Code No: 09A30402

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B. Tech II Year I Semester Examinations, November/December-2013

Signals and Systems (Common to ECE, EIE, ETM, BME)

Time: 3 hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

X.a) Define a Signal. What are the different types of signals?

- b) Derive the expression for component vector C_{12} of approximating the function $f_1(t)$ over $f_2(t)$ and also prove that the component vector becomes zero if the $f_1(t)$ and $f_2(t)$ are orthogonal.
- Show that the following two signals are orthogonal over a interval [0 1] for $f_1(t) = 2$ and $f_2(t) = \sqrt{3}(1-2t)$. [3+6+6]
- Represent the function e^t over the interval $0 \le t \le 1$ by the trigonometric Fourier series.
 - b) Obtain the exponential Fourier series for the full wave rectified sine wave shown in Figure 1 below. [8+7]

Figure 1

- 3.a) Define Fourier Transform and State any four properties.
- b) Find the Fourier transform of Signum function and double sided real function e^{-a|t|}.

 [7+8]
- 4.a) Show that the output of an LTI system is given by the convolution sum of the input and system function
 - b) Determine whether the following systems are Linear and Time Invariant or not. i) $y(n) = x(n^2)$ ii) $y(n) = x^2(n)$ iii) $y(n) = e^{x(n)}$. [9+6
- Define Nyquist rate. Compare the merits and demerits of performing sampling using impulse, Natural and Flat-top sampling techniques.
 - b) Discuss the process of reconstructing the signal from its samples. [8+7]
- 6.a) Define Convolution Theorem in Time and Frequency domain and bring out the expression for convolution in Time domain.
 - b) Find the convolution of the signals $x(t) = e^{-2t} u(t)$ and $y(t) = e^{-4t} u(t)$. [8+7]
- (a) Define Laplace Transform and discuss its existence
 - b) Find Laplace Transform of (i) $x(t) = t^2u(t)$ (ii) $x(t) = e^{-at} \sinh \omega t \ u(t)$. [7+8]
- 8.a) Determine the inverse Z-Transform of $X(z) = z/(3z^2 4z + 1)$, if the region of convergence are (i) z > 1 (ii) z < 1/3 (iii) 1/3 < z < 1.
 - b) Using scaling property determine the Z-transform of aⁿ cosωn and find its ROC.

[8+7]