| 1) 1 | 2 | |------|---| | | 7 | | | | | JA (Con | mmon to CE, EEI | Tech I Year Exa
ENGINEERIN
E, ME, ECE, CSI | minations, May
NG CHEMISTR | - 2016
Y
, MCT, MMT | | aer
aer | |------------------------------|---|---|--|----------------------------------|---------------------------------|--| | Time: | 3 hours | * * * * * * * * * * * * * * * * * * * | | 111 | ax. Marks. 75 | 1 | | Note: | This question pap
Part A is compul
Part B consists o
question carries 1 | lsory which carrie
f 5 Units. Answe | es 25 marks. Ans
r any one full qu | iestion from ea | ons in Part A. ach unit. Each | | | **** * ** | Yaxa \$ * | PA | RT- A | | | | | | | | | | (25 Marks) | | | 1.a) b) c) d) e) f) g) i) j) | Define specific co
Mention the appli
Give the structure
Define temporary
Discuss the disinf
Define octane and
Define calorific value. | veen primary and conductance, equivalent of Nano needs of monomeric urvand permanent has fection of water by a cetane number of value of fuel and dications of colloid on 'Micelles'. | alent conductance naterials. its of Nylon 6:6. ardness of water. chlorination. f fuel. give the relation | 1,,185, | [3]
[2]
[3]
[3]
[2] | | | | | PA | ART-B | | (50 N/L ****L) | 1 | | **** | | | *** | | (50 Marks) | | | 2.a)
b)
c) | What is meant by Explain the deter | uation for single e
electrochemical s
mination of pH of | series? Mention it
the solution usin | ts applications. g glass electro | de. [4+2+4] | No. of the last | | 3.a) | Define Corrosion | n. Explain the med | chanism involved | in absorption | of oxygen type | | | b)
c) | corrosion. Write notes on M Describe electrop | lethanol-oxygen folloting process. | iel cell. | | [4+3+3] | | | 4.a)
b)
c) | Explain the fabric What are the app | ntion, properties are
cation of plastics b
lications of condu | oy injection moule cting polymers? OR | ding method. | [5+3+2] | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | 5.a) | What are the draw | wbacks of raw rub | ber? Explain the | vulcanization | of rubber. | | | b) | Define lubricant What are the cha | . Explain extreme racteristics of goo | pressure lubricated refractory? | ion. | [5+3+2] | * * * * * * * * * * * * * * * * * * * | **** | A A M | 6.a) | Explain the determine Write notes on cause What are the specification. | stic embrittlemer
ications of potab | ıt. | by EDTA metho | d.
[5 +3+2] | 3 | | | |---|---|--|--|----------------------------|------------------|----------------------------|-----|--|--| | X Table 2 Tabl | 7.a)
b) | Explain Ion exchange process in softening of water. 50ml of standard hard water containing 1 mg of pure CaCO ₃ per ml consumed 20ml of EDTA. 50ml of water sample consumed 25ml of same EDTA solution using Eriochrome Black-T indicator. Calculate the total hardness of water sample in ppm and in degree French. [6+4] | | | | | | | | | | 8.a)
b) | Explain the determination of calorific value of fuel by Junker's gas calorimeter. Discuss the synthesis of petrol by Bergius process. [6+4] | | | | | | | | | | 9.a)
b) | Describe the analysis of flue gases by ORSAT'S apparatus. Calculate the quantity of air required for the complete combustion of 1kg of the fuel having the following composition $C=74\%$, $H=5\%$, $S=1\%$, $O_2=5\%$, Moisture=7% and Ash=6%. | | | | | | | | | | b)
c) | What is Phase rul
rule with an examp
Write brief notes of
Give an account of | le. Optical propert applications of a | ies of colloids. | ous terms invol | ved in phase [5+3+2] | S 8 | | | | wane
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
ended
e | 11.a) | Explain the applica Write a note on cla Discuss the electric | tion of phase rul | e to one componersorption. | ent system in de | tail. [5+2+3] | | | | | STAN | | | 0 | oOoo | | | | | | | great
great
great
great | | 6R | | | | | | | | | | | SE | | | | | | | | | | **** *****
**** *****
**** *****
**** **** | | | | | | | | |