi-tenancy

Virtualization. Computer virtualization in its simplest form is where onephysical server simulates being several separate servers. For example, in an enterprise setting, instead of having a single server dedicated to payroll systems, another one dedicated to sales support systems, and still a third dedicated to asset management systems, virtualization allows one server to handle all of these functions. A single server can simulate being all three. Each one of these simulated servers is called a virtual machine.

Virtualization across a single or multiple data centers makes it difficult for the cloud user or the cloud provider to know what information is housed on various machines at any given time. The emphasis in the virtualized environ-ment is on maximizing usage of available resources no matter where they reside.

Multi-tenancy. Multi-tenancy refers to the ability of a cloud provider todeliver software as-a-service solutions to multiple client organizations (or tenants) from a single, shared instance of the software. The cloud user’s information is virtually, not physically, separated from other users. The major benefit of this model is cost-effectiveness for the cloud provider. Some risks or issues with the model for the cloud user include (a) the potential for one user to be able to access data belonging to another user and (b) difficulty to back up and restore data .

The Issues Associated with the Flexibility of Data-Location

One of the benefits of cloud computing from the cloud provider’s perspective is the ability of the cloud provider to move data among its available data center resources as necessary to maximize the efficiencies of it overall system. From a technology perspective, this ability to move data is a reasonably good solution to the problem of under utilized machines.

Data Protection. In fact, in the cloud environment it is possible that the samedata may be stored in multiple locations at the same time. For example, real time-transaction data may be in one geographic location while the backup or disaster recovery systems may be elsewhere. It is also likely that the agreement governing the services says nothing about data location. There are exceptions, however. In fact, a few cloud providers (of which Amazon.com is one) are allowing cloud customers of certain service offerings to choose whether their

[bookmark: page897]data are kept in a U.S. or European data center .

Examples of the issues raised by data location are highlighted by Robert Gellman of the World Privacy Forum:

The European Union’s Data Protection Directive offers an example of the importance of location on legal rights and obligations. Under Article 4 . .. [O]nce EU law applies to the personal data, the data remains subject to the law, and the export of that data will thereafter be subject to EU rules limiting transfers to a third country. Once an EU Member State’s data protection law attaches to personalinformation, there is no clear way to remove the applicability of the law to the data .

Other Jurisdiction Issues

Confidentiality and Government Access to Data. Each jurisdiction (andperhaps states or provinces within a jurisdiction) has its own regime to protect the confidentiality of information. In the cloud environment, given the potential movement of data among multiple jurisdictions, the data housed in a jurisdiction is subject to the laws of that jurisdiction, even if its owner resides elsewhere. Given the inconsistency of confidentiality protection in various jurisdictions, a cloud user may find that its sensitive data are not entitled to the protection with which the cloud user may be familiar, or that to which it contractually agreed.

Subcontracting. A cloud provider’s use of a third-party subcontractor tocarry out its business may also create jurisdictional issues. The existence or nature of a subcontracting relationship is most likely invisible to the cloud user.

International Conflicts of Laws

The body of law known as “conflict of laws” acknowledges that the laws of different countries may operate in opposition to each other, even as those laws relate to the same subject matter. In such an event, it is necessary to decide which country’s law will be applied.

In a cloud environment, the conflicts of laws issues make the cloud provider’s decisions regarding cross-geography virtualization and multi-tenancy, the cloud user’s lack of information regarding data location, and the potential issues with geographically diverse subcontractors highly relevant.

COMMERCIAL	AND	BUSINESS	CONSIDERATIONS—A	CLOUD

USER’S VIEWPOINT

[bookmark: page898]As potential cloud users assess whether to utilize cloud computing, there are several commercial and business considerations that may influence the decision-making. Many of the considerations presented below may manifest in the contractual arrangements between the cloud provider and cloud user.

Minimizing Risk

Maintaining Data Integrity. Data integrity ensures that data at rest are notsubject to corruption. Multi-tenancy is a core technological approach to creating efficiencies in the cloud, but the technology, if implemented or maintained improperly, can put a cloud user’s data at risk of corruption, contamination, or unauthorized access. A cloud user should expect contractual provisions obligating a cloud provider to protect its data, and the user ultimately may be entitled to some sort of contract remedy if data integrity is not maintained.

Accessibility and Availability of Data/SLAs. The service-level agreement

(SLA) is the cloud provider’s contractually agreed-to level of performance for certain aspects of the services. The SLA, specifically as it relates to availability of services and data, should be high (i.e., better than 99.7%), with minimal scheduled downtime (scheduled downtime is outside the SLA). Regardless of the contract terms, the cloud user should get a clear understanding of the cloud provider’s performance record regarding accessibility and availability of services and data. A cloud provider’s long-term viability will be connected to its ability to provide its customers with almost continual access to their services and data. The SLAs, along with remedies for failure to meet them (e.g., credits against fees), are typically in the agreement between the cloud provider and cloud user.

Disaster Recovery. For the cloud user that has outsourced the processing ofits data to a cloud provider, a relevant question is, What is the cloud provider’s disaster recovery plan? What happens when the unanticipated, catastrophic event affects the data center(s) where the cloud services are being provided? It is important for both parties to have an understanding of the cloud provider’s disaster recovery plan.

Viability of the Cloud Provider

In light of the wide diversity of companies offering cloud services, from early stage and startup companies to global, publicly traded companies, the cloud provider’s ability to survive as business is an important consideration for the cloud user. A potential cloud user should seek to get some understanding about the viability of the cloud provider, particularly early-stage cloud providers.

Why is this important? A cloud user will make an investment in (1) integrating the cloud services into its business processes and (2) migrating the data from its environment into the cloud environment.

[bookmark: page899]Does Escrow Help?. Software escrow is the provision of a copy of the sourcecode by the owner or licensor of the source code to a neutral third party (an escrow agent) for safekeeping for the benefit of a licensee or user of the code (the user is a beneficiary). The escrow agent releases the software to the beneficiary upon the occurrence of certain predefined events—for example, bankruptcy of the owner. So, at least for SaaS cloud users, escrow is an option. But escrow is not available to the cloud user unless expressly offered by the cloud provider in its agreement.

What is a cloud user to do? Assuming that the cloud user has some flexibility to negotiate contract terms, the reasoned approach is for the cloud user to get contractual assurances that in the event of cessation of business, or some lesser event (e.g., bankruptcy), it will at least have access to its data and information without penalty or without being subject to the bankruptcy laws of a jurisdiction as a prerequisite. If the contract does not provide such a right, a user must determine whether to simply run the risk regarding the provider’s viability. Equally as important, the cloud user should consider having a business continuity plan that contemplates a cloud provider no longer being able to provide a service.

Protecting a Cloud User’s Access to Its Data

Though the ability for the cloud user to have continual access to the cloud service is a top consideration, a close second, at least from a business continuity standpoint, is keeping access to its data. This section introduces three scenarios that a cloud user should contemplate when placing its data into the cloud. There are no clear answers in any scenario. The most conservative or risk-averse cloud user may consider having a plan to keep a copy of its cloud-stored dataset in a location not affiliated with the cloud provider.

Scenario 1: Cloud Provider Files for Bankruptcy. In a bankruptcyproceeding, data are treated as a non-intellectual asset and under Section 363 of the U.S. Bankruptcy Code, and it is subject to disposition in a manner similar to other non-intellectual assets. Data may be consumer-type data, or it may be the business-level transaction data of the bankrupt cloud provider’s business customers.

The cloud user is probably equally concerned about keeping its data (regardless of type) private and out of third-party hands without its consent. The cloud user’s options are closely tied to the language of the privacy policy of the cloud provider. That language, along with an analysis by a “consumer privacy ombudsman,” if one is appointed, will likely determine the fate of personally identifiable information. The ombudsman uses a multi-factor assessment that includes a review of (a) the potential gains or losses to consumers if the sale was approved and (b) potential mitigating alternatives.6 Any transfer is likely to be under privacy terms similar to those of the cloud provider. There is no equivalent analysis undertaken by the ombudsman for business-level transaction data. Business data are likely to be handled at the will of the bankruptcy court. The good news is that a cloud user probably will not

[bookmark: page900]lose access to its data. However, a third-party suitor to the bankrupt cloud provider may gain access to such data in the process.

Scenario 2: Cloud Provider Merges or Is Acquired. Any number ofsituations could lead to the transfer of the cloud provider’s operation and the information associated with it, to a third party. The most likely scenarios include the merger or acquisition of the business, or the sale of a business unit or service line. Since a cloud user is unlikely to be notified prior to the closing of a transaction, once again the privacy policy is the best place to look to determine what would happen to user data in such an event. The click wrap agreement will clarify the termination options available to the cloud user should it be dissatisfied with the new ownership.

Scenario 3: Cloud Provider Ceases to Do Business. As a best case, ifthere is an orderly shutdown of a cloud provider as part of its cessation

activities, the cloud user may have the ability to retrieve its data as part of the shut-down activities. In the event that a cloud provider simply walks away and shuts down the business, cloud users are most likely left with only legal remedies, filing suit, for example, to attempt to get access to its data.

SPECIAL TOPICS

The Cloud Open-Source Movement

In Spring 2009 a group of companies, both technology companies and users of technology, released the Open Cloud Manifesto [25]. The manifesto’s basic premise is that cloud computing should be as open like other IT technologies. The manifesto sets forth five challenges that it suggests must be overcome before the value of cloud computing can be maximized in the marketplace. These challenges are (1) security, (2) data and applications interoperability,

(2) data and applications portability, (4) governance and management, and

(5) metering and monitoring. The manifesto suggests that open standards and transparency are methods to overcome these challenges. It then suggests that openness will benefit business by providing (a) an easier experience transition-ing to a new provider, (b) the ability for organizations to work together,

(b) speed and ease of integration, and (d) a more available, cloud-savvy talent pool from which to hire.

Litigation Issues/e-Discovery

From a U.S. law perspective, a significant effort must be made during the

[bookmark: page901]course of litigation to produce electronically stored information (ESI). This production of ESI is called “e-discovery.” The overall e-discovery process has three basic components: (1) information management, where a company decides where and how its information is processed and retained, (2) identify-ing, preserving, collecting, and processing ESI once litigation has been threatened or started, and (3) review, processing, analysis, and production of the ESI for opposing counsel [26]. The Federal Rules of Civil Procedure require a party to produce information within its “possession, custody, or control.” Courts will likely recognize that the ESI may not be within a cloud user’s possession, but courts will suggest, and maybe assume, that ESI is within its control.

5.4 ACHIEVING PRODUCTION READINESS FOR

CLOUD SERVICES

The latest paradigm that has emerged is that of cloud computing where new evolution of operating model enables IT services to be delivered through next - generation data-center infrastructures consisting of compute, storage, applica-tions and databases, built over virtualization technology .

Cloud service providers who are planning to build infrastructure to support cloud services should first justify their plans through a strategic and business planning process. Designing, building, implementing, and commissioning an underlying technology infrastructure to offer cloud services to a target market segment is merely a transformation process that the service provider must undertake to prepare for supporting the processes, management tools, technol-ogy architectures, and foundation to deliver and support their cloud services. These foundation elements will be used to produce the cloud service that will be ready for consumption.

SERVICE MANAGEMENT

The term service management has been defined in many ways by analysts and business practitioners.

The Stationery Office	defines service management as follows:

[bookmark: page902]Service management is more than just a set of capabilities. It is also a professional practice supported by an extensive body of knowledge, experience, and skill.

Van Bon et al. and van der Veen describe service management	as:

The capacity of an organization to deliver services to	customers.

Based on analysis and research of service management definitions, we define service management as a set of specialized organizational capabilities for providing value to customers in the form of services. The practice of service management have expanded over time, from traditional value-added service such as banks, hotels, and airlines into IT provider model that intends to adopt service-oriented approach in managing and delivering IT services.

This delivery model of IT services to the masses, where assets, resources, and capabilities are pooled together, is what we would term a form of cloud service. The lure of cloud services is its ubiquity, pervasiveness, elasticity, and flexibility of paying only for what you use.

PRODUCER—CONSUMER RELATIONSHIP

As we contemplate on the new paradigm of delivering services, we can reflect upon the closely knit underlying concept of the classical producer—consumer relationship in the design, implementation, and production of the service as well as in the consumption of the service. The producer—consumer relationship diagram is shown in Figure 5.4.1.

The producer, also known as cloud service provider, refers to the party who strategizes, designs, invests, implements, transitions, and operates the under-lying infrastructure that supplies the assets and resources to be delivered as a cloud service. The objective of the producer is to provide value-add as a cloud service, which will deliver value to their customers by facilitating outcomes customers want to achieve.

The consumer does not want to be accountable for all associated costs and risks, real or nominal, actual or perceived, such as

	[bookmark: page903][image:]
	Producer/
	

	Indirect
	
	Direct

	Broker/
	Wholesaler/
	Consumer

	Agent
	Distributor
	

	
	
	

Retailer/

Dealer

FIGURE 5.4.1. The producer—consumer relationship diagram.

designing the technology architectures, management tools, processes, and all the resources to manage, deliver, and support the service.

The law of demand and supply will provide an efficient ecosystem in which the consumer with specific needs will be able to locate and find available service providers in the market that meet the required service demands and at the right price.

Business Mindset

From a producer’s perspective, it is critical to understand what would be the right and desired outcome. Rather than focusing on the production of services, it is important to view from the customer’s perspective. In order for producers to provide the desired cloud services, some of the questions that the service provider should address are:

Nature of business (What is the core business?)

Target consumer segments (Who are the customers?)

Cloud service value (What does the consumer desire? How is the service valuable to consumer?)

The service usage and charge-back (How does the consumer use the services? What are the charges?)

[bookmark: page904]
Direct Versus Indirect Distribution

As shown in Figure 5.4.1, the arrow lines depict the cloud services that can be offered by the cloud service provider through two different distribution channels: direct or indirect. Channel selection is often a choice and like any other business decisions is highly dependent on the service providers0 strategy, targeted consumers of the service (internal or external), and the outlook of the relative profitability of the two distribution channel. Typically, direct channel is more appropriate than indirect channel in the context of a private cloud service and where quality assurance matters.

Quality of Service and Value Composition

One characteristic of services in general is the intangibility of the service. Perception plays a heavier role in assessments of quality in this case than it does with manufactured products. Figure 5.4.2 shows a diagram of perception of quality. Value perception is typically derived from two components: expected quality and experienced quality. Expected quality refers to level of service that

	Expected
	
	Quality of Service/
	
	
	

	
	
	
	
	Experienced

	Quality
	
	Perceived Quality
	
	

	
	
	
	
	Quality

	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	Value of

[image:][image:]

	Functional
	Service

	Quality: What?
	Quality: How?

FIGURE 5.4.2. Perception of quality.

the customer expects when engaging with a service provider (e.g., market communication, customer needs, etc.), whereas, experienced quality refers value of service based on customer’s experience.

The value of a service consists of two primary elements : utility (fitness for

[bookmark: page905]purpose) and warranty (fitness for	use).

●	Utility (fitness for purpose), or functional quality attribute, is perceived bycustomers from the attributes of the service with positive effect on performance of tasks associated with desired outcomes.

●	Warranty (fitness for use), or service quality attribute, is derived from thepositive effect of being available when needed, in sufficient capacity and magnitude, and dependable in terms of continuity and security.

Charging Model

In the 1990s, value pricing was the key phrase in pricing decisions. It was used widely by many service industries: airlines, supermarkets, car rentals, and other consumer services industry. It started with Taco Bell offering a value menu with several entries, such as tacos, for very low prices. With their successes, other fast-food chains picked up on the concept and started offering their value-priced menu entries. The early 1990s recession caused industries to pick up on the value pricing concept, whose utilization was spread across many service industries. However, we would be careful to distinguish between (a) value pricing and (b) pricing to value. Pricing to value relies on value estimates of the dollar customers associates with the service. When coupled with an estimate of the variable and the fixed costs of producing and delivering a service, this determines ranges of possible price points that can be charged. Deciding on the charging model and pricing strategy is a key business strategy that should not be neglected.

There are several charging models as describe in Gartner report by Plummer et al. , however the below two charging model are the preferred model by the Cloud service provider:

Utility Model. Pay-per-use model where consumer is charged on thequantity of cloud services usage and utilization. This model is similar to traditional electricity charges. Forexample, aconsumer uses secured storage to support its private work documentation. The consumer is charged $0.50 for every 10 gigabytes of storage that is used. This model provides a lower startup cost option for a customer in translating TCO to actual utilization.

Subscription Model. Here the consumer is charged based on time-basedcloud services usage. For example, the consumer is charged a yearly fee for a dedicated storage of 10 gigabytes to host the company Web site. This model provides predictable cost outlay and provides a steady stream of revenue for the services provider.

CLOUD SERVICE LIFE CYCLE

[bookmark: page906]The input to the production of a cloud services are all the resources and assets that will compose the cloud service (i.e., in the form of hardware, software, man power required from developer to the management level and cost). The outcome of the cloud services production is an acceptable and marketable cloud service, which will provide a measurable value to the business objectives and outcomes. The sets of inputs are transformed to derive the outcome by using the cloud service life cycle. The cloud service life cycle consists of five phases as shown in Figure 5.4.3 and Table 5.4.1 summarizes each of the phase in cloud service life-cycle.

At the core of the cloud service life cycle is service strategy, which is the fundamental phase in defining the service principles. The main core of the cloud
[image:]

Service

Strategy

Service

Design

Service

Transition

Service

Operation

Continuous Service

Improvement

FIGURE 5.4.3. Cloud service lifecycle.

[bookmark: page907]

TABLE 5.4.1. Cloud Service Life Cycle

	621

	
	
	
	
	
	
	
	
	
	
	
	
	
	Continuous Service

	Service Phase
	Service Strategy
	Service Design
	Service Transition
	Service Operation
	
	Improvement

	
	
	
	
	
	
	
	
	
	

	Description
	Defines the business
	Design of the cloud
	Develop
	the
	cloud
	Production of
	
	cloud
	Maintain and Improve

	
	strategies,
	policies,
	services,
	processes,
	services for the tran-
	services
	and
	service
	value of cloud service

	
	objectives
	
	and capabilities
	sition of services to
	operational support
	to consumer
	

	
	
	
	
	
	production
	
	
	
	
	
	
	
	
	

	Objectives
	Determines
	the busi-
	Design
	the new/
	Development,
	deploy-
	Ensure
	the
	
	cloud
	Continuously
	main-

	
	ness decision
	improved
	cloud
	ment and
	validation to
	service
	value
	to
	tain
	and improve the

	
	
	
	service to meet busi-
	ensure that the
	cloud
	consumer
	
	
	
	value of cloud service

	
	
	
	ness requirements
	service
	has
	
	correct
	
	
	
	
	to
	meet
	business

	
	
	
	
	
	capabilities
	
	
	
	
	
	
	needs
	

	Outcome
	Business
	require-
	Cloud service blue-
	Production
	of
	the
	Monitoring
	report,
	Cloud services

	
	ments and
	cloud
	print or
	Service
	cloud services that is
	cloud
	
	service
	improvement
	

	
	service descriptions
	Design
	Package
	ready to go live
	
	feedback
	
	
	
	
	
	

	
	
	
	(SDP)
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

[bookmark: page908]
service life cycle is the key principle that all services must provide measurable value to business objectives and outcomes, which is reinforced in ITIL service management as its primary focus [2, 3].

The cloud service life-cycle approach mimics reality of most organizations where effective management requires uses of multiple control perspectives.

Service Strategy

Service strategy is the core of the service life cycle. It signifies the birth of the service. This is the phase where the business defines the strategies, policies, and objectives and establishes an understanding of the constraints, requirements, and business values. Figure 5.4.4 illustrates the inputs and outcomes of the service strategy phase.

The service strategy phase involves a business decision to determine if the cloud service provider has sufficient resources to develop this type of service
[image:]

Business Requirements/

Customers

Objectives
[image:] Resources and

	Service
	
	Policies

	
	
	

	Strategy
	Strategies

	
	
	

FIGURE 5.4.4. Service strategy.

and also to determine if production of a cloud service has a business value. The service strategy is comprised of the following key concepts:

Value creation

Service provider types

Defining the service market

Demand management

Financial management

Return of investment

Service assets, assessment, and portfolios

Service capabilities and resources

Service structures and developing service offerings

[bookmark: page909]The outcome of the service strategy phase is service strategy documentation, which includes the following components:

● Business requirements—target consumer market and	stakeholders

Risks involved

Resources required (man-power and budget)

Functional service requirements

Service descriptions

New/improved service timeline

Service Design

The second phase in the cloud service life cycle is service design. The main purpose of the service design stage of the life cycle is the design of new or improved service for introduction into the live environment. Figure 5.4.5 shows the input and the outcome of the service design phase. In this phase, the service requirements and specification are translated into a detailed cloud service design including the detailed desired outcome. The main objectives of service design are:

Aspects of service design

Service catalogue management

Service requirements

Service design models

Capacity, availability, and service-level management

The key concepts of service design revolve around the five design aspects, the design of services, service processes and service capabilities to meet business demand. The five key aspects of service design are:

The design of the services, including all of the functional requirements, resources, and capabilities needed and agreed.
[image:]

Service Strategy

SDPs

Standards
	Service
	
	Architectures

	
	
	

	Design
	Solution

FIGURE 5.4.5. Service design.

[bookmark: page910]
The design of service management systems and tools, for the control and management of sustainable services through the life cycle.

The design of the technology architectures, hardware and software,

	required to form the underlying technical aspects to provide the
	services.

	● The design of thepolicies and processesneeded to design,
	transition,

operate, and improve the services, the architectures and the	processes.

The design of key measurement methods, performance metrics for the service, cloud service architectures, and their constituent components and the processes.

The key output of the service design phase is a blueprint of the service solution, architectures, and standards. This output is what ITIL would term the service design package (SDP) . The SDP defines the following with respect to the service:

Service-level requirements

Service design and topology

Service and operational management requirements

Organizational readiness assessment plan

Service program

Service transition plan

Service operational acceptance plan

Service acceptance criteria

Service Transition

The service transition phase intends to implement and deploy what has been designed and planned. As shown in Figure 5.4.6, the service transition phase takes knowledge formulated out of the service design phase, and uses it to plan for the validation, release and deployment of the service to production. Key disciplines in service transition are:

Service development or service change is service built according to service design package (SDP).

Service release and deployment ensures the correct release in live environment.

Service validation and test ensures that the service has validated correct capabilities and functionalities.

Service knowledge management is to share information within the organi-zation to avoid rediscovering of cloud service capabilities.

[bookmark: page911]
Service transition provides a consistent and rigorous framework for evalu-ating the service capability and risk profile before a new or a changed service is released or deployed. The key output of the service transition is production of the services that is ready to go live, which includes:

● Approved service release package and associated deployment	packages.

Updated service package or bundle that defines end-to-end service(s) offered to customers.

Updated service portfolio and service catalogue.

Updated contract portfolio.

Documentation for a transferred service.

Service Operation

Service operation is the stage in the cloud service life cycle to provide the production of the cloud service and the service operational support. Service operation spans the execution and business performance of processes to continually strike the balance between cost optimization and quality of services. It is responsible for effective functioning of components that support services.
[image:]

Service Design
[image:]

SKMS
	Service
	
	Tested

	
	
	

	Transition
	Transition

FIGURE 5.4.6. Service transition.

Effective service operation relies on the ability to know the status of the infrastructure and to detect any deviation from normal or expected operation. This is provided by good monitoring and control systems, which are based on

[bookmark: page912]two types of tools:

●	Active monitoring tools that poll key configuration items (CIs) to deter-mine their status and availability. Any exceptions will generate an alert that needs to be communicated to the appropriate tool or team for action.

Passive monitoring tools that detect and correlate operational alerts orcommunications generated by CIs.

Continuous Service Improvement

As business demand increases, customer requirement changes, market land-scape fluctuates, and the service needs to adapt to these changing conditions to improvise and compete. Buyya et al. mentioned that: “Quality of servicerequirements cannot be static and need to be dynamically updated over time due to continuing changes in business operations.”The continuous service improvementphase is to ensure that the service remains appealing to meet the business needs. This is achieved by continuously maintaining and improving the value of service to consumers through better design, transition, and operation.

PRODUCTION READINESS

An authorization to commence service transition is considered one of the key outputs from service design to initiate the transitioning activities. In the cloud service life-cycle point of view, production readiness refers to the successful conclusion of the service transition phase and the production of the required outputs from service transition to service operation. Reaching the state where a service is ready to be transitioned into service operation is what we term production readiness.

ASSESSING PRODUCTION READINESS

The underlying IT infrastructure supporting the cloud service is similar to the ecosystem of compute resources, data, and software applications, which need to be managed, measured, and monitored continuously to ensure that it is function-ing as expected. The healthy functioning of this ecosystem is what we would refer to as operational health of the service. Operational health is determined by the execution of this ecosystem in delivery of the services and is dependent on the

[bookmark: page913]ability to prevent incidents and problems, achieve availability targets and service-level objectives, and minimize any impact to the value of the service.

Several key criteria that the cloud service provider needs to assess before the service is ready for production is what we term assessing production readiness. The main objective in assessing production readiness is to achieve a successful transition from development of cloud service into the service operational phase. The secondary objective is to ensure that the cloud service is healthy function-ing. The readiness of a service for operation is to ensure that the following key assessments are in place.

Service Facilities Readiness. Facilities to build and sustain a cloud servicehave been established.

Service Infrastructure Readiness. Hardware components (servers, storages,and network components) have been delivered and meet the requirements.

Service Technology Readiness. Software components and other necessary

components have been installed and deployed on the	infrastructure.

Monitoring Readiness. Track the conditions, events, and anomalities onthe cloud infrastructure.

Service Measurement Readiness. Evaluate the service utilization and

validate that the charge-back amount is	accurate.

Service Documentation. Define service procedure, manual, and instructionto ensure that the service is well-defined, structured, maintained, and supported.

Communication Readiness. Identify all activities related to communicationissues related to service operation.

Service Operational Readiness. Ready to support operations and main-tenance of the services.

Key Performance Indicators (KPI). Effective metric of measurement forthe service has been developed.

Acceptance Testing. The service is considered to be ready for production

when it has passed an adequate level of measurement set in KPI	metrics.

The nature of each production readiness assessment is described in more detail below.

Service Facilities Readiness

At the core of all components required to build and sustain a cloud service is a data-center facility. Facilities refer to the physical real-estate housing infra-structure that is required to host cloud infrastructure for the cloud service. Cloud services boast advantages of elasticity and capabilities to allow con-sumers to increase or decrease their resource consumption; therefore, it can be implied that there will be a need for constructing excess capacity in terms of the IT infrastructure. This translates to more requirements for hosting space to accommodate more assets, requirement for better facility (i.e., more cooling

[bookmark: page914]capacity, power consumption, floor	loading).

The facility to host cloud infrastructure plays an important role in cloud service design. Some of the considerations that a cloud service provider should take into account are:

●	Physically Secured Environment. The cloud infrastructure facility shouldbe reasonably secured and protected. For example, facility space has adequate access controls to permit entry for authorized personnel only.

Free or Mitigated from Natural Disaster. Design of the facility should include mitigation features against common natural disasters known to the area.

Cooling and Power Availability. The facility design should be at the rightsize to maintain adequate level of redundancy and availability to meet required service levels for the cloud service.

Network Connectivity Bandwidth. Cloud services are likely to be deliveredto consumers over the network, therefore bandwidth availability and capacity play an important role.

Assessing production readiness in terms of service facilities readiness means: Facilities to build and sustain a cloud service have been established.

Service Infrastructure Readiness

Service infrastructure readiness is to ensure that all the hardware components have been delivered and meet the requirements of the service design. Hardware components refer to the physical IT assets of the cloud infrastructure, which will fulfill the compute and storage resources. Hardware components include compute servers, disk storages, network devices, and appliances that are collectively used in the makeup of the technology architecture and configured as the cloud infrastructure. The challenges and considerations for hardware are:

Compute Servers. The following factors influence the decision of computeserver selection:

Proprietary hardware components and ease of replacement. Because compute resources should be easily provisioned from a collective group of server hardware, proprietary hardware components and ease of replacement or acquisition of the servers should be high in order to easily acquire and grow.

Hardware reliability is less of a concern, depending on the ability of the software architecture to automatically re-deploy compute resources whenever there is a fault.

Platform or operating systems compatibility. Compute servers should be able to operate on a hypervisor or abstraction layer that can support most of the common platforms or operating systems without compat-ibility issues.

[bookmark: page915]Disks Storages. The following factors influence the decision of diskstorage selection:

Virtualization layer that can encapsulate the underlying disk storage

arrays. With the design of this layer, it would enable provisioning of lower-cost storage arrays to accommodate storage capacity demands.

●	Proprietary hardware components and ease of replacement. Similar to compute resources, hard disks should be easily provisioned from a collective group of storage pool. Hence, storage architecture should be open and replacement of additional storage should be easily acquired without incurring exorbitant marginal costs.

Hardware reliability is less of a concern, depending on the level of data protection in the design.

Networking Infrastructure. Selection and choice of networking devices willbe dependent on the topology, architecture design, data flow, and anticipated usage patterns.

The major risks or challenges involved in hardware components is the risk of the hardware failure beyond the tolerance of the acceptable service levels. The design of the cloud service architecture and infrastructure as well as the service strategy is crucial to ensure right-sized infrastructure. To offer a higher-end service level and to prevent the risks of unplanned outages or service-level breaches, some cloud service providers adopts “fail-over” functionality, where it will replace the faulty compute servers or disks storages with the available servers/disks that has similar configuration.

Assessing production readiness in terms of service infrastructure readiness means: Hardware components have been delivered and are right-sized.

[bookmark: page916]Service Technology Readiness

As cloud services are predominantly IT services, the underlying infrastructure are often delivered within the governance of a set of software logic. While the hardware components provide the resources available to the customer, the software components control, manage, and allow the actual usage of these resources by the consumers.

In terms of software components, the challenges faced by the cloud service providers are:

Data Corruption. Cloud services which host consumers’ data are usually burdened with theresponsibility of ensuring the integrity and availability of these data, depending on the subscribed service level.

Logical Security. In terms of information security, an appropriate control of logical security shouldbe adopted by the producer to ensure adequate confidentiality (i.e., data and transactions are open only to those who are authorized to view or access them).

Data Interoperability. Producer should follow the interoperability stan- dards in order for theconsumers to be able to combine any of the cloud services into their solutions.

Software Vulnerability and Breaches. There are occasions when the public community discoversvulnerabilities of specific software, middleware, Web services, or other network services components in the software compo- nents. The producer should ensure that a proper strategy and processes are in place to address such vulnerabilities and fixed to prevent breaches.

Assessing production readiness in term of Service technology readiness means:

Software components have been installed, configured, and deployed.

Monitoring Readiness

Monitoring readiness refers to having the ability and functions to monitor and track the conditions, events, and anomalities on the cloud infrastructure during the consumption of the cloud services. In the context of service operation, the measurement and control of services is based on a continual cycle of monitor- ing, reporting, and subsequently remedial action. While monitoring capability takes place during service operation, it is fundamental to predefine the strategic basis requiring this capability, designing it, and testing this capability to ensure its functional fulfillment. The monitoring readiness should at least include the following features:

Status tracking on key configuration items (CIs) and key operational activities.

Detect anomality in the service operations and notify the key personnel in charge.

Ensure that performance and utilization of key service components are within specified operating condition.

Ensure compliance with the service provider’s policies.

Assessing production readiness in terms of monitoring readiness means:

Capability totrackthe conditionsandanomalities onthe	Cloudinfrastructure.

Service Measurement Readiness

The purpose of the service measurement readiness criteria is to evaluate the service utilization and validate that the service charge-back amount to the consumer is accurate. It becomes necessary for the service provider to monitor, measure, and report on component levels to the point that is granular enough that

[bookmark: page917]provides a meaningful view of the service as the consumer experiences the value of service.

Assessing production readiness in terms of service measurement readiness means:

Evaluate the service usage and validate that the charge-back amount is accurate.

Service Documentation

Established service portfolio, service catalogue, design blueprints, service-level agreements, operational level agreements, process manuals, technical proce- dures, work instructions, and other service documentation are necessary to ensure that the service is well-defined, structured, and able to be maintained and supported. When the service undergoes some changes, the service doc - umentation needs to be updated.

Assessing production readiness in terms of Service documentation means: Service documentation (e.g., procedure, manual) are well-defined and maintained.

Communication Readiness

The purpose of communication readiness is to identify all the activities related to communication issues related to the service operation (e.g., identify medium, format, key personnel to be notified for customer support or during critical message). Communication readiness criteria include customer support scenar - ios, frequently asked questions (FAQs), help-desk personnel, and key personnel when there are abnormalities in the service operations.

Assessing production readiness in terms of communication readiness means: Identify all the activities related to communication issues related to service operation.

Service Operational Readiness

Being production ready also requires a certain level of maturity in operational processes. Operational processes include the technology and management tools implementation to ensure the smooth running of the cloud infrastructure. These operational processes are broadly categorized into the following:

Event management is a process that monitors all events occurring through the IT infrastructure toallow for normal operation, as well as to detect and escalate exception conditions.

Incident management is a process that focuses on restoring, as quickly as possible, the service to

normal operating conditions in the event of an exception, in order to minimize business	impact.

Problem management is a process that drives root-cause analysis to determine and resolve the causeof events and incidents (reactive), and activities to determine patterns based on service behavior to prevent future events or incidents (proactive).

Request fulfillment is a process that involves the management of customer or user requests that arenot generated as an incident from an unexpected service delay or disruption.

Security Management is a process to allow authorized users to use the service while restricting

[bookmark: page918]access to nonauthorized users (access	control).

Provisioning management is a process that allows the cloud service provider to configure and maintainthe infrastructure remotely. Advantages include ease of use, speed in provisioning, and ease of maintenance of the cloud infrastructure.

Assessing production readiness in terms of service operational readiness means:

Ready to support the operations and maintenance of the services.

Key Performance Indicators	(KPIs)

KPIs should be set and defined as part of the service design to develop an effective metric of measurement for the service. An effectiveness service metric can be achieved by focusing on a few vital, meaningful indicators that are economical and useful for measuring results of the service performance. Some of the examples of KPIs that can be established are:

Metrics measuring performance of the service against the strategic business and IT plans

Metrics on risks and compliance against regulatory, security, and corpo- rate governance requirements for the service

● Metrics measuring financial contributions of the service to the	business

● Metrics monitoring the key IT processes supporting the	service

Service-level reporting

Metrics measuring customer satisfaction

Assessing production readiness in terms of key performance indicators means:

Effective metric of measurement for the service has been	developed.

Acceptance Testing

The last criteria before a cloud service is ready for production is an adequate level of measurement set in the KPI metrics. There are several tests that should be planned and carried out:

● Load Testing. Simulating expected and stretched loads for stress	testing

User Testing. Simulating user activities, including provisioning, transac- tional, and other usagepatterns.

Fault Tolerance Testing. Fault tolerance testing is to stress test the service architecture in the event

of an unexpected	fault.

Recovery Testing. Testing of recovery procedures in the event of failure to determine the accuracy ofrecovery procedures and the effects of failure on the consumers.

Network Testing. Assessment of network readiness and latency require- ments to determine if thecloud infrastructure is capable of allowing the maximum number of concurrent consumers (under planned maximum load).

Charging and Billing Testing. Validate charging, billing and invoicing for the use of a cloudservices.

[bookmark: page919]

	Download from Wow! eBook <www.wowebook.com>

1 - 44
Distributed Computing : Clusters, Grids and Clouds, All rights reserved	by Kai Hwang, Geoffrey
Fox, and Jack Dongarra, May 2, 2010.
image6.jpeg

image95.jpeg

image96.jpeg

image97.jpeg

image98.jpeg

image99.jpeg

image100.jpeg

image101.jpeg

image102.jpeg

image7.jpeg

image8.jpeg

image9.jpeg

image103.jpeg

image104.jpeg

image10.jpeg

image105.jpeg

image11.jpeg

image106.jpeg

image107.jpeg

image108.jpeg

image109.jpeg

image110.jpeg

image111.jpeg

image112.jpeg

image113.jpeg

image12.jpeg

image114.jpeg

image115.jpeg

image116.jpeg

image117.jpeg

image118.jpeg

image119.jpeg

image120.jpeg

image121.jpeg

image122.jpeg

image123.jpeg

image13.jpeg

image124.jpeg

image125.jpeg

image126.jpeg

image127.jpeg

image128.jpeg

image129.jpeg

image130.jpeg

image131.jpeg

image132.jpeg

image133.jpeg

image14.jpeg

image134.jpeg

image135.jpeg

image136.jpeg

image137.jpeg

image138.jpeg

image139.jpeg

image140.jpeg

image141.jpeg

image15.jpeg

image142.jpeg

image143.jpeg

image144.jpeg

image16.jpeg

image17.jpeg

image145.jpeg

image146.jpeg

image147.jpeg

image148.jpeg

image149.jpeg

image150.jpeg

image151.jpeg

image152.jpeg

image18.jpeg

image153.jpeg

image154.jpeg

image155.jpeg

image156.jpeg

image157.jpeg

image158.jpeg

image159.jpeg

image160.jpeg

image161.jpeg

image19.jpeg

image162.jpeg

image163.jpeg

image164.jpeg

image165.jpeg

image166.jpeg

image167.jpeg

image168.jpeg

image169.jpeg

image170.jpeg

image171.jpeg

image20.jpeg

image172.jpeg

image173.jpeg

image21.jpeg

image174.jpeg

image175.jpeg

image176.jpeg

image22.jpeg

image177.jpeg

image178.jpeg

image179.jpeg

image180.jpeg

image181.jpeg

image182.jpeg

image183.jpeg

image184.jpeg

image23.jpeg

image185.jpeg

image186.jpeg

image187.jpeg

image188.jpeg

image189.jpeg

image190.jpeg

image191.jpeg

image192.jpeg

image193.jpeg

image194.jpeg

image24.jpeg

image195.jpeg

image196.jpeg

image197.jpeg

image198.jpeg

image199.jpeg

image200.jpeg

image201.jpeg

image202.jpeg

image203.jpeg

image204.jpeg

image25.jpeg

image205.jpeg

image206.jpeg

image207.jpeg

image208.jpeg

image209.jpeg

image210.jpeg

image211.jpeg

image212.jpeg

image26.jpeg

image213.jpeg

image214.jpeg

image215.jpeg

image216.jpeg

image217.jpeg

image218.jpeg

image219.jpeg

image220.jpeg

image221.jpeg

image222.jpeg

image27.jpeg

image223.jpeg

image224.jpeg

image225.jpeg

image226.jpeg

image227.jpeg

image228.jpeg

image229.jpeg

image28.jpeg

image230.jpeg

image231.jpeg

image232.jpeg

image233.jpeg

image234.jpeg

image235.jpeg

image236.jpeg

image237.jpeg

image238.jpeg

image29.jpeg

image239.jpeg

image240.jpeg

image241.jpeg

image242.jpeg

image243.jpeg

image244.jpeg

image30.jpeg

image245.jpeg

image246.jpeg

image247.jpeg

image248.jpeg

image249.jpeg

image31.jpeg

image250.jpeg

image251.jpeg

image252.jpeg

image253.jpeg

image254.jpeg

image255.jpeg

image256.jpeg

image257.jpeg

image258.jpeg

image259.jpeg

image32.jpeg

image260.jpeg

image261.jpeg

image262.jpeg

image263.jpeg

image264.jpeg

image265.jpeg

image266.jpeg

image267.jpeg

image268.jpeg

image269.jpeg

image33.jpeg

image270.jpeg

image271.jpeg

image272.jpeg

image273.jpeg

image274.jpeg

image275.jpeg

image34.jpeg

image276.jpeg

image277.jpeg

image278.jpeg

image279.jpeg

image280.jpeg

image281.jpeg

image282.jpeg

image283.jpeg

image284.jpeg

image285.jpeg

image35.jpeg

image286.jpeg

image287.jpeg

image288.jpeg

image289.jpeg

image290.jpeg

image291.jpeg

image292.jpeg

image293.jpeg

image294.jpeg

image36.jpeg

image295.jpeg

image296.jpeg

image297.jpeg

image37.jpeg

image298.jpeg

image299.jpeg

image300.jpeg

image301.jpeg

image302.jpeg

image303.jpeg

image304.jpeg

image305.jpeg

image38.jpeg

image306.jpeg

image307.jpeg

image308.jpeg

image309.jpeg

image310.jpeg

image311.jpeg

image312.jpeg

image313.jpeg

image314.jpeg

image39.jpeg

image40.jpeg

image41.jpeg

image42.jpeg

image43.jpeg

image44.jpeg

image45.jpeg

image1.png

image46.jpeg

image47.jpeg

image48.jpeg

image49.jpeg

image50.jpeg

image51.jpeg

image52.jpeg

image53.jpeg

image54.jpeg

image55.jpeg

image2.jpeg

image56.jpeg

image57.jpeg

image58.jpeg

image59.jpeg

image60.jpeg

image61.jpeg

image62.jpeg

image63.jpeg

image64.jpeg

image65.jpeg

image3.jpeg

image66.jpeg

image67.jpeg

image68.jpeg

image69.jpeg

image70.jpeg

image71.jpeg

image72.jpeg

image73.jpeg

image74.jpeg

image75.jpeg

image4.jpeg

image76.jpeg

image77.jpeg

image78.jpeg

image79.jpeg

image80.jpeg

image81.jpeg

image82.jpeg

image83.jpeg

image84.jpeg

image85.jpeg

image5.jpeg

image86.jpeg

image87.jpeg

image88.jpeg

image89.jpeg

image90.jpeg

image91.jpeg

image92.jpeg

image93.jpeg

image94.jpeg

