Code No: 09A30401

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech II Year I Semester Examinations, June/July-2014 PROBABILITY THEORY AND STOCHASTIC PROCESSES

(Common to ECE, ETM)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

1.a) Distinguish between mutually exclusive events and independent events.

- b) In a single throw of two dice, what is the probability of obtaining a sum of at least 10?
- c) State and prove Baye's theorem of probability.
- 2.a) If the mean and variance of the binomial distribution are 6 and 1.5 respectively. Find $E[X P(X \ge 3)]$.
 - b) What is the distribution function of mixed random variable? Discuss what do you mean by density function?
- 3.a) State and prove properties of moment generating function of a random variable X.
 - b) For a function $Y = (X m_x)/\sigma_x$, prove that mean is zero and variance is 1.
- 4.a) Define and explain the properties of conditional density functions.
 - b) Joint probabilities of two random variables X and Y are given in Figure.

YX	1	2	3
1	0,2	0,1	0.2
2	0.15	0.2	0.15

Find out:

- i) Joint and marginal distribution functions and plot.
- ii) Joint and marginal density functions and plot.
- 5.a) For two zero mean Gaussian random variables X and Y show that their joint characteristic function is $\varphi XY(\omega_1,\omega_2) = \exp\{-1/2[\sigma X^2\omega_1^2 + 2\rho\sigma_X\sigma_Y\omega_1\omega_2 + \sigma Y^2\omega_2^2]\}.$
 - b) Random variables Z and W are defined by Z = X+aY W = X-aY. Where 'a' is a real number? Determine 'a' such that Z and W are orthogonal.
- 6.a) Determine if the constant process X(t) = A, where A is a random variable with mean A and variance σA^2 is mean ergodic.
 - b) Let N(t) be a zero mean wide sense stationary noise process for which $R_{NN}(\tau) = (No/2) \, \delta(t)$ where No > 0 is a finite constant. Determine whether N(t) is mean ergodic.
 - c) A random process consists of three sample functions $x(t, s_1) = 2$, $x(t, s_2) = 2\cos t$ and $x(t, s_3) = 3\sin t$ each occurring with equal probability. Is the process stationary in any sense?

- Consider a random process $X(t) = Cos(\omega t + \theta)$ where ω is a real constant and θ is 7.a)a uniform random variable in $(0, \pi/2)$. Show that X(t) is not a WSS process. Also find the average power in the process.
 - b) Find the Auto Correlation Function of the following PSDs:
 - i) $S_{xx}(\omega) = (157 + 12\omega^2)/(16 + \omega^2)(9 + \omega^2)$ ii) $S_{xx}(\omega) = 8/(9 + \omega^2)^2$.
- Define noise temperature and noise figure. 8.a)
 - Bring out the significance of noise figure in determining the performance of a b) communication system.

