## Code No: 51008

## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech I Year Examinations, June - 2015

## MATHEMATICAL METHODS

(Common to EEE, ECE, CSE, EIE, BME, IT, ETM)

Time: 3 hours

Max. Marks: 75

## Answer any five questions All questions carry equal marks

- 1.a) Find the Half range Fourier Sine series of  $f(x) = \cos x$  in  $0 < x < \pi$ .
  - b) Find the Fourier series of  $f(x) = x x^2$  defined in the interval  $(-\pi, \pi)$ . [7+8]
- 2.a) Form the P.D.E by eliminating the arbitrary function  $f(x^2 + y^2 + z^2, ax + by + cz) = 0$ .
  - b) A square plate is bounded by the lines x=0, y=0, x=20 and y=20. Its faces are insulated. The temperature along the upper horizontal edge is given by u(x,20)=x(20-x), 0<x<20 while the other three edges are kept at  $0^{0}C$ . Find the steady state temperature distribution. [7+8]
- 3.a) Solve by LU decomposition method: 20x + y 2z = 17, 3x + 20y z = -18, 2x 3y + 20z = 25.
- b) Reduce the matrix  $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$  into Normal form hence find its rank.[7+8]
- 4.a) Find the Eigen values and Eigen Vectors of  $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ .
- b) Using Cayley-Hamilton Theorem and find  $A^{-1}$ , where  $A = \begin{bmatrix} 7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1 \end{bmatrix}$ . [7+8]
- 5.a) Reduce the quadratic form  $3x_1^2 + 3x_2^2 + 3x_3^2 + 2x_1x_2 + 2x_1x_3 2x_2x_3$  to canonical form by orthogonal transformation. Find rank, index and signature of the quadratic form.
  - b) Show that all the characteristic roots of a Hermitian matrix are real. [7+8]
- 6.a) Using Newton's Raphson method find square root of 41.
  - b) The population of certain town is shown in the following table. Estimate the population in 1936.

| year                 | 1921  | 1931  | 1941  | 1951  | 1961  |
|----------------------|-------|-------|-------|-------|-------|
| Population in 1000's | 19.96 | 39.65 | 58.81 | 77.21 | 94.61 |

[7+8]

7.a) Fit a curve  $y = ae^{bx}$  to the following data:

| Х | 0  | 1  | 2  | 3  | 4   | 5   | 6   | 7   | 8    |
|---|----|----|----|----|-----|-----|-----|-----|------|
| у | 20 | 30 | 52 | 77 | 135 | 211 | 326 | 550 | 1052 |

- b) Evaluate  $\int_{0}^{1} \frac{dx}{1+x^2}$  using Simpson's rule and trapezoidal rule and hence find the approximate value of  $\pi$ . [7+8]
- 8. Using Modified Euler's method find y(0.1) and y(0.2), given that y' = x y and y(0) = 1 and compare the results with exact solutions. [15]

---00O0o---

