Code No: 55009

ugr.

1004590

-5110.G-

翻卷 8.

WK.

2773

B#5.

##4.

745E

557

SERVE.

det.

394

翻性

6554

0.9%

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, February/March - 2016

IC APPLICATIONS (Common to EEE, ECE, ETM)

51454 51454 1251

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

1.a)	Derive the expressions to show that an op-amp can be used as (i) scale changer
b)	(ii) voltage follower. With a neat circuit diagram explain differential mode of op-amp. [8+7]
2.a)	What are the limitations of an ordinary op-amp integrator? Draw the circuit of
b)	a practical integrator and explain how it will eliminate these limitations.
b)_	Design an op-amp differentiator that will differentiate an input signal with $f_{max} = 100$ Hz. Draw the output waveform for a sine wave of 1V peak at 100Hz
	applied to the differentiator. Repeat the same for square wave input. [7+8]
3.a)	Explain Quadrature type oscillator using op-amp.
b)	With a neat circuit diagram and necessary waveforms explain triangular wave generator using op-amp. [7+8]
4.a)	Draw and explain the internal schematic of a 555 timer IC:
b)	What is the principle of PLL? Draw the block schematic and explain the same. [8+7]
5.0)	Evenlein D. 201 III. C
5.a) b)	Explain R-2R ladder type DAC with the help of a circuit. Compare direct conversion and indirect conversion techniques of ADCs. [8+7]
6.a)	Explain in detail about comparison of different logic families.
b)	Explain IC interfacing for TTL driving CMOS [8+7]
7.a)	Explain the differences between a MUX and a DEMUX. Realize 16-input
b)	multiplexer by cascading of two 8-input multiplexers 74151. Realize the function f(A P C D) = Sec(1.2.5.8.10.14) + 47.6.7.15)
U)	Realize the function $f(A,B,C,D) = \sum m(1,2,5,8,10,14) + d(6,7,15)$ using (i) 16:1 MUX (ii) 8:1 MUX (iii) 4:1 MUX. [7+8]
8.a)	Explain the differences between asynchronous and synchronous counters. Design a MOD-10 ripple counter.
b)	Design a MOD-10 hpple counter. Design and construct MOD-5 synchronous counter using JK flip flops. [8+7]
4000	

###

SHEET.

1965

ERM.

ØÑ.

F

0.01

11612